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Various imaging techniques combinedwithmachine learning (ML)models havebeen

used to build computer-aided diagnosis (CAD) systems for breast cancer (BC)

detection and classification. The rise of deep learning models in recent years,

represented by convolutional neural network (CNN) models, has pushed the

accuracy of ML-based CAD systems to a new level that is comparable to human

experts. Existing studies have explored the usage of awide spectrumof CNNmodels

for BC detection, and supervised learning has been themainstream. In this study, we

propose a semi-supervised learning framework based on the Vision Transformer

(ViT). The ViT is a model that has been validated to outperform CNN models on

numerous classification benchmarks but its application in BC detection has been

rare. Theproposedmethodoffers a customsemi-supervised learningprocedure that

unifies both supervised and consistency training to enhance the robustness of the

model. In addition, the method uses an adaptive token sampling technique that can

strategically sample the most significant tokens from the input image, leading to an

effective performance gain.We validate ourmethodon twodatasetswith ultrasound

and histopathology images. Results demonstrate that our method can consistently

outperform the CNN baselines for both learning tasks. The code repository of the

project is available at https://github.com/FeiYee/Breast-area-TWO.
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1 Introduction

Breast cancer (BC) has been the most common cancer type

for women. The 2020 report of the World Cancer Research Fund

shows that there were more than 2 million newly diagnosed BC

cases in 2018 (Bray et al., 2018). Such worrying numbers

highlight the significance of properly using present

technological advancements to undertake efficient BC

detection in its early stage. In particular, a recent development

in artificial intelligence (AI) that explores the usage of deep

learning models in a wide spectrum of health care applications

presents a promising direction toward building a more effective

computer-aided diagnosis (CAD) system for BC detection (Hu

et al., 2020; Mewada et al., 2020; Moon et al., 2020; Boumaraf

et al., 2021; Eroğlu et al., 2021; Mishra et al., 2021).

A variety of imaging techniques can be used for BC detection

and diagnosis, including X-rays (mammograms) (Abdelrahman

et al., 2021), ultrasound (sonography) (Moon et al., 2020; Mishra

et al., 2021), thermography (Singh and Singh, 2020), magnetic

resonance imaging (MRI) (Mann et al., 2019), and

histopathology imaging (Benhammou et al., 2020). Ultrasound

has been a widely adopted, low-cost, non-invasive, and non-

radioactive imaging modality in the procedure of BC diagnosis

and is usually followed by histopathological analysis. The latter

applies biopsy techniques to collect cell/tissue samples that are

placed on a microscope slide and then stained for microscopic

examination. With a high degree of confidence, histopathological

diagnosis has become the gold standard for almost all cancer

types (Das et al., 2020). However, in spite of the usage of various

imaging modalities, it requires radiologists or pathologists to

perform a visual inspection, which is time-consuming and in

need of a high degree of radiological/pathological expertise. In

addition, it has been shown by several studies that a high

percentage of inter-observer variability exists when the same

set of images are read by different experts (Kaushal et al., 2019).

An AI-powered system has the potential to eliminate this

assessment discrepancy caused by different experiences,

analytical methodology, and knowledge between human

beings, providing a more accurate diagnostic result to support

clinical decision-making (Hamed et al., 2020).

Recent advances in AI, especially in deep learning, have been

extensively investigated in the health care industry (Beam and

Kohane, 2018; Li and Xiao, 2022; Qu and Xiao, 2022). The

number of use cases of deep learning in BC detection has also

been increasing (Hamed et al., 2020). Our literature investigation

shows that prior efforts in breast cancer image classification share

two common characteristics. First, the learning models are

mostly based on the convolutional neural network (CNN),

including existing deep CNN architectures, custom CNNs,

and hybrid models with a CNN as a component. Despite the

effectiveness of CNN-based classification models, recent

advances have witnessed the rise of a novel vision model,

namely, the Vision Transformer (ViT) (Dosovitskiy et al.,

2020), which has been shown to be more accurate in multiple

public benchmarks. Few studies have investigated the usage of

the ViT in BC detection (Gheflati and Rivaz, 2021), and the

potential of the ViT has not been fully explored in this area.

Second, most existing studies are based on supervised learning,

which requires a full annotation for all image samples in the

dataset. The procedure of annotation is time-consuming and

requires domain expertise. Semi-supervised learning (SSL) (Van

Engelen and Hoos, 2020), on the other hand, only requires

annotation on a small subset of training data and combines a

larger subset of unlabeled data during training. SSL can

effectively reduce the efforts of annotation. However, SSL has

not been extensively used in present studies of BC detection.

Our study aims to address these methodological gaps.

Specifically, we propose a ViT-based BC classification learning

pipeline that combines both supervised learning and SSL. We use

an adaptive token sampling (ATS) technique (Fayyaz et al., 2021)

that allows the original ViT model to dynamically choose the

most critical image tokens. Moreover, we present a custom

consistency training (CT) strategy (Xie et al., 2020) to unify

supervised and unsupervised learning with image augmentation.

The CT-based SSL, when combined with an ATS-ViT (namely,

ViT with ATS), can effectively boost the model performance. The

proposed method has been validated on two datasets, including

the dataset of breast ultrasound images (BUSI) (Al-Dhabyani

et al., 2020) and the Breast Cancer Histopathological Image

Classification (BreakHis) dataset (Spanhol et al., 2016). The

results of our method have been promising and superior

compared to the CNN models. The project is released under

the MIT License and is available at https://github.com/FeiYee/

Breast-area-TWO.

The rest of this study is organized as follows. We provide a

literature review for relevant studies in Section 2. Section 3

describes the datasets used in this study and the details of the

proposed model. In Section 4, several experiments are conducted

to evaluate the effectiveness of the proposed model. Finally, in

Section 5, we conclude the study and provide future work.

2 Related work

This section reviews the prior studies in two aspects,

including DNN-based BC detection methods and SSL applied

in biomedical image classification.

2.1 Deep neural network-based breast
cancer detection

Numerous existing and custom deep CNNmodels have been

used on both ultrasound and histopathology images for breast

tumor classification. Compared to feature-based learning models

that require hand-crafted features (Mishra et al., 2021), deep
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neural network (DNN) models such as CNNs can learn

discriminative patterns with automatically extracted features

to represent an image sample (Li et al., 2021). For ultrasound

imaging, Masud et al. (2020) proposed a custom CNN model

compared with several existing CNN models, including AlexNet

(Kri zhevsky et al., 2012), Darknet19 (Redmon et al., 2016),

GoogleNet (Szegedy et al., 2015), MobileNet (Howard et al.,

2017), ResNet18 (He et al., 2016), ResNet50, VGG16 (Simonyan

and Zisserman, 2014), and Xception (Chollet, 2017). In addition

to single models, ensemble learning has also been used. Moon

et al. (2020) aggregated three CNN models, including VGGNet,

ResNet, and DenseNet (Huang et al., 2017) by fusing the image

representations. Similarly, Eroğlu et al. (2021) adopted a

concatenation of features generated by Alexnet, MobilenetV2

(Sa ndler et al., 2018), and Resnet50, followed by a Minimum

Redundancy Maximum Relevance-based feature selection

strategy to choose a set of the most valuable features that

were used to train a feature-based classifier [e.g., support

vector machine (SVM) (Pisner and Schnyer, 2020), k-nearest

neighbors (KNNs) (Peterson, 2009)]. As for histopathology

imaging, prior studies have adopted CNN models with

improvements in several aspects. Alom et al. (2019) proposed

an Inception Recurrent Residual Convolutional Neural Network

(IRRCNN) to combine the predictive power of the recurrent

CNN, ResNet, and the Inception network. Wang et al. developed

FE-BkCapsNet that integrates the CNN and CapsNet (Sabour

et al., 2017) with deep feature fusion and enhanced routing.

Mewada et al. (2020) proposed the use of both the spatial features

of a CNN and the spectral features of a wavelet transform to

address the convergence issue during training. In addition to the

improvements in models, novel training strategies have also been

developed. Boumaraf et al. (2021) used a block-wise fine-tuning

method, allowing the last few residual blocks in the CNN to be

more domain-specific. Despite the extensive studies of DNN-

based models for BC detection, other model types have not been

fully explored. The ViT, as a recently developed and highlighted

vision model, has received significant attention in a wide range of

tasks. It is desirable to validate the effect of the ViT in imaging-

based BC detection. Our study is such an attempt.

2.2 Semi-supervised learning-based
biomedical image classification

SSL has been an effective training technique to reduce the

number of training examples required for a fully supervised

learning procedure. Obtaining a data point in the biomedical

domain could be time-consuming, especially in the field of cancer

research, where it could take months or even years to determine a

patient’s final status (Zemmal et al., 2016). Thus, prior studies

have adopted SSL to use the unlabeled data. Zemmal et al. (2016)

adopted a Semi-Supervised Support Vector Machine (S3VM)

with hand-crafted features for BC detection. Jaiswal et al. (2019)

used pseudo labels on the PatchCamelyon-level to detect

metastasized cancer cells in histopathology diagnosis.Shi and

Zhang (2011) used low-density separation, an SSL method, to

conduct gene expression-based outcome prediction for cancer

recurrence. Ma and Zhang (2018) developed an SSL model that

combines affinity network fusion and a neural network to

implement few-shot learning, significantly improving the

model’s learning ability with fewer training data. Other

applications of SSL include cancer survival analysis (Liang

et al., 2016), skin cancer diagnosis (Masood et al., 2015),

bladder cancer grading (Wenger et al., 2022), and colorectal

cancer detection (Yu et al., 2021). To our best knowledge, prior

studies have not explored CT for BC detection, and our research

aims to fill this gap.

3 Materials and methods

3.1 Dataset

Two datasets are used to validate the proposed method,

including the dataset of breast ultrasound images (BUSI) (Al-

Dhabyani et al., 2020) and the Breast Cancer Histopathological

Image Classification (BreakHis) dataset (Spanhol et al., 2016)

that represent non-invasive and invasive BC detection methods,

respectively. Also, the choice of these two datasets allows our

model to be trained and validated using images from diverse

sources, which can be used to evaluate a model’s robustness.

3.1.1 Breast ultrasound images dataset
Table 1 shows the three classes of BUSI and the number of

image samples for each class. Typically, ultrasound images are in

grayscale. The images were gathered at the Baheya hospital, saved

in DICOM format, and converted to PNG format afterward.

Data collection and annotation took around 1 year to complete.

The total number of images acquired at the start of the project

was 1,100, which decreased to 780 after preprocessing to

eliminate images with unimportant information. The LOGIQ

E9 and the LOGIQ E9 Agile ultrasound systems were used in the

scanning procedure, producing images with a resolution of

1280 × 1024. Figure 1 shows two example samples per class,

totaling six samples, in which (a) and (d) are benign, (b) and (e)

TABLE 1 Three classes in the DBUI dataset.

Class # Images per class

Benign 487

Malignant 210

Normal 133

Total 780
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are malignant, and (c) and (f) are normal. An experienced

radiologist reads an ultrasound image based on a set of

standard criteria that involve mass size, echo nodule, tumor

borders and morphology, calcification, blood flow, and so on.

These criteria can be regarded as discriminative features allowing

a trained human being to determine the class of an image.

Traditional feature-based models encode these criteria into

hand-crafted features to represent an image, while DNN-

based models can automatically extract discriminative patterns

and yield a higher accuracy (Shaheen et al., 2016; Han et al.,

2017).

3.1.2 BreakHis dataset
The BreakHis dataset contains 7,909 microscopic images of

breast tumor tissue, including 2,480 benign and 5,429 malignant

samples, collected from 82 patients by the P&D

Laboratory–Pathological Anatomy and Cytopathology, Parana,

Brazil. These images are with four magnifying factors,

namely, ×40, ×100, ×200, and ×400. All of the samples are of

700 × 460 pixels with 3-channel RGB and 8-bit depth in each

channel, stored in PNG format. A histologically benign sample

does not meet any malignancy criteria such as mitosis, basement

membranes disruption, metastasize, etc. In other words, benign

tumors grow slowly and stay localized. On the contrary, the

malignant ones have locally invasive lesions that can disrupt

adjacent structures and lead to metastasis to distant sites of the

human body. Table 2 shows a stats summary of the BreakHis

dataset.

The breast tissue slides are imaged digitally using an

Olympus BX-50 system microscope equipped with a 3.3x

relay lens and a Samsung SCC-131AN digital color camera.

The collected slides are then stained with hematoxylin and

eosin (HE). The samples are obtained through surgical (open)

biopsy (SOB), which is then processed for histological

examination and labeled by pathologists from the P&D

Laboratory. The standard paraffin method, which is widely

used in clinical routine, was used in the preparation of the

samples in this study. The primary purpose is to keep the

original tissue structure and molecular composition, which

allows it to be observed under a light microscope in its

natural state. After staining, the anatomopathologists visually

examine the tissue samples with a microscope to determine

whether or not there are any cancerous lesions present in

each slide. Experienced pathologists make the final diagnosis

FIGURE 1
BUSI samples: (A,D) are benign tumor samples, (B,E) are malignant, and (C,F) are normal.

TABLE 2 Stats of the BreakHis dataset.

Magnification Benign Malignant Total

x40 625 1,370 1,995

x100 644 1,437 2,081

x200 623 1,390 2,013

x400 588 1,232 1,820

Total 2,480 5,429 7,909

# Patients 24 58 82
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in each case, which is then confirmed by additional tests such as

immunohistochemistry (IHC) analysis. Figure 2 shows a set of

samples from the BreakHis dataset, in which the subfigures (a),

(e), and (h) are benign samples, and the rest are all malignant.

3.2 Overview of the learning framework

Figure 3 shows the overall workflow of the proposed method.

The core model to be trained is the ATS-ViT. The training

procedure comprises two parts, namely, supervised and

consistency training. The former aims to improve the model’s

predictive ability, and the latter improves its generalization. Both

parts are unified via an end-to-end training procedure (described

in Algorithm 1). It should be noted that the parameters of the

ATS-ViT are shared across both parts of training. Also, three

types of losses are combined to guide the optimization of the

neural network via gradient descent. The training details are

covered in Subsection 3.6.

3.3 Transformer

A transformer (Vaswani et al., 2017) is a neural architecture that

uses an attention mechanism to mine and capture the semantic

meanings and relations among the input tokens for sequential

modeling problems. One of the benefits of the transformer is

that it allows parallelization since tokens passing through its

architecture can be processed independently rather than

sequentially, presenting a unique advantage over recurrent

models such as long short term memory (LSTM) (Kim et al.,

2016) and recurrent gated unit (GRU) (Chung et al., 2014). The

transformer was originally designed for machine translation in

natural language processing (NLP) and showed superior

performance. Moreover, recent advances have explored

applications of the transformer in a wide spectrum of NLP tasks

and developed a rich set of pre-training techniques, making it one of

the most influential works in AI in the past 5 years.

A transformer adopts an encoder-decoder structure. The

encoder module comprises a stack of transformer encoders;

similarly, the decoder module is a stack of transformer

decoders. Each transformer encoder includes a self-attention

layer with multiple attention heads to capture the semantic

interaction among the input tokens. Specifically, each

attention head calculates a tensor of scores to express how

each token is affected (attended) by every other token. The

outputs of these attention heads are aggregated, normalized,

and passed to a feed-forward layer to generate a set of

embeddings, which are the output of the present encoder. The

subsequent encoder takes as input the embeddings generated

from its previous encoder and repeats the process. A transformer

decoder, on the other hand, comprises three layers, including a

multi-head self-attention layer, an encoder-decoder attention

layer, and a feed-forward layer. At each time step, a

FIGURE 2
BreakHis samples: (A,E,H) are benign, and (B–D,F,G) are malignant.
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transformer decoder takes as input two intermediate tensors

generated by the last encoder layer, the embeddings from its

previous decoder (it would be the output of the decoder module

at the previous time step for the first decoder); these data are fed

through a stack of decoders, followed by a linear and a softmax

layer to produce the prediction result.

FIGURE 3
Overview of the proposed learning framework. The framework comprises supervised and consistency training unified via an end-to-end
training procedure. For simplicity, the figure only uses image samples from the BUSI dataset. Themethod has been validated on both datasets used in
this study.

FIGURE 4
Architecture of the ATS-ViT. The ATS module can be integrated into each transformer block to perform two steps, including token score
assignment and inverse transform sampling. The ATS can identify the most informative tokens that are passed to the subsequent layers, effectively
reducing the computational cost and improving the classification accuracy.
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3.4 Vision transformer

The wide success of a transformer in NLP tasks inspired

researchers to explore its potential in computer vision. The ViT

has been one of the first efforts. TheViT adopts the same structure as

the original transformer with the following changes to the input. An

image is chunked into a set of image patches to meet the input

requirement of the transformer. The so-called image patch

embedding operation is essentially a linear transformation, that

is, a fully connected layer. Specifically, if an input image of size H ×

W × C is split into N patches (i.e., tokens), each of size P × P × C,

then we can determine thatN � HW
P2 . Then, each patch is spread out

into a vector of size D. Thus, the input is transformed into a 2D

tensor of size N × D. In addition, a special [CLS] token is inserted

into the first position of the token sequence to encode the

information used for classification. This strategy has been

commonly seen in other pre-training strategies such as the

Bidirectional Encoder Representations from Transformers

(BERT) (Devlin et al., 2018). Furthermore, to maintain the

relative position relationship between different patches, a position

encoding vector is added to each patch embedding, generating a

token embedding used by the first layer of the transformer encoder.

3.5 Adaptive token sampler

The ViT is computationally expensive since the computing

cost rises quadratically with the number of tokens. CNNs reduce

the resolution inside the network with different pooling

operations. However, because the tokens are permutation

invariant, using pooling in the ViT is not feasible. Thus, we

adopt an adaptive token sampler (ATS), a technique that allows

the model to dynamically choose significant tokens from the

input tokens to reduce computational cost. Figure 4 shows the

network structure of ViT with ATS.

An ATS works by assigning a score to each of the N input

tokens to determine which ones to keep. The score indicates a

token’s contribution to the final prediction. Let K be the

maximum number of retained tokens, and a sampling strategy

is adopted as follows. LetK,Q, and V be the query, key, and value

vectors, respectively, in the standard self-attention layer of the

transformer. The attention matrix A can be computed via Eq. 1.

A � Softmax
QK⊤��

d
√( ). (1)

Thus, A is (N + 1) × (N + 1) (with the [CLS] token counted)

and sums up to 1 after the softmax operation. The output tokens,

before sampling, are given by Eq. 2.

O � AV . (2)

Let Ai,j denote the element at row i and column j in A, the

significance score of token j can be calculated by Eq. 3.

Sj � A1,j‖Vj‖∑i�2A1,i‖V i‖. (3)

Only the first row of the attention matrixA is used since each

element A1,j represents the importance of token j to token 1,

namely, the [cls] token. With a significance score calculated for

each input token, the inverse transform sampling strategy is used

for token sampling. First, the cumulative distribution function of

S can be calculated via Eq. (4).

CDFi � ∑j�i
j�2

Sj. (4)

It is noted that the first token is excluded since it is used to

encode the classification information, and thus, is not needed for

the calculation of the CDF. The sampling function, denoted by

ϒ(k), can now be obtained via the inverse function of the CDF,

which is given by Eq. 5.

ϒ k( ) � CDF−1 k( ). (5)

To obtain K′ samples (K′ ≤ K), ϒ(·) is run K′ times from

uniform distribution U[0, 1], which generates K′ real numbers that

are rounded to the nearest integers and used as the sampling indices.

The selected K′ output tokens should carry more informative

patterns and are passed to the next transformer block.

3.6 Semi-supervised learning

SSL is a training paradigm that explores both labeled and

unlabeled data to enhance the robustness of a model. Also, SSL is

a popular strategy when the number of training samples is

limited because of high annotation costs. In this study, we

assume that similar images should belong to the same class,

which is referred to as the smoothness assumption and has been

adopted by many SSL training systems (Chen and Wang, 2010).

CT is a typical SSL method used in prior studies (Xie et al., 2020;

Lee and Cho, 2021). CT allows a model to be trained to yield

consistent results for an image and its augmented versions with

various perturbations such as crop, contrast, flip, jittering, etc.

The proposed CT method is described in detail as follows.

First, we divide the original training setX into two setsXl andXu,

treated as labeled and unlabeled datasets during CT, respectively.

Second, a set of image augmentation algorithms {hi}mi�1 are defined.
An unlabeled sample xu is fed into algorithm hi to generate an

augmented image denoted by zu,i. Let F denote the ViT model. The

training objective of our SSL algorithm is three-fold.

• First, the supervised loss should be minimized to improve

the predictive ability of model F. For our study, the binary

cross-entropy loss is used, denoted by LCE. For a batch ofm

labeled samples {(xl, yl)}ml�1, we can calculate LCE based

on Eq. 6
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LCE � − 1
m

∑m
l�1

yl logF xl( ). (6)

• Second, the pseudo-label loss should be minimized to

encourage the model to produce consistent results for an

image and its augmented versions with perturbations. For

each image xu in a batch of m unlabeled data, a random

augmentation algorithm is selected from {hi}mi�1 and applied

to the image xu to generate an augmented image zu. Let F(xu)

be a pseudo-label, and we can then calculate pseudo-label loss

using the mean squared error based on Eq. 7.

LMSE � 1
m

∑m
u�1

F xu( ) − F zu( )( )2. (7)

• Last, to ensure the consistency of the whole process, we also

need to measure the intermediate result of unlabeled data and

its augmented version, and since the intermediate result of the

ViT is a one-dimensional sequence, we use Earth Mover’s

distance (Rubner et al., 2000), noted as LEM, which is used to

describe the degree of similarity of two distributions. Given

two sets of distributions p1, p2. . ..pm and q1, q2. . ..qm, we need

to find a way to arrange q in such a way that the EML loss is

minimized. The loss can be given by Eq. 8.

LEM p, q( ) � min
q∈Q

∑m
i

l qi, pi( ), (8)

whereQ is the set of all possible permutations of q and l stands for

the measurement, here, we choose it as L2 loss.

Aggregating the three aforementioned individual losses

yields the following overall loss function, which is our final

optimization objective.

L � LCE + LMSE + LEM. (9)

When we ask the model to obtain similar features for data

before and after adding multiple join perturbations, we can force

the model to learn what does not change with perturbation, and

the information that remains constant before and after

perturbation is more relevant to the classification result, and

such a strategy will lead to stronger generalization ability.

Therefore, we can confirm that combining data augmentation

strategies with semi-supervised learning can give better results.

Algorithm 1. SSL algorithm.

4 Results

Codes in this study have been written in Python 3.6.10 and

using PyTorch 1.8.0 as the deep learning framework. All

experiments were run on a workstation with a Windows

10 operating system, an i7-10875h CPU, and an Nvidia

GTX2080TI 12G graphic card.

4.1 Evaluation metrics

Since the classes for both datasets are imbalanced, accuracy

(Acc) is not sufficient to reflect the true performance of a model.

Therefore, in addition to ACC, we also use precision (Pre), recall

(Rec), and F1 scores for performance evaluation. These

indicators are defined in Eqs 10–13.

Acc � TP + TN

TP + TN + FP + FN
, (10)

Pre � TP

TP + FP
×, (11)

Rec � TP

TP + FN
×, (12)

F1 � 2 ×
Pre × Rec

Pre + Rec
, (13)

where TP, TN, FP, and FN refer to the number of true positives,

true negatives, false positives, and false negatives, respectively.

Pre reflects the ratio of false alarms. The higher the pre, the fewer

false alarms the model has. Meanwhile, Rec reflects the quantity

of missed positive samples. In other words, the higher the Rec,

the fewer positive samples that have been missed. F1 represents

the harmonic mean of Pre and Rec, presenting a more suitable

metric than Acc for a classification task with an imbalanced

dataset.

4.2 Baselines

Four models have been chosen as the baselines in this study,

namely, the VGG16, ResNet101, DenseNet201, and ViT. All four

models have been extensively used in a variety of image

classification tasks and served as solid baselines.

• The VGG16 network comprises a sequence of five blocks,

each with two or three convolutional layers for feature

extraction, followed by a pooling layer for downscale

sampling. The last block is further followed by three fully

connected layers and a softmax layer to generate a normalized

vector as the prediction result. The VGG neural architecture

extensively uses small (3 × 3) convolutional filters, which is the

basis for building a deep and accurate network.
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• The ResNet neural architecture stacks a sequence of

residual blocks, each of which facilitates the learning of

an identity function via a shortcut connection by feeding

the input of a block directly into the output. This way, an

identify function can be easily learned, allowing a network

with more layers to be trained more effectively without

diminishing returns. ResNet101 contains a series of

repeated residual blocks followed by a dense and a

softmax layer, with a total of 101 layers.

• DenseNet is a variant of ResNet with two differences. First,

DenseNet uses a concatenation instead of a summation

(used in ResNet) to aggregate the layer output and the

shortcut data within each block. Second, DenseNet

introduces a transition layer placed between two dense

blocks. Each transition layer comprises a 1 × 1

convolutional layer and an average pooling layer with a

stride of two to control the model complexity.

• The ViT has been covered in Section 3.4.

4.3 Training setting

The main hyperparameters used for training are shown in

Table 3. We adopted Adam as the optimizer with a learning rate

of 2e-5. We set eps = 1e-08 to prevent the denominator from

being 0. A batch size of 64 was chosen. The loss function was the

binary cross entropy with logits. All evaluated models were

trained with 300 epochs. For the ViT, each input image was

re-scaled to a fixed size of 256 × 256 and split into 16 patches. The

ViT model used in the study comprises six encoders. In the ATS

procedure, the numbers of tokens kept in each layer were 256,

128, 64, 32, 16, and 8, which was the default setting from the

original paper of the ATS. These parameters were obtained based

on empirical results. It is noted that we tried a variety of token

sample numbers in addition to the default setting and did not

observe a significant difference in results, which was because of

the fact that the sampling strategy of the ATS ensures that the

model focuses on key regions, but does not completely discard

the information of some outlier data, so it can adjust the pattern

extraction ability of the model for different types of data

according to the input.

Both datasets are split into training, validation, and test sets

in the ratio of 7:1:2. In addition, the training set is further split in

the ratio of 8:2; 80% of the data in the training set participate in

the supervised training to learn an ATS-ViT model, and the rest

20% are treated as unlabeled data used for CT.

4.4 Results

Table 4 presents a performance comparison between the

proposed method and the chosen baselines. Also, an ablation

study has been conducted to evaluate the efficacy of the ATS and

CT. Specifically, we used the ViT as a base model and added the

ATS and CT to form the ViT + ATS model and the CT + ViT +

ATS model. For each evaluated model, four metrics defined in

Section 3.1 have been reported, including Acc, Pre, Rec, and F1.

We provide the result interpretation as follows.

• It is observed that the CNN models, namely, VGG19,

ResNet101, and DenseNet201, can achieve similar

performance compared with the ViT base model. In

particular, ResNet101 presents the highest Acc (95.59%)

and F1 (94.76%) among the four baselines.

• The ViT base model does not perform better in our

experiments than the CNN models. In the original study

on the ViT, it has been validated to outperform the CNN

models on several image classification tasks such as

ImageNet (Deng et al., 2009). In our experiment, the

ViT achieves an Acc of 93.38% and an F1 of 93.43%,

ranked the third and second places among the four

baselines. The reason why the ViT does not outperform

all CNN models may be because of the training

configuration or the hyperparameter setting that has not

been sufficiently optimized.

• The addition of the ATS to the ViT has improved the Acc

and F1 by 1.07 and 1.04%, respectively. However, the ViT +

ATS is still not as good as ResNet101. The performance

gain is mainly due to the sampling strategy that can

effectively select a subset of tokens that contribute the

most to the classification task.

TABLE 3 Training setting.

Hyperparameter Value

Learning rate 2e-5

Eps 1e-8

Batch size 64

Epochs 300

Input image size 256 × 256

ATS # tokens [256, 128, 64, 32, 16, 8]

TABLE 4 Results on BUSI.

Model Acc Pre Rec F1

VGG19 93.02 92.3 92.07 92.19

ResNet101 94.95 94.29 95.23 94.76

DenseNet201 93.62 92.88 93.71 93.29

ViT 93.38 93.02 93.37 93.43

ViT + ATS 94.45 94.29 94.78 94.47

CT + ViT + ATS (ours) 95.29 96.29 96.01 96.15

The highest scores of each metric are in bold.
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• Our best model, namely, CT + ViT + ATS, achieves the best

results on all four metrics with 95.29% Acc, 96.29% Pre,

96.01% Rec, and 95.15% F1, outperforming the second-best

scores by 0.34, 2, 0.78, and 1.39%, respectively. Compared with

the Vit + ATSmodel, the four scores have improved by 0.84, 2,

1.23, and 1.86%. The performance gains are mainly due to the

training procedure that combines both supervised and

unsupervised training so that the model can experience

more diversified samples via data augmentation during

consistency training.

Table 5 shows the results of the validated models on BreakHis.

The same set ofmodels has been evaluated, and the results are similar

to the ones on BUSI. We highlight the observations as follows.

• Among the four baseline models, DenseNet201 shows the

highest Acc of 97.42%, while VGG19 presents the highest

F1 of 96.16%. The ViT base model posts an Acc of 95.68%

and an F1 of 95.69%, ranked the third and second places,

respectively. Again, the ViT does not stand out on this

classification task.

• The addition of the ATS improves the Acc and F1 by 1.3 and

0.57%, respectively, lifting the model to the top place in F1

(96.26), with CT + ViT + ATS excluded. This improvement

shows that theATS can effectively locate the image tokenswith

the most informative parts, allowing the model to learn more

distinguishable patterns to boost accuracy. The result shows

that theATSpresents the desired effect and has been consistent

across both classification tasks.

• CT + ViT + ATS, on the other hand, achieves the best

performance for all four metrics with an Acc of 98.12%, a

Pre of 98.17%, a Rec of 98.65%, and an F1 of 98.41%. This

result shows that CT can bring consistent performance

boost on both datasets and is a promising strategy to

improve a model’s generalization ability.

Figure 5 shows the effect of the ATS on the four samples, with

two from each dataset. In this, Figures 5A,B are ultrasound

images; and Figures 5C,D are histopathology samples.

Meanwhile, Figures 5E–H are the same images as Figures

5A–D with the eight most significant tokens (image patches)

kept for each image. These eight tokens are obtained from the last

transformer block, which is closer to the detection head, and

FIGURE 5
Visualized effect of the ATS. Subfigures (A,B) are ultrasound images; and (C,D) are histopathology samples. Meanwhile, (E–H) are the same
images as (A–D) with the eight most significant tokens (image patches) kept for each image.

TABLE 5 Results on BreakHis.

Model Acc Pre Rec F1

VGG19 96.41 96.45 95.88 96.16

ResNet101 95.53 95.54 94.38 94.96

DenseNet201 97.42 93.98 97.89 95.6

ViT 95.68 95.67 95.7 95.69

ViT + ATS 96.98 96.85 95.68 96.26

CT + ViT + ATS (ours) 98.12 98.17 98.65 98.41

The highest scores of each metric are in bold.
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thus, is more expressive for the classification result. It is observed

that these tokens can accurately identify the regions of interest

that are more indicative of the actual classes. Instead of looking at

the whole image, an ATS-enabled model can reduce the amount

of global information and pinpoint the most critical areas that

contribute the most to the prediction results, which explains the

effectiveness of the ATS.

5 Discussion

This study presents CT + ViT + ATS, a ViTmodel trained via

CT and boosted via ATS. The proposed model has been validated

on two BC imaging datasets and shown superior performance

compared to three representative CNN baseline models. The

results have demonstrated the efficacy of both the ATS and CT.

The former allows the learning algorithm to identify the regions

of interest that provide significant patterns for the classification

task, and the latter unifies both supervised and unsupervised

training to improve the generalization ability of the model. The

proposed model, with the validated results, can serve as a credible

benchmark for future research.

There are several notable findings from this study. Our

experimental results show that the original ViT model does

not present superior performance compared to its CNN

competitors. On the BUSI dataset, the ViT is on a par with

the CNN models, whereas on the BreakHis dataset, the ViT is

slightly worse but still comparable. This could be because of

the BC detection task, in which the images may contain subtle

patterns hard to capture even with the self-attention

mechanism used by the ViT. To discover these subtle

patterns and improve detection accuracy, we adopt the ATS

and CT as two boosting modules, which turn out to be

effective. The gains, in Acc and F1, brought by the ATS

and CT, have been notable and consistent on both datasets.

Although the ATS was originally developed to reduce

computational costs, we demonstrate that it also improves

the detection accuracy since the model is encouraged to focus

more on the critical image tokens and learn more subtle

patterns. CT, on the other hand, exploits the existing

training resources via a weakly-supervised training

paradigm that effectively improves the robustness of the

model. The two boosting modules refine the original ViT in

three aspects: model, data, and training procedure. These joint

efforts have been consistent for our task and have the potential

to be used for other biomedical computer vision tasks.

The proposed CT + ViT + ATS method can be a core

functional module of a CAD system for BC detection. It offers

two merits. First, the ATS component allows the system to

highlight the most informative image patches, which can help

physicians quickly pinpoint the critical areas for precise and

personalized diagnosis. Second, the backend of the CAD system

can be easily modified to be a continuous learning system once

new images are available. Since CT is semi-supervised, only a

portion of the newly added data needs to be labeled, significantly

reducing the labor cost for annotation.

The proposed method can be extended in the following

directions. First, we mainly compared CNN models and the

ViT, while an ensemble of the two or feature-level aggregation

can be another model design option that may bring together

the strengths of both neural architectures. Given that the

underlying designs of the CNN and the ViT are

fundamentally different, the former adopts multiple filters

to capture multi-scale features, while the latter explores

semantic relations between each pair of tokens; a

combination of the two could present superior performance

compared to any single model. Second, a generative model

such as a generative adversarial network (GAN) can be used to

perform data augmentation in CT. Since a GAN captures the

distribution of images belonging to a class, a well-trained

GAN can generate synthetic images that look similar to real

ones. These generated images can enhance the quantity and

diversity of the training samples during CT, potentially

leading to a more robust model. Lastly, the proposed

method can be applied to a wider range of BC imaging

datasets with additional image modalities such as X-ray,

MRI, and thermography that are not considered in this

study. It would be interesting to evaluate the proposed

method on a multi-modal BC imaging dataset that offers

multi-dimensional feature representations.
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