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Abstract

Differential expression analysis is one of the most common types of analyses performed on

various biological data (e.g. RNA-seq or mass spectrometry proteomics). It is the process

that detects features, such as genes or proteins, showing statistically significant differences

between the sample groups under comparison. A major challenge in the analysis is the

choice of an appropriate test statistic, as different statistics have been shown to perform well

in different datasets. To this end, the reproducibility-optimized test statistic (ROTS) adjusts

a modified t-statistic according to the inherent properties of the data and provides a ranking

of the features based on their statistical evidence for differential expression between two

groups. ROTS has already been successfully applied in a range of different studies from

transcriptomics to proteomics, showing competitive performance against other state-of-the-

art methods. To promote its widespread use, we introduce here a Bioconductor R package

for performing ROTS analysis conveniently on different types of omics data. To illustrate the

benefits of ROTS in various applications, we present three case studies, involving proteo-

mics and RNA-seq data from public repositories, including both bulk and single cell data.

The package is freely available from Bioconductor (https://www.bioconductor.org/

packages/ROTS).

“This is a PLOS Computational Biology Software paper.”

Introduction

Differential expression analysis between two groups of samples is perhaps the most common

type of analysis that is performed on various types of omics data. The aim of differential

expression analysis is to detect features (e.g. genes or proteins) showing statistically significant

changes between the groups. A commonly used approach has been the Student’s t-test, which
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has been later shown not to be the most optimal solution in many cases [1, 2]. Although a

number of alternative test statistics have therefore been introduced [3–5], a major practical

challenge remains that the different statistics perform well in different datasets [6–9] and there

is no general agreement on how to make an appropriate choice of the statistic a priori.
To address this need, we have introduced a reproducibility-optimized test statistic (ROTS)

that optimizes the choice of the statistic directly from the data instead of using a fixed prede-

fined statistic [10]. This is done by maximizing the overlap of top-ranked features in group-

preserving bootstrap datasets among a family of t-type statistics. In particular, ROTS optimizes

the ranks of the features because usually the final ranking determines if the differentially

expressed features are selected for further validation studies.

The ROTS method has already been used in various applications, such as microarrays [10],

mass spectrometry proteomics [11] as well as bulk and single-cell RNA-seq [9, 12], and its

competitive performance has been shown against other tools for differential expression analy-

sis. Here we introduce a Bioconductor R package ROTS for performing differential expression

analysis using the ROTS method and demonstrate the applicability of the method in three

diverse case studies. The R package together with detailed documentation is freely available

from Bioconductor.

Design and implementation

Algorithm

ROTS optimizes the reproducibility of top-ranked features in group-preserving bootstrap

datasets among a family of modified t-statistics:

da ¼
j �x1 � �x2 j

a1 þ a2s
ð1Þ

where j �x1 � �x2 j is the absolute difference between the group averages, α1 and α2 are non-nega-

tive parameters to be optimized, and s is the pooled standard error [10]. Special cases of ROTS

are the ordinary t-statistic (α1 = 0, α2 = 1) and the signal log-ratio (α1 = 1, α2 = 0). The optimal

statistic is determined by maximizing the reproducibility Z-score:

Zk dað Þ ¼
Rk dað Þ � R0

k dað Þ

sk dað Þ
ð2Þ

over a lattice α1 2 {0, 0.01, . . ., 5}, α2 2 {0, 1}, k 2 {1, 2, . . ., G}. Here, Rk (dα) is the observed

reproducibility of statistic dα at top list size k in bootstrap datasets, R0
k ðdaÞ is the corresponding

null reproducibility in randomized datasets permuted over samples, sk (dα) is the standard

deviation of the bootstrap distribution, and G is the total number of features in the data.

Reproducibility is defined as the average overlap of k top-ranked features over pairs of boot-

strapped datasets.

The final ROTS output is calculated from the original data using the optimized parameters

α1 and α2 giving the highest reproducibility Z-score. The false discovery rate (FDR) is esti-

mated by randomly permuting the sample labels.

Software features

The ROTS package is freely available from Bioconductor (https://www.bioconductor.org/

packages/ROTS) and runs in R environment. Both the package and the R environment can be

used on Windows, MacOS or UNIX platforms. After installing the package, the differential

expression analysis can be performed within R. A preprocessed and appropriately normalized
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data matrix is required for input with columns representing different samples and rows repre-

senting the features. It can be various types of omics data, such as gene expression microarray

data, RNA-seq data or mass spectrometry based proteomics data. As an example, an excerpt

from a typical expression matrix of a label-free proteomics study is shown in Table 1, contain-

ing log scaled protein abundances of three replicates from two sample groups of the shotgun

‘profiling standard sample set’ [13].

To perform differential expression analysis on an expression matrix (here data), only one

line of code is required after loading the package:

library(ROTS)
rots.out<- ROTS(data,groups = c(0,0,0,1,1,1),B = 1000, K = 500)
Here the vector groups defines the columns of the data matrix belonging to the two differ-

ent sample groups under comparison, B denotes the number of bootstraps to perform, and K
is the maximum top list size to consider in reproducibility optimization. Setting this number

to a smaller value may improve the running time drastically. However, we recommend that

the value should always be considerably higher than the number of features expected to be dif-

ferentially expressed.

The generated ROTS object (here rots.out) contains the test statistics and additional

details for all the features in the input data, including the optimized parameters a1 and a2. If

the reported top list size k (rots.out$k) is close to the given parameter K, it suggests that the

maximum top list size to be tested might have been too small, and increasing it should be con-

sidered. The reproducibility value (rots.out$R) and the reproducibility Z-score (rots.
out$Z) are also included. All the results including p-values (rots.out$pvalue), false dis-

covery rates (rots.out$FDR) or fold changes (rots.out$logfc) can be exported by the

user and used for further external analysis, such as gene-set or pathway enrichment analysis.

The ROTS package includes also versatile built-in options for visualization that can be

accessed using the standard R plot function. The type of plot can be selected using the type
parameter of the function. Fig 1A shows an example of a volcano plot (type=‘volcano’),

which visualizes the relationship between fold changes and p-values (i.e. magnitude of change

and statistical significance). It can be used to select the most promising candidate features for

further validation studies. Fig 1B shows an example of an MA plot (type=‘ma’), which shows

the relationship between the average intensities (A) and intensity ratios (M) calculated across

and between the sample groups for each feature, respectively. It can be used, for instance, to

assess the quality of normalization used in preprocessing the data. Fig 1C illustrates the ROTS

reproducibility Z-score as a function of top list size k (type=‘reproducibility’). It can

be used to look for possible alternative peaks of Z-score, which could suggest, for example, sub-

groups of differentially expressed features or artifacts from data normalization. Fig 1D illus-

trates a histogram of p-values (type=‘pvalue’), which enables assessing the overall

performance of the hypothesis testing. Under the null hypothesis, p-values are uniformly dis-

tributed, but if there is a large number of differentially expressed features present, the distribu-

tion of p-values is likely skewed towards smaller values. Fig 1E shows an example of a principal

Table 1. Example layout of expression data to be used as input for ROTS, where columns represent different samples and rows represent the

features.

Feature A1 A2 A3 B1 B2 B3

1 19.263 19.213 19.151 19.138 19.168 19.328

2 25.950 25.935 25.950 24.040 24.058 24.078

3 21.077 20.982 21.101 21.255 21.263 21.328

4 20.691 20.531 20.470 20.921 20.902 20.911

https://doi.org/10.1371/journal.pcbi.1005562.t001
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component analysis (PCA) of the differentially expressed features defined based on a user-spec-

ified FDR cutoff (type=‘pca’). It is a transformation, where the data is projected into a new

coordinate system of principal components retaining the highest variance. It can be used as a

tool to evaluate similarities between samples or groups. By setting the FDR parameter to 1, the

principal components are calculated using all the features. Fig 1F illustrates a heatmap with

hierarchical clustering of samples and features to visualize the expression levels of differentially

expressed features as colours (type=‘heatmap’).

For additional details and examples of using the ROTS package, the reader is referred to the

package manual and the three case studies discussed below.

Results

The benefits of ROTS over other state-of-the-art tools have already been shown in various

applications [9–12]. Here, we used three new case studies to further demonstrate the perfor-

mance of the ROTS method in different study settings, including label-free quantitative prote-

omics and both bulk and single-cell RNA-seq studies.

Case study 1: Quantitative label-free proteomics

The ROTS method has previously been benchmarked in label-free shotgun proteomics

using spike-in mixtures and complex mouse liver samples, where it has shown competitive

Fig 1. Visualizations provided by ROTS. (A) Volcano plot of the features, where the differentially expressed features are coloured red. (B) MA plot of

the features, where the differentially expressed features are coloured red. (C) ROTS reproducibility Z-score as function of top list size. The highest score

is marked with red dot together with its value. (D) Histogram of p-values. (E) Principal component analysis (PCA) plot of the differentially expressed

features. (F) Heatmap and hierarchical clustering of the samples (columns) and the differentially expressed features (rows) using euclidean distance

and the complete-linkage agglomerative clustering method.

https://doi.org/10.1371/journal.pcbi.1005562.g001
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performance against other state-of-the-art methods [11]. Here, the performance of ROTS

with quantitative mass spectrometry based proteomics data is illustrated in another published

benchmark spike-in study, where the truly differentially expressed proteins are known.

The data are from an inter-laboratory spike-in study of the Clinical Proteomic Tumor Anal-

ysis Consortium (CPTAC technology assessment study 6) [14–16]. It contains a mixture of 48

human proteins (Sigma UPS1) spiked into a yeast proteome (S. cerevisiae) background at dif-

ferent concentration levels ranging from 0.25 to 20 fmol/μL to create five distinct sample

groups each with three technical replicates. From the different datasets available, we processed

Orbitrap raw files produced at site 86, from which a total of 736 proteins were quantified using

the Progenesis software with peptide identifications from the Mascot search algorithm in Pro-

teome Discoverer software. Threshold for peptide identifications was set to FDR < 0.01 and

relative protein quantitation was done using non-conflicting peptides, followed by median

normalization. Progenesis was unable to align one of the three replicates in one of the sample

groups (sample group E). Only the sample groups with all three replicates (sample groups

from A to D) were used here for performance benchmarking.

Fig 2 shows the performance of ROTS on the CPTAC data together with other popular

methods for differential expression analysis, including significance analysis of microarrays

(SAM) [3], Limma [5] and the Student’s t-test. Performance was measured using receiver

operating characteristic (ROC) curves, which were created by merging the results from the

six possible individual pairwise comparisons involving sample groups from A to D. Overall,

ROTS produced a significantly better ROC-curve compared to all other tested methods

(DeLong’s test p< 0.001 for each method), which supports the applicability of ROTS in prote-

omics studies to distinguish differentially expressed proteins.

Case study 2: Bulk RNA-seq

Similarly as with proteomics data, the ROTS method has been extensively benchmarked against

other software packages in bulk RNA-seq data [12]. Besides systematically outperforming other

Fig 2. Performance of ROTS and current state-of-the-art methods for proteomics in the spike-in

proteomics data from the Clinical Proteomic Tumor Analysis Consortium (CPTAC technology

assessment study 6). Performance was evaluated using receiver operating characteristic (ROC) curves and

the areas under the curves (AUC).

https://doi.org/10.1371/journal.pcbi.1005562.g002
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methods in spike-in data, ROTS has also been used to successfully identify prognostic markers

for clear cell renal cell carcinoma, which confirms the clinical relevance of estimating differen-

tial gene expression accurately with ROTS [12]. Here, the performance of ROTS in bulk RNA-

seq data is illustrated using a published benchmark spike-in study.

The data are from the sequencing quality control (SEQC) project [17], which includes four

distinct sample groups (A, B, C and D) each with five technical replicates sequenced using Illu-

mina HiSeq 2000 platform. For groups A and B, 92 synthetic polyadenylated transcripts pro-

vided by the External RNA Control Consortium (ERCC) [18] have been spiked into the

Universal Human Reference RNA (UHRR) and Human Brain Reference RNA (HBRR) respec-

tively, so that their concentrations were controlled to have different fold changes of 0.5, 0.67, 1

or 4 between the groups A and B. Samples C and D were then obtained by mixing samples A

and B using different ratios: 75% of sample A and 25% of sample B for sample C and vice versa

for sample D. For performance benchmarking, we downloaded the count table from GEO

with accession number GSE47774. The trimmed mean of M-values (TMM) normalization

[20] with voom transformation [19] was applied before differential expression analysis. In

total, four comparisons were considered: A vs B, A vs D, B vs C, and C vs D.

Fig 3 shows the performance of ROTS in the bulk RNA-seq data together with other state-

of-the-art methods, including edgeR [21, 22], Differential Expression analysis for Sequence

count data (DESeq) [23] and Limma [5]. Similarly as with proteomics, the performance was

measured using ROC-curves, which were created by merging the results from the individual

pairwise comparisons. Again, ROTS showed improved performance over the other tested

methods (DeLong’s test p< 0.001 for each method), confirming the applicability of ROTS in

bulk RNA-seq studies to detect differentially expressed genes.

Case study 3: Single-cell RNA-seq

Recently, performance of the ROTS method in comparison to other state-of-the-art methods

has also been tested in single-cell RNA-seq data. ROTS showed good performance without

Fig 3. Performance of ROTS and current state-of-the-art methods for bulk RNA-seq in the spike-in

data from the SEQC project. Performance was evaluated using receiver operating characteristic (ROC)

curves and the areas under the curves (AUC).

https://doi.org/10.1371/journal.pcbi.1005562.g003
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requiring any single-cell-specific modifications, whereas no systematic benefits of the recent

single-cell-specific methods were found [9]. Here, we further demonstrate the utility of the

ROTS method also in the increasingly popular single-cell RNA-seq data.

The data are from a previously published single-cell study on innate lymphoid cells (ILC),

containing single cell samples sequenced using Illumina HiSeq 2000 platform [24]. Similarly as

in our recent study [9], we compared different cell populations. The count table was down-

loaded from GEO with accession number GSE70580. However, unlike in our previous study,

where we compared ILC1 and ILC2 cells against ILC3 cells, the comparison here was per-

formed between ILC1 and ILC2 cells. After excluding cells with total expression < 10000,

the data contained 127 ILC1 cells and 139 ILC2 cells. With ROTS we performed TMM nor-

malization and with the other tested methods the guidelines of their respective manuals were

followed.

Fig 4 shows the performance of ROTS in the single-cell RNA-seq data together with other

state-of-the art tools, including Single Cell Differential Expression (SCDE) [25], Model-based

Analysis of Single-cell Transcriptomics (MAST) [26] and Limma [5]. First, we investigated

the precision and recall of the findings when the number of cells was reduced to 90, 70, 50 or

30 cells in both groups. Ten subsets of each size were generated. Overall, ROTS showed the

highest precision in finding the genes detected in the full data as differentially expressed

(FDR< 0.05) also in the reduced datasets (Fig 4A). Notably, it also had the highest recall, indi-

cating that the findings from the reduced data covered the findings from the full data better

than with the other tested methods (Fig 4B). Finally, to investigate whether the methods

tended to find a large number of false positives, we generated artificial mock datasets by ran-

domly dividing the 139 ILC2 cells into two groups of similar size ten times. These artificial sets

should not differ from one another since all the cells are from the same population. Also the

investigation of the mock comparisons ranked ROTS as the top performing method (Fig 4C).

These results further confirm the applicability of ROTS for single-cell RNA-seq studies.

Fig 4. Precision, recall, and false positive ratios of ROTS and current state-of-the-art methods for single-cell RNA-seq in the innate

lymphoid cell data. (A) Precision of the findings in reduced data. Precision was defined as the ratio between the number of common detections

in the reduced and full data, and the total number of detections in the reduced data. Median values over ten randomly generated subsets are

indicated by lines across the different numbers of cells per group. (B) Recall of the findings in reduced data. Recall was defined as the ratio

between the number of common detections in the reduced and full data, and the total number of detections in the full data. Median values over

ten randomly generated subsets are indicated by lines across the different numbers of cells per group. (C) False positive ratios of the findings in

ten randomly generated mock datasets. The false positive ratio was defined as the ratio between the number of differentially expressed genes in

the mock comparison and the average number of differentially expressed genes in the actual comparison. Limma was visualized separately

because of the different scale compared to the other methods and jittering was used to separate overlapping points.

https://doi.org/10.1371/journal.pcbi.1005562.g004
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Availability and future directions

ROTS has been successfully applied in multiple studies in a diversity of applications and the

results on different types of omics data have shown its overall robustness. A major benefit of

ROTS is its ability to automatically select an appropriate test statistic for a specific data under

study by maximizing the reproducibility of the differentially expressed features. Therefore, it

would be beneficial to integrate ROTS into various existing workflows to perform the differen-

tial expression analysis. Besides being able to select a test statistic, ROTS could possibly aid

also in selecting, for instance, an appropriate normalization method based on the data. While

ROTS is based on a modified t-statistic, it is possible to further extend the method by allowing

multiple sample groups by using, for example, a modified F-statistic. Finally, to enhance the

running time of the algorithm, parallelization within the package or improved heuristics could

be implemented for optimizing the parameters.

The R package ROTS is freely available from Bioconductor (https://www.bioconductor.org/

packages/ROTS) and it conveniently allows to perform statistical testing and result visualiza-

tion using simple commands. A complete reference manual for the package and a vignette

with examples are also available from Bioconductor.
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