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Abstract

Background: Negative control exposure studies are increasingly being used in epidemio-

logical studies to strengthen causal inference regarding an exposure-outcome associ-

ation when unobserved confounding is thought to be present. Negative control exposure

studies contrast the magnitude of association of the negative control, which has no

causal effect on the outcome but is associated with the unmeasured confounders in the

same way as the exposure, with the magnitude of the association of the exposure with

the outcome. A markedly larger effect of the exposure on the outcome than the negative

control on the outcome strengthens inference that the exposure has a causal effect on

the outcome.

Methods: We investigate the effect of measurement error in the exposure and negative

control variables on the results obtained from a negative control exposure study. We do

this in models with continuous and binary exposure and negative control variables using

analysis of the bias of the estimated coefficients and Monte Carlo simulations.

Results: Our results show that measurement error in either the exposure or negative

control variables can bias the estimated results from the negative control exposure

study.

Conclusions: Measurement error is common in the variables used in epidemiological

studies; these results show that negative control exposure studies cannot be used to pre-

cisely determine the size of the effect of the exposure variable, or adequately adjust for

unobserved confounding; however, they can be used as part of a body of evidence to aid

inference as to whether a causal effect of the exposure on the outcome is present.
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Introduction

In the presence of unobserved confounding, the causal ef-

fect of an exposure on an outcome of interest cannot sim-

ply be determined by regressing the outcome on the

exposure. A method that has often been used to detect con-

founding and help assessment of whether a causal relation-

ship exists between an exposure and an outcome is a

negative control exposure study.1,2 Negative control ex-

posure studies compare the association between an expos-

ure of interest and an outcome with the association

between a control variable and the same outcome. The

control variable is chosen to be a variable that has no effect

on the outcome of interest but is subject to the same unob-

served confounding as the exposure of interest. Therefore,

any association observed between the negative control and

the outcome will be due to confounding in the model.3 If

the association observed between the exposure of interest

and the outcome is markedly larger than the association

between the negative control and the outcome, then this

can add to the evidence that the exposure of interest does

have a causal effect on the outcome, and can feed into a tri-

angulation of evidence on the causal effect of exposure on

the outcome from a wide range of sources.4–6 If triangula-

tion of the results from studies that suffer from different

types of potential bias point to the same relationship be-

tween the exposure and the outcome, then this provides

evidence for a causal association between the exposure and

outcome. Fuller discussion of the use of negative controls

in epidemiology is available elsewhere.1,2,4,7–13

One area where negative controls have often been used

in epidemiology is to determine the effect of intrauterine

exposure on later outcomes by comparing the association

of a maternal exposure during pregnancy with the outcome

of interest, with the association of the paternal exposure

with the same outcome.2,7,14 If an intrauterine effect of the

mother’s exposure on the child is present, the association

of the maternal exposure with the outcome is expected to

be larger than the association of the equivalent paternal ex-

posure. Examples of studies where this type of negative

control has been used include the effect of maternal and

paternal smoking on offspring outcomes,7,15–25 the effect

of maternal and paternal body mass index (BMI) on later

offspring BMI,26–33 the effect of maternal and paternal dia-

betes on predisposition to diabetes in offspring,34 the effect

of maternal and paternal energy intake on later offspring

dietary intake35 and the effect of maternal and paternal

BMI on offspring autism spectrum disorder.36

Another example of where negative control exposure

studies have been used to evaluate the effect of intrauterine

exposure, without using the paternal exposure as a control,

is examining the association of mothers taking folic acid

supplements in pregnancy compared with the negative con-

trol of taking other supplements, with autism37 and lan-

guage development delays38 in their children. Other

examples include the association of maternal smoking dur-

ing pregnancy compared with maternal smoking after

pregnancy, with offspring respiratory outcomes,39 the ef-

fect of maternal alcohol consumption during pregnancy

compared with the negative control of maternal alcohol

consumption before pregnancy, on offspring ADHD symp-

toms40 and the effect of exposure to air pollution before,

during and after pregnancy, on autism spectrum disorder

in offspring.41 A list of examples of negative control expos-

ure studies is given in Table 1.

That negative controls should be used more routinely in

epidemiological studies has been suggested,1,8 and adjust-

ment of the effect or P-value of the exposure on the outcome

for the negative control has been suggested.42–45 A number

of the studies described in Table 1 adjust the estimated effect

of the exposure for the negative control in order to attempt

to account for any unobserved confounding in the

model.23,25,31,34,36,39,46 As discussed further below, adjusting

for the effect of the negative control is not the correct inter-

pretation of negative control exposure studies, as any meas-

urement error in either the exposure or negative control will

affect the results obtained from the analysis. The results ob-

tained from the negative control exposure study should in-

stead contribute to a triangulation of evidence from a range

of sources which are subject to different sources of potential

bias, and feed into the overall result.1,2,11

Key Messages

• Negative control exposure studies can contribute to a triangulation of evidence to estimate the effect of an exposure

on an outcome in the presence of suspected unobserved confounding.

• In the presence of measurement error, negative control exposure studies do not give a reliable estimate of the causal

effect of the exposure on the outcome.

• Negative control exposure studies should not be used in effect estimate calibration to obtain an estimate of the

causal effect of an exposure on an outcome.
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One key assumption made in negative control studies is

that the relationship between the exposure and outcome

and the control and outcome are subject to the same con-

founding. However, in order to obtain a consistent esti-

mate of the effect of the exposure on the outcome, we also

need to make the additional assumption that there is no

differential measurement error in either the exposure or

the negative control. Measurement error in an explanatory

variable in a linear regression will lead to a biased estimate

of the association between that variable and the out-

come.47,48 Therefore, if there is measurement error in ei-

ther the exposure or the negative control, the estimated

coefficients from the regression of the outcome on the ex-

posure and the negative control will be biased estimates of

the true association between these variables and the

outcome.

It is likely that the exposure and control variables may be

subject to different levels of measurement error. For ex-

ample, a negative control for the intrauterine effect of a

mother’s exposure on their child’s outcome, that is often

used, is the father’s exposure. However, the father’s data are

likely to suffer from a higher level of measurement error

than the mother’s if they are collected from the mother (as

they often are), as the data will be less accurately recalled.

This potential difference in measurement error is important;

if there is a higher level of measurement error in the negative

control than in the exposure variable, then the association

between the negative control and the outcome may appear

to be weak or null even when unmeasured confounding fac-

tors that relate to both the exposure and the negative control

are present.49 In the remainder of this paper, we evaluate

the effect of adjusting for a negative control on the identifi-

cation of a causal effect of the exposure on an outcome

when measurement error is present. We adjust for the nega-

tive control by examining the difference between the ex-

pected value of the coefficient for the exposure and the

coefficient for the negative control, in a regression of the

outcome on the exposure and the negative control.

Table 1. Selected examples of studies which have used negative control exposure methods

Exposure Negative control exposure Outcome(s)

Maternal smoking Paternal smoking Offspring outcomes:

Inattention/hyperactivity15,20

Obesity/adiposity16,22–24

Blood pressure17

Gestational diabetes21

ADHD symptoms19

Cognitive development18

Offspring psychotic symptoms46

Maternal psychosocial stress Paternal psychosocial stress Offspring vascular function54

Maternal smoking during pregnancy Maternal smoking after pregnancy Offspring respiratory outcomes39

Offspring psychotic symptoms46

Maternal alcohol consumption

during pregnancy

Maternal alcohol consumption before

pregnancy

Offspring ADHD symptoms40

Maternal BMI/obesity Paternal BMI Offspring BMI/adiposity26–33

Offspring cognitive and psychomotor

development55

Length of pre-birth inter-pregnancy interval Length of post-birth inter-pregnancy

interval

Risk of schizophrenia in the

offspring56

Folic acid supplements in pregnancy Other supplements in pregnancy Autism spectrum disorders37

Language development delays38

Prescription for trimethoprim 1–3 months

before pregnancy

Prescription for trimethoprim 13–15

months before pregnancy

Offspring congenital malformation57

Air pollutant exposure during pregnancy Air pollutant exposure before and

after pregnancy

Offspring autism spectrum disorder41

Exposure to childhood infections Hospital attendance for broken bones Multiple sclerosis later in life58

Adherence to prescribed statins and beta

blockers

Adherence to other prescribed

medication

Long-term mortality after acute myo-

cardial infarction59

Vaccination during flu season Vaccination outside flu season Mortality and hospitalization

from flu60

Swimmers’ exposure to bacteria in water Non-swimmers Gastrointestinal illnesses after an in-

crease in bacteria levels in water61
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Methods

We examine the effect of measurement error on the inter-

pretation of the estimated coefficients when the association

between an exposure and an outcome is interrogated in a

negative control exposure study. We consider two ex-

amples of negative control exposure studies: first, a model

with continuous outcome, exposure and negative control

variables; and second, a model with a continuous outcome

variable and binary exposure and negative control vari-

ables. These models reflect two different scenarios which

are frequently found in epidemiological studies, and where

negative control exposure methods have previously been

used. In each setting, the causal relationship between the

exposure, the negative control and the outcome are set up

as given in Figure 1. This relationship can be written as:

yi ¼ b1ET;i þ b2CT;i þ cUi þ �i

ET;i is the true value of the exposure of interest for indi-

vidual i, CT;i is the true value of the negative control, Ui is

an unmeasured confounder that is correlated with both the

exposure and the control and yi is the outcome. �i is a nor-

mally distributed random error term with mean 0.

Continuous exposure and control variables

The exposure and negative control ET;i and CT;i are con-

tinuous variables measured with error:

EO;i ¼ ET;i þ vE;i

CO;i ¼ CT;i þ vC;i

where EO;i is the observed value of the exposure for indi-

vidual i, measured with error, CO;i is the observed value of

the negative control for individual i, measured with error,

and vE;i and vC;i are normally distributed random error

terms with variance r2
vE and r2

vC, respectively. Throughout

we assume that this measurement error is uncorrelated

with the true values of the exposure and negative control.

We additionally make the assumption that ET;i and CT;i are

only correlated through the unmeasured confounders Ui;

therefore qEC ¼ qUEqUC. In the context of maternal and pa-

ternal comparison studies, this assumption implies no as-

sortative mating on the basis of the exposure or control

variables. Throughout the analysis, qUE and qUC are set to

0.4, meaning that qEC¼ 0.16. The values of r2
vE and r2

vC are

determined according to the desired values of the intraclass

correlation coefficient (ICC), the proportion of total vari-

ance in the observed variable that is due to true variation:

ICC ¼ r2
u=ðr2

u þ r2
vÞ

r2
u is the variance of the true variable and r2

v is the vari-

ance of the measurement error. An ICC value of 1 indicates

that there is no measurement error in the model and r2
v ¼ 0,

whereas an ICC value of 0 would indicate that all of the vari-

ation in the observed variable was due to the measurement

error and r2
u ¼ 0. We derive the bias of the ordinary least

squares (OLS) estimator of b1 and b2 when the exposure and

control are included in the same model. This bias is the dif-

ference between the expected value of the estimator and the

true value of the parameter. The measurement error in

the model will lead to regression dilution bias and so bias the

estimated coefficients towards the null; however, the add-

itional presence of an unmeasured confounder that is corre-

lated with the exposure and negative control variables means

that the total bias could be towards or away from the null.

In matrix form, the true model considered can be writ-

ten as:

y ¼ XTbþ Ucþ �

where XT ¼ ðET CT Þ, b ¼
b1

b2

 !
, and ET ;CT ; y;U and

� are vectors including all individuals for variables ET;i;

CT;i; yi;Ui and �i, respectively. The measurement error can

be defined as:

Xe ¼ X t þ V

where XO ¼ ðEO CO Þ and V ¼ ð vE vC Þ;Ee;Ce, and vE

and vC are vectors including all individuals for variables

EO;i;CO;i, vE;i and vC;i, respectively. We make the follow-

ing assumptions about the distribution of the error terms:

vE

vC

0@ 1A � Nð0;RvÞ

Rv ¼
r2

v1
rv12

rv12
r2

v2

0@ 1A ¼ r2
v1

0

0 r2
v2

0@ 1A
and the asymptotic distribution of the variables is given by:

Figure 1. The relationships in an observational negative control expos-

ure study*.

*Variables in squares are observed; variables in circles are unobserved.
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plim
1

n
X 0TXT ¼ QXX ¼

QEE QEC

QEC QCC

0@ 1A ¼ 1 qEC

qEC 1

0@ 1A
plim

1

n
X 0TU ¼ QXU ¼

QEU

QCU

0@ 1A ¼ qEU

qCU

0@ 1A

As the confounders U are unobserved, the regression to

be estimated is:

yi ¼ b1EO;i þ b2CO;i þ ui (1)

In matrix form this can be written as:

y ¼ XO
0bþ u

In this case it can be shown that the bias of the OLS esti-

mator of b; b̂; is given by:

Eðb̂� bÞ ¼ E

bb1

bb2

0@ 1A� b1

b2

0@ 1A0@ 1A
¼ ðQXX þ RvÞ�1QXUc� ðQXX þ RvÞ�1Rvb:

(2)

The derivation of this is given in Appendix 1, available

as Supplementary data at IJE online.

Using this equation for the bias, we calculate the bias of

b̂1 and the bias of the difference between the coefficients

for the exposure and the negative control, i.e. ðb̂1 � b̂2Þ,
with and without measurement error in each of the expos-

ure and the negative control and for a range of values

ofc, the effect of the unmeasured confounder on the

outcome.

Binary exposure and control variables

We then consider a model where the exposure and control

are both binary variables which take values of 0 or 1. For

this set-up, we conducted Monte Carlo simulations to

examine the difference between the estimated association

and the true effect for b̂1, and for ðb̂1 � b̂2Þ, for different

levels of measurement error.

In this scenario, the true values of the exposure and the

control, Et and Ct, were dichotomized into binary vari-

ables by classing those observations with the highest 20%

of values as 1 and the rest as 0. Measurement error was

introduced in this model by reclassifying a proportion of

the true values for the exposure and the control, to take

the opposite value. This proportion was changed in order

to change the level of the measurement error in the model,

but was applied equally to the ‘true’ (1) and ‘false’ (0)

values. Other than this change, the model was set up in the

same way as in the continuous case, and the true relation-

ship between the binary exposure and control variables

and the outcome variable is given by:

yi ¼ b1ET;i þ b2CT;i þ cUi þ �i

As before, the outcome variable in this model is a con-

tinuous variable and so the model is estimated using OLS.

Simulations were conducted for two scenarios: where nei-

ther the exposure or the control have a true effect on the

outcome; and where the exposure has an effect on the out-

come and the negative control has no effect on the out-

come. In each of these scenarios, different levels of

measurement error in each of the exposure and the control

were considered: no measurement error; a low level of

measurement error where 10% of the observations are

misclassified; and a high level of measurement error where

50% of the observations are misclassified.

Results

Continuous exposure and control variables

The results for the bias for different levels of measurement

error and effect of the unmeasured confounder are given in

Figures 2 and 3. These figures show that in all scenarios

where the unmeasured confounder has an effect on the out-

come, the estimate of b1 is not equal to the true effect and

the inclusion of the negative control in the model does not

remove this difference. These figures also show that when

there is no measurement erro, (Figure 2A and Figure 3A),

then the estimation of the exposure adjusted for the nega-

tive control ðb̂1 � b̂2Þ;correctly estimates the causal effect

of the exposure on the outcome. However, when there is

measurement error, then this estimate is only unbiased

when both the measurement error and the effect size are

the same for both the exposure and the negative control, as

shown in Figure 2D.

These results show that the difference between the esti-

mated effect of the exposure and the estimated effect of the

negative control is not equal to the true difference in the

causal effect of the two variables, except under a strong set

of assumptions. Therefore, we cannot reliably estimate the

size of the effect of the exposure on the outcome, when

there is measurement error, by looking at the difference in

the association between the exposure and the outcome and

the negative control and the outcome. Figure 2B and

Figure 2C show that differing measurement error in the ex-

posure and the control can lead to different sizes of esti-

mated coefficients for b1 and b2, even when neither of the

variables has a direct effect on the outcome.
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Binary exposure and control variables

We ran Monte Carlo simulations with a binary exposure

and binary control and a continuous outcome variable, for

different levels of association between the variables and for

different proportions of the exposure and the control mis-

classified. Table 2 shows the results for a scenario where

there is no true association of either the exposure or the

negative control with the outcome. Table 3 shows the re-

sults where the exposure has a positive effect on the out-

come and the negative control has no causal effect on the

outcome.

The results here show the same pattern as the analytical

results for the continuous example and show that, in all of

the scenarios considered, the effect of ðb̂1 � b̂2Þ is only

Figure 2. Bias in estimated effect of the exposure and negative control; exposure and negative control each have no effect on the outcome. The bias

in the exposure and negative control are calculated from the expression given in equation (2) with and without measurement error in the exposure

and negative control. Neither the exposure or the negative control have any effect on the outcome; b1 ¼ 0; b2 ¼ 0. The effect of the unmeasured con-

founding varies between c ¼ 0 and c ¼ 0:5. qUE ¼ qUC ¼ 0.4.

Figure 3. Bias in estimated effect of the exposure and negative control; the exposure has a causal effect on the outcome. The bias in the exposure

and negative control are calculated from the expression given in equation (2), with and without measurement error in the exposure and negative con-

trol. The exposure has an effect on the outcome: b1 ¼ 0:2; the negative control has no effect on the outcome: b2 ¼ 0. The effect of the unmeasured

confounding varies between c ¼ 0 and c ¼ 0:5. qUE ¼ qUC ¼ 0.4.
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unbiased when the effects of the exposure and of the nega-

tive control on the outcome are the same, and either there

is no measurement error in the model or the measurement

errors for each of the exposure and the negative control are

the same. These results additionally show that when the

level of misclassification is high, b̂1is always zero, leading

to a large difference between b̂1 and b1 when b1 is large

but no difference when b1is zero.

Discussion

Due to the unmeasured confounding that is inherent in stud-

ies in which it is necessary to use a negative control, the esti-

mates of regression coefficients are always expected to reflect

the confounded association rather than the causal relation-

ship. In the analysis above, we have shown that measure-

ment error in the exposure and negative control will add a

bias which may increase or decrease the difference between

the estimated coefficient and the causal relationship. The im-

plication of this is that adjusting the estimated effect of the

exposure for the estimated effect of the negative control

variable, as suggested as a way to account for the bias cre-

ated by confounding42–45 and implemented in a number of

studies described in Table 1,23,25,31,34,36,39,46 does not neces-

sarily improve our estimates of the associations between the

exposure and the outcome. This indicates that the results

from a negative control study cannot be used to estimate the

size of a causal effect directly, but instead can feed into a tri-

angulation of evidence which is subject to different sources

of bias, to strengthen evidence regarding whether or not a

causal effect of the exposure on the outcome is present.6,13 In

cases where measurement error in the exposure and negative

control variables is likely to be minimal, such as where they

are germline genetic variants, the total error in the estimate

of the effect of the exposure adjusted for the negative control

will be small. However, this will only be the case if it is

known that the measurement error in both the exposure and

negative control is minimal, and so will only apply to a very

small proportion of studies. Control outcome calibration is a

method which has been proposed to estimate the size of an

effect of an exposure in a negative control outcome study,

even when the outcome of interest and control outcome do

Table 2. b1¼ b2¼0—simulation results for bias in estimated effect of binary exposure and negative control; exposure and nega-

tive control each have no effect on the outcome

Error in exposure Error in negative control Bias for b̂1 Bias for b̂2 Bias for b̂1 � b̂2

None (0%) None (0%) 0.140 0.140 0.000

None (0%) Low (10%) 0.140 0.093 0.046

None (0%) High (50%) 0.140 0.000 0.140

Low (10%) None (0%) 0.093 0.140 �0.047

Low (10%) Low (10%) 0.093 0.093 0.000

Low (10%) High (50%) 0.093 0.000 0.093

High (50%) None (0%) 0.000 0.140 �0.140

High (50%) Low (10%) 0.000 0.093 �0.094

High (50%) High (50%) 0.000 0.000 0.000

Bias in the estimated values of b̂1, b̂2 and ðb̂1 � b̂2) when the exposure and negative control variables are binary and the outcome is continuous. Measurement

error is the proportion of observations misclassified: b1 ¼ b2 ¼ 0. Effect of the unmeasured confounder, c ¼ 0:2: qUE¼ qUC¼0.4.

Table 3. b1¼0.2, b2¼0—simulation results for bias in estimated effect of binary exposure and negative control; exposure has a

causal effect on the outcome

Error in exposure Error in negative control Bias for b̂1 Bias for b̂2 Bias for b̂1 � b̂2

None (0%) None (0%) 0.140 0.157 �0.017

None (0%) Low (10%) 0.140 0.104 0.035

None (0%) High (50%) 0.140 0.000 0.140

Low (10%) None (0%) 0.026 0.157 �0.131

Low (10%) Low (10%) 0.026 0.104 �0.078

Low (10%) High (50%) 0.026 0.000 0.026

High (50%) None (0%) �0.200 0.157 �0.357

High (50%) Low (10%) �0.200 0.104 �0.305

High (50%) High (50%) �0.200 0.000 �0.200

Bias in the estimated values of b̂1, b̂2 and ðb̂1 � b̂2) when the exposure and negative control variables are binary and the outcome is continuous. Measurement

error is the proportion of observations misclassified: b1 ¼ 0:2; b2 ¼ 0. Effect of the unmeasured confounder, c ¼ 0:2: qUE¼ qUC¼ 0.4.
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not have the same scale,50–52 and has been suggested for

negative control exposure studies.50 The results given here

show that any calibration based on the results from a

negative control study should be used with caution. The re-

sults presented here also show that such calibration methods

will not transfer directly to models with a negative control

exposure variable as measurement error in either the expos-

ure, or the negative control will distort the obtained results.

Throughout this analysis we have assumed that there are

no measured confounders in the model. The inclusion of

measured confounders that were not subject to any measure-

ment error would not change the results in the analysis

above. However, as has been discussed previously,53 the add-

ition of measured confounders to the model, which are also

measured with error, will lead to a more complex bias in the

estimated effects of the exposure on the outcome. The add-

ition of such variables, however, would not change the over-

all conclusion that caution should be used when interpreting

results from negative control studies, as any additional con-

founders will add to the potential for the results obtained to

be very different from the true effect of the exposure on the

outcome. We have also assumed no direct correlation be-

tween the true values of the exposure and control; however,

relaxing this assumption will also not change the conclusions

that can be drawn from the results.

The results presented above show that negative controls

can be useful in contributing to the triangulation of evi-

dence regarding whether or not a causal relationship is

likely to exist between an exposure and outcome of inter-

est.7 However, negative control exposure studies should

not be used to obtain a point estimate of the causal effect of

the exposure of interest on the outcome as, in the presence

of measurement error in either the exposure or the control,

this effect estimate will also be subject to bias. The results

we have found mean we cannot give a general statement

about the direction of any bias caused by measurement

error in a negative control exposure study.
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