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Abstract
Objectives: To explore the diagnostic value of radiomics in differentiating be-
tween lung adenocarcinomas appearing as ground- glass opacity nodules (GGO) 
with high-  and low Ki- 67 expression levels.
Materials and Methods: From January 2018 to January 2021, patients with pul-
monary GGO who received lung resection were evaluated for potential enroll-
ment. The included GGOs were then randomly divided into a training cohort 
and a validation cohort with a ratio of 7:3. Logistic regression (LR), decision tree 
(DT), support vector machines (SVM), and adaboost (AB) were applied for radi-
omic model construction. Area under the curve (AUC) of the receiver operating 
characteristic (ROC) curve was used to evaluate the diagnostic efficacy of the 
established models.
Results: Seven hundred and sixty- nine patients with 769 GGOs were included 
in this study. Two hundred and forty- five GGOs were confirmed to be of high 
Ki- 67 labeling index (LI). In the training cohort, gender, age, spiculation sign, 
pleural indentation sign, bubble sign, and maximum 2D diameter of the nodule 
were found to be significantly different between high-  and low Ki- 67 LI groups 
(p < 0.05), and spiculation sign and maximum 2D diameter of the nodule were 
further confirmed to be risk factors for Ki- 67 LI. The radiomic model established 
using SVM exhibited an AUC of 0.731 in the validation cohort, which was higher 
than that of the clinical- radiographic model (AUC = 0.675). Moreover, radiomic 
model combining both intra-  and peri- nodular features showed better diagnos-
tic efficacy than using intra- nodular features alone (AUC  =  0.731 and 0.720, 
respectively).
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1  |  INTRODUCTION

Due to the changes of tobacco manufacturing and the 
growing attention to tobacco cessation worldwide, the in-
cidence of squamous cell lung cancer has decreased, while 
adenocarcinoma has emerged to be the predominant pat-
tern of lung cancer and this trend is still rising.1,2 Unlike 
small cell lung cancer or squamous cell lung cancer, early- 
stage lung adenocarcinomas often appear as ground- glass 
opacity nodules (GGO) which are defined as hazy opacity 
that have a lower density than the surrounding soft tissue 
structures in pulmonary computerized tomography (CT) 
images.3,4 The general prognosis of lung adenocarcinoma 
is poor, however, if diagnosed and evaluated clearly at the 
early stage, the patients could still have a favorable out-
come. Hence, it is important to discover new approaches 
that could improve the diagnosis and prognostic evalua-
tion of early- stage lung adenocarcinoma.

Ki- 67 protein, encoded by the MKI67 gene located on 
chromosome 10q25- ter, was first identified as an anti-
gen in Hodgkin lymphoma cell nuclei.5 Previous studies 
have found that Ki- 67 is associated with ribosomal RNA 
transcription.6 Given that Ki- 67 is expressed in G1, S, and 
G2 phases of the cell circle but is absent in the G0 phase 
quiescent cells, it is regarded as an ideal indicator for cell 
proliferation.7 Typically, the expression level of Ki- 67 pro-
tein can be represented by the Ki- 67 labeling index (LI), 
which refers to the percentage of Ki- 67- positive nuclei 
under the microscope in immunohistochemical (IHC) 
tests. Researches have revealed that Ki- 67 were highly 
expressed in malignant tissue, which was of diagnostic 
value in differentiating malignant from benign lesions.8,9 
Moreover, Ki- 67 LI was also correlated with tumor differ-
entiation, metastasis, clinical stage, and survival rate of 
patients in different types of malignancies including lung 
adenocarcinoma, making it a potential prognostic bio-
marker.10– 13 Therefore, monitoring Ki- 67 LI in tumor tis-
sue is meaningful in the prognosis evaluation of patients 
with lung adenocarcinoma. However, at present the Ki- 67 
protein level is mostly assessed by IHC methods, which 

is sometimes unavailable due to lack of tumor samples. 
Hence, a noninvasive evaluation method for Ki- 67 expres-
sion level is needed to illustrate the prognostic state of 
lung adenocarcinoma.

Radiomics refers to the high- throughput extraction of 
large amounts of quantitative data from medical images.14 
The extracted data could then be used for disease diagno-
sis, patient management, and prognostic evaluation. A 
standard radiomic workflow includes delineation of the 
region of interest (ROI), extraction and selection of radio-
mic features, and establishment of the radiomic model.15 
Because of the high contrast resolution between the pul-
monary nodules and lung parenchyma which makes nod-
ules easily delineated from adjacent lung tissue, radiomics 
has been considered as a suitable tool in pulmonary nod-
ule assessment.16 Radiomics has been used in the diag-
nosis, subtype differentiation, prediction of anticancer 
therapies and prognosis of lung adenocarcinomas,17– 20 
however, it has been rarely used in the evaluation of Ki- 67 
LI of lung adenocarcinoma. The only research we found 
using radiomic features to predict Ki- 67 LI was limited by 
its small sample size and single modeling method, which 
could influence the efficacy and reproducibility of the es-
tablished model.21 Moreover, the potential of peri- nodular 
radiomic features on Ki- 67 LI prediction has not been 
explored yet. Therefore, we carried out this retrospective 
study with large sample size, numerous radiomic features, 
and various modeling methods to investigate the potential 
of radiomics on Ki- 67 LI prediction.

2  |  MATERIALS AND METHODS

2.1 | Study population

Our institutional committee of ethics approved this retro-
spective study, and waived the requirement for informed 
consent of the patients. From January 2018 to January 
2021, patients with pulmonary GGO who received seg-
mentectomy, wedge resection, or lobectomy of lung in 

Conclusions: The established radiomic model exhibited good diagnostic effi-
cacy in differentiating between lung adenocarcinoma GGOs with high and low 
Ki- 67 LI, which was higher than the clinical- radiographic model. Peri- nodular 
radiomic features showed added benefits to the radiomic model. As a novel non-
invasive method, radiomics have the potential to be applied in the preliminary 
classification of Ki- 67 expression level in lung adenocarcinoma GGOs.
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Chinese People's Liberation Army General Hospital were 
evaluated for enrollment. The inclusion criteria for this 
study were as followed: (1). The GGOs were pathologi-
cally confirmed to be lung adenocarcinoma; (2). IHC tests 
were accomplished and Ki- 67 LIs of the tumor samples 
were obtained; (3). CT scans were accomplished within 
14 days before surgery; (4). The layer thickness of the CT 
images was less than 1.5 mm. Of note, for patients with 
multiple pulmonary GGOs, only those with confirmed 
pathological results were evaluated for possible enroll-
ment. In total, 1202 patients were evaluated for enroll-
ment and 769 patients with 769 GGOs were included in 
this study. The demographic and clinical characteristics 
of the patients were collected through our institutional 
medical record system. The GGOs were then randomly 
divided into a training cohort (n = 537) and a validation 
cohort (n = 232) with a ratio of 7:3. The workflow of this 
study is shown in Figure 1.

2.2 | Data rebalance

Machine learning algorithms assume that the distribution 
of data in different groups are similar. If the data are 
imbalanced, machine learning algorithms tend to 
emphasize on the major class of the groups, which could 

lead to decrease of model performance. In this study, 
synthetic minority over- sampling (SMOTE) method was 
used in the training cohort to rebalance the distribution 
of radiomic data and minimize the influence of class 
imbalance.

2.3 | CT scanning parameters

All CT scanning were performed in one of the following 
scanners: Brilliance iCT (Phillips Medical Systems) or 
Somatom Definition (Siemens Medical Systems). The de-
tailed CT scanning parameters are shown in Table 1.

2.4 | Ki- 67 LI assessment procedure

Two experienced pathologists evaluated the Ki- 67 LI of 
the tumor samples of the patients. IHC test was carried 
out according to the manufacturer's instructions. In brief, 
formalin- fixed tumor tissue samples were first embedded 
by paraffin and cut into 5 μm slices. Next, the slices were 
dried, dewaxed, rinsed in ethanol, and hydrated in H20. 
Ki- 67 antibody was then used for IHC staining and cells 
with brown nuclei were considered positive. Finally, 
three areas with the most positive cells under high 

F I G U R E  1  Flow chart of the study. 
Ki- 67 (−) refers to low Ki- 67 LI and Ki- 67 
(+) refers to high Ki- 67 LI
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magnification microscope were chosen for Ki- 67 protein 
expression evaluation, and Ki- 67 LI was calculated by 
averaging the percentages of Ki- 67 positive cells in the 
chosen areas. According to previous researches22,23 and 
the data distribution in this study, negative Ki- 67 level was 
considered as Ki- 67 LI < 10% and positive Ki- 67 level was 
considered as Ki- 67 LI ≥10%.

2.5 | Evaluation of radiographic 
characteristics and building of the clinical- 
radiographic model

Two physicians with 10 years and 5 years' experience in 
lung CT imaging, who were blinded to the pathological 
results reviewed the CT images and evaluated the radio-
graphic characteristics of the GGOs. Group discussion 
would be held to reach a consensus if the two physicians 
had any disagreement. The collected radiographic charac-
teristics are listed in Table 2.

Univariate analysis was performed to select the signif-
icant clinical and radiographic characteristics between 
Ki- 67 low-  and high- expression groups in the training co-
hort. Multivariate logistic regression was then performed 
to construct a clinical- radiographic model. The area under 
the curve (AUC) of the receiver operating characteristic 
(ROC) curve was used to evaluate the performance of the 
established model.

2.6 | Nodule segmentation, radiomic 
feature extraction, and intra/interobserver 
agreement evaluation

Intra/peri- nodular segmentation was accomplished man-
ually using 3D slicer software (version 4.10.2, https://
www.slicer.org). Intra- nodular region was obtained by 

delineating the outline of the GGOs. Peri- nodular region 
was obtained by extending the intra- nodular region by 
5 mm from its boarder in three dimensions using function 
“Hollow” in 3D slicer (Figure 2).

The intra/peri- nodular regions were then used for 
radiomic feature extraction via the “SlicerRadiomics” 
plug- in in 3D slicer software (http://pyrad iomics.readt he-
docs.io/). First, the images were resampled to 1 × 1 × 1 mm 
to minimize the influence of different CT reconstruction 
methods and body sizes of the patients. Then 1223 radio-
mic features including shape- related, first order, texture, 
wavelet, and Laplacian of Gaussian (LoG) features were 
extracted from both intra- nodular and peri- nodular re-
gions. Detailed list of the extracted radiomic features is 
shown in Appendix S1.

Intra/interobserver agreement was evaluated by calcu-
lating the intra/inter- class correlation coefficient (ICC). 
Briefly, 60 randomly selected lung GGOs were delineated 
by two physicians (M.Z and Z.Y), respectively to assess 
the inter- class correlation coefficient. One week later, the 
same 60 GGOs were then evaluated by M.Z again to cal-
culate the intra- class correlation coefficient. Both average 
ICC and ICC for each radiomic feature were calculated. 
Features with ICC <0.75 were removed due to lack of 
robustness.

2.7 | Radiomic feature selection and 
building of the radiomic model

Least absolute shrinkage and selection operator (LASSO) 
method were used in this study for radiomic feature se-
lection and dimensionality reduction to avoid potential 
over- fitting of the established radiomic model. Tenfold 
cross- validation method was used to find the optimal reg-
ularization parameter (λ) in which the LASSO model had 
minimum error.

Four machine learning methods, namely logistic re-
gression (LR), decision tree (DT), support vector machines 
(SVM), and adaboost (AB), were used to construct four 
different models using the radiomic data in the training 
cohort, and the model with the best diagnostic perfor-
mance in the validation cohort was chosen as the radiomic 
model. AUC was used to evaluate the diagnostic value of 
the established radiomic model.

2.8 | Statistical analysis

R software (version 4.0.2, The Free Software Foundation) 
was used for statistical analysis and model construction 
in this study. Student's t- test, Mann– Whitney U test or 
Pearson's x2 test were applied for statistical significance 

T A B L E  1  Parameters of the CT scanners

Parameters Brilliance iCT
Somatom 
definition

Tube voltage (KV) 120 120

Tube current (mA) 110 110

Collimation 0.625 mm × 128 0.75 mm × 128

Pitch 1 1

Slice thickness (mm) 1 1.25

Slice interval (mm) 1 1.25

Rotation time (s) 0.5 0.5

FOV (mm) 364 × 364 364 × 364

Matrix size 512 × 512 512 × 512

Reconstruction kernel iDose 3 B70f

https://www.slicer.org
https://www.slicer.org
http://pyradiomics.readthedocs.io/
http://pyradiomics.readthedocs.io/
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T A B L E  2  Clinical and radiographic features of the patients

Variables

Training cohort Validation cohort

Ki- 67 (−) 
(n = 366)

Ki- 67 (+) 
(n = 171) p value

Ki- 67 (−) 
(n = 158)

Ki- 67 (+)  
(n = 74) p value

Gender

Male 130 (35.5) 78 (45.6) 0.025 51 (32.3) 24 (32.4) 0.980

Female 236 (64.5) 93 (54.4) 107 (67.7) 50 (67.6)

Age (years, 
average ± SD)

54.5 ± 9.1 56.6 ± 9.0 0.013 54.6 ± 10.0 55.7 ± 9.6 0.389

Having respiratory symptoms

Yes 40 (10.9) 19 (11.1) 0.950 14 (8.9) 12 (16.2) 0.098

No 326 (89.1) 152 (88.9) 144 (91.1) 62 (83.8)

BMI index 24.2 ± 2.9 24.4 ± 2.8 0.418 24.4 ± 3.2 23.9 ± 3.2 0.350

Smoking

Yes 54 (14.8) 34 (19.9) 0.135 17 (10.8) 12 (16.2) 0.241

No 312 (85.2) 137 (80.1) 141 (89.2) 62 (83.8)

Smoking index 
(pack- year)

532.5 ± 377.0 659.3 ± 507.8 0.359 750.3 ± 623.5 614.6 ± 466.2 0.679

Former lung cancer history

Yes 9 (2.5) 2 (1.2) 0.516 1 (0.6) 0 (0) 1.000

No 357 (97.5) 169 (98.8) 157 (99.4) 74 (100)

Former malignancy history except lung cancer

Yes 20 (5.5) 6 (3.5) 0.325 4 (2.5) 6 (8.1) 0.078

No 346 (94.5) 165 (96.5) 154 (97.5) 68 (91.9)

Family history of lung cancer

Yes 42 (11.5) 15 (8.8) 0.343 19 (12) 5 (6.8) 0.219

No 324 (88.5) 156 (91.2) 139 (88) 69 (93.2)

Family history of malignancy except lung cancer

Yes 65 (17.8) 20 (11.7) 0.073 20 (12.7) 13 (17.6) 0.318

No 301 (82.2) 151 (88.3) 138 (87.3) 61 (82.4)

Abnormal tumor biomarker results

Yes 59 (16.1) 24 (14) 0.533 19 (12) 12 (16.2) 0.382

No 307 (83.9) 147 (86) 139 (88) 62 (83.8)

Multiple nodules

Yes 177 (48.4) 82 (48) 0.930 75 (47.5) 38 (51.4) 0.581

No 189 (51.6) 89 (52) 83 (52.5) 36 (48.6)

Nodule density

Pure GGO 234 (63.9) 101 (59.1) 0.278 102 (64.6) 41 (55.4) 0.182

Mixed GGO 132 (36.1) 70 (40.9) 56 (35.4) 33 (44.6)

Border

Unclear 87 (23.8) 50 (29.2) 0.176 43 (27.2) 20 (27) 0.976

Clear 279 (76.2) 121 (70.8) 115 (72.8) 54 (73)

Lobulation sign

Yes 100 (27.3) 59 (34.5) 0.090 39 (24.7) 24 (32.4) 0.216

No 266 (72.7) 112 (65.5) 119 (75.3) 50 (67.6)
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Variables

Training cohort Validation cohort

Ki- 67 (−) 
(n = 366)

Ki- 67 (+) 
(n = 171) p value

Ki- 67 (−) 
(n = 158)

Ki- 67 (+)  
(n = 74) p value

Spiculation sign

Yes 43 (11.7) 37 (21.6) 0.003 22 (13.9) 16 (21.6) 0.140

No 323 (88.3) 134 (78.4) 136 (86.1) 58 (78.4)

Pleural indentation sign

Yes 48 (13.1) 35 (20.5) 0.028 18 (11.4) 14 (18.9) 0.121

No 318 (86.9) 136 (79.5) 140 (88.6) 60 (81.1)

Bubble sign

Yes 56 (15.3) 40 (23.4) 0.023 23 (14.6) 12 (16.2) 0.742

No 310 (84.7) 131 (76.6) 135 (85.4) 62 (83.8)

Vessel change

Yes 83 (22.7) 45 (26.3) 0.357 25 (15.8) 16 (21.6) 0.280

No 283 (77.3) 126 (73.7) 133 (84.2) 58 (78.4)

Maximum 2D 
diameter(mm, 
average ± SD)

12.6 ± 5.7 15.1 ± 6.0 <0.001 12.0 ± 5.2 15.4 ± 5.7 <0.001

Location

Left upper lobe 86 (23.5) 45 (26.3) 0.497 44 (27.8) 23 (31.1) 0.726

Left lower lobe 53 (14.5) 28 (16.4) 28 (17.7) 10 (13.5)

Right upper lobe 136 (37.2) 62 (36.3) 58 (36.7) 28 (37.8)

Right middle lobe 17 (4.6) 11 (6.4) 6 (3.8) 5 (6.8)

Right lower lobe 74 (20.2) 25 (14.6) 22 (13.9) 8 (10.8)

Note: Ki- 67 (−) indicates low Ki- 67 LI and Ki- 67 (+) indicates high Ki- 67 LI.

T A B L E  2  (Continued)

F I G U R E  2  Segmentation process 
of the intra- nodular and peri- nodular 
regions in 3D slicer. (A) A ground- glass 
opacity nodule (GGO) on the 1.5 mm 
CT slice. (B) Segmentation of the intra- 
nodular region (marked green). (C) Peri- 
nodular region was acquired by extending 
the intra- nodular region by 5 mm from its 
boarder in 3D using function “Hollow” 
(marked yellow). (D) The 3D model of the 
delineated GGO
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evaluation according to the type and distribution of 
the data. Comparison between groups was considered 
statistically significant when p value was less than 0.05.

3  |  RESULTS

3.1 | Clinical and radiographic 
characteristics of the patients

A total of 769 patients were included in this study, consist-
ing of 486 females and 283 males. Among all the GGOs, 245 
were confirmed to be of high Ki- 67 LI. In the high Ki- 67 LI 
group, the average age of the patients was 56.3 ± 9.2 years, 
which was significantly higher than that in the low Ki- 67 
LI group (54.5 ± 9.4 years). The proportion of patients with 
respiratory symptoms and BMI indexes were alike in the 
high and low Ki- 67 LI groups. In the training cohort, gen-
der, age, spiculation sign, pleural indentation sign, bubble 
sign, and maximum 2D diameter of the nodule were found 
to be significantly different between high and low Ki- 67 LI 
groups (p < 0.05). The detailed clinical and radiographic 
characteristics of the patients in the training cohort and 
validation cohort are presented in Table 2.

3.2 | Building of the clinical- radiographic  
model

In order not to exclude important factors, the clinical and 
radiographic factors with p < 0.1 between high and low Ki- 
67 LI groups were included as candidates for subsequent 
modeling process. As shown in Table 2, the clinical and 
radiographic factors included were: gender, age, family 
history of malignancy except lung cancer, lobulation sign, 
spiculation sign, pleural indentation sign, bubble sign, 
and maximum 2D diameter of the nodule. Independent 
risk factors were further selected using forward stepwise 
multivariate logistic regression. As presented in Table 3, 
spiculation sign and maximum 2D diameter of the nodule 
were identified as independent risk factors and were 
incorporated into a clinical- radiographic model using 
logistic regression. The AUCs of the clinical- radiographic 

model in the training and validation cohort were 0.636 
and 0.675, respectively (Figure 5).

3.3 | Intra/interobserver agreement  
evaluation

The average ICC for intra and interobserver agreement evalu-
ation were 0.90 and 0.89, respectively, which showed that the 
two researchers exhibited good consistency in nodule segmen-
tation and feature extraction. In total, 442 features with ICC 
lower than 0.75 were removed, and the remaining 2004 features 
were used for further feature selection and model construction.

3.4 | Feature selection, model 
performance, and comparison between 
clinical- radiographic and radiomic models

As shown in Figure 3, when λ = 0.039, logλ = −3.244, the 
LASSO model had the minimum error, and 13 radiomic 
features were selected. The selected radiomic features are 
listed in Appendix S1. LR, DT, SVM, and AB were used 
for model construction in both training and validation 
cohorts. SVM exhibited the best performance in the vali-
dation cohort among the four machine learning methods 
(Figure 4), therefore it was used to construct the radiomic 
model. The AUC of the radiomic model for identifying 
nodules with high Ki- 67 LI in the validation cohort was 
0.731, which was significantly higher than that of the 
clinical- radiographic model, indicating that the radiomic 
model had better diagnostic efficacy (Figure 5).

3.5 | Diagnostic value of peri- nodular  
features

The diagnostic value of peri- nodular radiomic features in 
differentiating between GGOs with high and low Ki- 67 LI 
was also tested in this study. As presented in Figure 6, the 
AUCs for intra- nodular and peri- nodular radiomic fea-
tures in the validation cohort were 0.720 and 0.673, respec-
tively. Combining intra-  and peri- nodular features yielded 
the best performance (AUC = 0.731), which showed that 
peri- nodular radiomic features could help improve the di-
agnostic efficacy of radiomic model in differentiating be-
tween GGOs with high and low Ki- 67 LI.

4  |  DISCUSSION

The present study aimed to explore the diagnostic value 
of intra- nodular and peri- nodular radiomic features in 

T A B L E  3  Multivariate logistic regression of the clinical- 
radiographic features

Variables β OR (95% CI) p

Intercept −1.766 0.171 <0.001

Spiculation sign 0.563 1.757 (1.070– 
2.884)

0.026

Maximum 2D diameter 0.066 1.068 (1.035– 
1.103)

<0.001



   | 3989ZHU et al.

F I G U R E  4  Receiver operating 
characteristic (ROC) curves of logistic 
regression (LR), support vector machine 
(SVM), decision tree (DT), and adaboost 
(AB) in the training (A) and validation 
(B) cohort. SVM exhibited the best 
performance (area under the curve 
(AUC) = 0.731) in the validation cohort. 
Data in the parentheses referred to the 
95% confidence interval of AUC

F I G U R E  5  Receiver operating 
characteristic (ROC) curves of the clinical- 
radiographic model and the radiomic 
model in the training (A) and validation 
(B) cohort. Data in the parentheses 
referred to the 95% confidence interval of 
area under the curve (AUC)

F I G U R E  3  Feature selection using least absolute shrinkage and selection operator (LASSO). (A) When λ = 0.039, log λ = −3.244 (the 
first dotted vertical line), the model had minimum error, and 13 nonzero features were selected. (B) The coefficient profiles of the 2446 
features
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differentiating between GGOs with high and low Ki- 67 LI. 
Using LASSO and four different machine learning methods 
(LR, DT, SVM, and AB), the constructed radiomic model 
outperformed the clinical- radiographic model, indicating 
the potential use of radiomics in predicting Ki- 67 status in 
pulmonary GGOs.

Since the concept of “radiomics” was put forward in 
2012, it has been used in various aspects of lung cancer 
such as the differentiation of benign and malignant nod-
ules, and the evaluation of the invasiveness of pulmo-
nary lesions.24– 26 In recent years, radiomics has also been 
applied to predict the molecular patterns of lung cancer 
lesions such as driver gene mutations and PD- L1 sta-
tus, and yielded good diagnostic efficacy,27– 29 indicating 
that differences at the molecular level could be possibly 
captured and described with radiomic features in radio-
graphic images. However, radiomic studies concentrating 
on gene expression changes of lung cancer nodules were 
rarely seen, leaving room for further investigation. Ki- 67 is 
a commonly detected protein in routine IHC tests of sam-
ples acquired in lung resections. Highly expressed Ki- 67 
often indicates rapid cell proliferation, which might lead 
to poor prognosis in cancer cells. Monitoring Ki- 67 level 
could be hard due to the inconvenience of frequent biopsy, 
hence a noninvasive radiomic method would be valuable. 
Therefore, in this study, we explored the value of radiom-
ics in predicting Ki- 67 LI in lung adenocarcinoma GGOs.

Some clinical and radiographic characteristics were 
found to be related to the expression level of Ki- 67. 
Researchers found that Ki- 67 level correlated with tumor 
category and TNM stages.13 In a systematic review involv-
ing 108 studies and 14,732 lung cancer patients, higher 
Ki- 67 level was found to be related with age, male gen-
der, smoking status, tumor size, and higher pathologic 
stages.30 In our study, we also found that age, male gen-
der, and tumor diameter were related to Ki- 67 expression 
level, which was similar to former studies. Moreover, cer-
tain radiographic signs, namely spiculation sign, pleural 

indentation sign, and bubble sign, were also found to 
appear more frequently in GGOs with higher Ki- 67 lev-
els. This could be partly explained by the fact that these 
radiographic signs always exist in CT images of lesions 
consisting of fast- growing lung cancer cells, which often 
express high level of Ki- 67 protein. Further multivariate 
logistic regression revealed that spiculation sign and max-
imum 2D diameter of the GGO were risk factors for Ki- 67 
level. However, the clinical- radiographic model consisting 
of these two factors only exhibited weak diagnostic value 
in differentiating between Ki- 67- high and low GGOs 
(AUC = 0.675 in validation cohort), indicating limited ap-
plication in clinical practice.

We further tested the value of radiomics in predicting 
the Ki- 67 LI of lung adenocarcinoma appearing as GGOs. 
Four different machine learning methods were tested and 
SVM was found to have the best diagnostic efficacy. The 
AUC of the radiomic model reached 0.731 in the valida-
tion group, which was significantly higher than that of the 
clinical- radiographic model. In another study, research-
ers found that three radiomic features (inverse variance, 
minor axis, and elongation) correlated with Ki- 67 level, 
and the AUC to identify Ki- 67 level for inverse variance 
was 0.770.21 However, the sample size of the research was 
small (n  =  110), and there was no validation cohort to 
confirm the diagnostic efficacy of the established radio-
mic model, which might lead to an optimistic estimate. 
Moreover, we tested the diagnostic value of peri- nodular 
radiomic features in predicting Ki- 67 level for the first 
time. As shown in Figure 6, it was noticeable that the com-
bination of both intra-  and peri- nodular radiomic features 
outperformed using only intra- nodular features. In clini-
cal practice, peri- nodular area was always ignored because 
the changes in this area were so tiny that they could hardly 
be captured by naked eyes. However, featured by high res-
olution, radiomics was able to identify tiny changes and 
hence could be used for data mining in peri- nodular areas. 
Researches had discovered that peri- nodular ring area 

F I G U R E  6  Receiver operating 
characteristic (ROC) curves of intra- 
nodular, peri- nodular, and combined 
radiomic models in the training (A) 
and validation (B) cohort. Data in 
the parentheses referred to the 95% 
confidence interval of area under the 
curve (AUC)
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might contain important information about micro vessels 
surrounding tumor area and was useful in predicting the 
invasiveness of lung adenocarcinoma lesions.31 In our 
study, we further confirmed that peri- nodular radiomic 
features were also informative in predicting Ki- 67 level 
and should not be ignored in future studies.

Out of the 13 features incorporated in the radiomic 
model, nine of them were wavelet or LoG features. These 
features were acquired by applying filters to the original 
images so that some characteristics of the images such as 
edge area could be enhanced. Radiomic processing could 
work well on filtered images as well, however, one can 
hardly extract any information from a filtered image with 
naked eyes. This further explained why radiomic meth-
ods always outperformed routine image- reading process. 
It is possible that future studies could further improve 
the diagnostic efficacy of radiomics with the discovery 
of more radiomic features and optimization of modeling 
processes.

This research has several limitations. First, in this 
single- center retrospective study, a validation cohort had 
been set up to preliminarily verify the diagnostic efficacy 
of the established radiomic model. However, the conclu-
sions of this study still need to be verified in other medical 
facilities and future prospective studies before clinical ap-
plication. Second, patient follow- up was not accomplished 
in this study so that prognostic analysis was unavailable. 
Therefore, multicenter prospective studies are still needed 
to settle the above issues.

In conclusion, the established radiomic model exhib-
ited good diagnostic efficacy in differentiating between 
lung adenocarcinoma GGOs with high and low Ki- 67 LI, 
which was higher than the clinical- radiographic model. 
Peri- nodular radiomic features showed added benefits to 
the radiomic model. As a novel noninvasive method, ra-
diomics has the potential to be applied in the preliminary 
classification of Ki- 67 expression level in lung adenocar-
cinoma GGOs.
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