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Abstract

Sawa-J is a polyphagous silkworm (Bombyx mori L.) strain that eats various plant leaves that normal silkworms do not. The
feeding preference behavior of Sawa-J is controlled by one major recessive gene(s) on the polyphagous (pph) locus, and
several minor genes; moreover, its deterrent cells possess low sensitivity to some bitter substances including salicin. To
clarify whether taste sensitivity is controlled by the pph locus, we conducted a genetic analysis of the electrophysiological
characteristics of the taste response using the polyphagous strain Sawa-J?lem, in which pph is linked to the visible larval
marker lemon (lem) on the third chromosome, and the normal strain Daiankyo, in which the wild-type gene of pph (+pph) is
marked with Zebra (Ze). Maxillary taste neurons of the two strains had similar dose–response relationships for sucrose,
inositol, and strychnine nitrate, but the deterrent cell of Sawa-J?lem showed a remarkably low sensitivity to salicin. The F1
generation of the two strains had characteristics similar to the Daiankyo strain, consistent with the idea that pph is recessive.
In the BF1 progeny between F1 females and Sawa-J?lem males where no crossing-over occurs, the lem and Ze phenotypes
corresponded to different electrophysiological reactions to 25 mM salicin, indicating that the gene responsible for taste
sensitivity to salicin is located on the same chromosome as the lem and Ze genes. The normal and weak reactions to 25 mM
salicin were segregated in crossover-type larvae of the BF1 progeny produced by a reciprocal cross, and the recombination
frequency agreed well with the theoretical ratio for the loci of lem, pph, and Ze on the standard linkage map. These results
indicate that taste sensitivity to salicin is controlled by the gene(s) on the pph locus.
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Introduction

Chemical constituents in plants provide information for de-

termining the host range in phytophagous insects [1,2]. Among

various factors, taste information is key for initiating food intake

[1–3]. The domesticated silkworm, Bombyx mori L., is a monoph-

agous insect that can be raised on fresh mulberry leaves (Morus alba

L.). Several silkworm feeding stimulants have been isolated from

mulberry leaves [4,5]; among them, sucrose is a powerful feeding

stimulant [6], and myo-inositol synergizes the effect of sucrose [7].

The sucrose-best and inositol-specific taste neurons are both

present on the lateral sensillum styloconicum of the maxillary

galea [8]. In contrast, secondary compounds in non-host plants

could also be feeding deterrents for host-plant selection by the

silkworm. The taste neurons for detecting these chemicals,

collectively referred to as deterrent cells, are present in the medial

sensillum styloconicum on the maxillary galea [9] as well as in the

epipharyngeal sensillum on the ventral side of the labrum [10].

Torii and Morii [11] previously demonstrated the important role

of the maxilla in obtaining inhibitory signals to distinguish food

plants, in which they reported a silkworm with no maxilla that ate

many different types of plant leaves rather than just mulberry

leaves. In addition, Ishikawa and Hirao [7] and Kanda [12]

showed that inactivation by acid treatment or extirpation of the

medial styloconic sensilla made silkworm larvae feed on non-host

plant leaves or an artificial diet lacking mulberry leaf powder (LP-

1) that normal silkworms will not eat. Although it is possible that

other deterrent cells, such as those found in the maxillary palp tip

sensilla of Manduca sexta larvae [13] or the specialized deterrent

cells found in the maxillary styloconic sensilla of Pieris caterpillars

[14], are present in silkworm, the activation of different deterrent

cells produced the same deterrent effect on feeding in other

lepidopteran larvae [2,15,16].

Despite being largely monophagous, some silkworm strains eat

many different types of plant leaves [17–19]. One of the most

representative strains is Sawa-J, which was bred by Yokoyama

[19]. The strain is called ‘‘polyphagous’’ because it eats a broader

range of plants [17]. This strain can be raised on the LP-1 artificial

diet [12]. A genetic analysis of the polyphagous character of the

Sawa-J strain showed that feeding preference behavior is

controlled by major gene(s) on a recessive mutant locus and

several minor genes on other loci [12,20]. The gene(s) on the

major locus is designated polyphagous (pph), and the locus has been

mapped to 12.9 cM on the third chromosome [21]. Electrophys-

iological studies using the Sawa-J strain as well as another
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polyphagous strain have shown that the deterrent cells of these

strains in both the medial maxillary styloconic sensillum and the

epipharyngeal sensillum are abnormal; i.e., the electrophysiolog-

ical response against salicin, a bitter tastant for people, is much

weaker in these polyphagous strains than in normal strains [22,23],

although the response to strychnine nitrate is similar among

silkworm strains [22]. Both salicin and strychnine nitrate stimulate

the same deterrent cell in the medial styloconic sensilla on the

maxillary galea and deter feeding of normal silkworm larvae

[9,24]. However, the deterrent effects of salicin determined by

both the intake of salicin-containing diet 15 h after the fourth

ecdysis and the initiation time of the first meal feeding are lower in

the polyphagous strains compared to normal strains [23,24]. The

deterrent effect of strychnine nitrate was observed in the Sawa-J

strain as well as the normal strains [24].

Thus, the Sawa-J strain exhibits polyphagous feeding and a low

sensitivity in the sensory response to some bitter substances,

including salicin. However, no direct genetic experiment has

shown the relationship between the function of the gene(s) on the

pph locus and the electrophysiological taste response. To clarify

whether the response is controlled only by the gene(s), we

performed a genetic analysis using the polyphagous strain, Sawa-

J?lem, and the normal strain, Daiankyo. The study reported here

using the two parent strains and their F1 and BF1 progeny

indicated that the response to salicin is controlled by the gene(s) on

single pph locus.

Materials and Methods

1. Silkworm Strains
Two strains, Sawa-J?lem [21] and Daiankyo (ANJP No.335,

NIAS Genebank), were used to construct F1 and backcross (BF1)

generations and to analyze the electrophysiological taste response.

The former strain, whose genotype on the third chromosome is lem

pph +Ze/lem pph +Ze, is preserved at the Transgenic Silkworm

Research Unit, and the latter, whose genotype is +lem +pph Ze/+lem
+pph Ze, is at the Genetic Resources Conservation Research Unit of

the National Institute of Agrobiological Sciences, Japan. The

phenotypes of lemon (lem) and Zebra (Ze) are easily distinguished by

their yellow integument and black-striped zebra pattern, re-

spectively, at the larval stage (Fig. 1A). The crossing scheme is

shown in Figure 1B. To identify the chromosome controlling the

electrophysiological response to salicin, the BF1 larvae between the

female F1 and male Sawa-J?lem were examined. Given that

chromosomal recombination only occurs in the male silkworm, to

determine the chromosomal position of the locus controlling the

response, the BF1 offspring from the male F1 and the female Sawa-

J?lem were prepared. The silkworms were reared from hatching to

the third instar on a commercial artificial diet containing mulberry

leaf powder (Nosan Corporation, Yokohama, Japan) at 25uC, and
the larvae were raised on fresh mulberry leaves from the fourth

instar.

2. Electrophysiological Recordings
Fifth instar larvae, which had been feeding for one day, were

used for the electrophysiological recordings. Taste responses were

recorded from the lateral and medial styloconic sensillum on the

maxillary galea using a classical tip-recording technique [8,25];

however, we modified the method by recording from the intact

living larva. The larva was immobilized inside a silicon tube

(0.9 cm i.d.65 cm) that had a longitudinal slit of approximately

1 cm in length from the edge. The head of the larva was taken out

and pinched in the slit like a pillory on the neck, and the maxilla

was kept protuberant by rolling with thin (3–5 mm wide) plastic

paraffin film (ParafilmH M) on both the distal and proximal region

alongside the maxilla. The sharpened tip of a stainless steel needle

was inserted into the proximal region of the maxilla for use as an

indifferent electrode. Glass capillaries with a tip diameter of 15–

20 mm were used as recording/stimulating electrodes. A platinum

wire dipped in the stimulus solution inside the capillary was

connected to a TastePROBE amplifier (Syntech, Kirchzarten,

Germany). The tip of the sensillum was capped with the capillary

using a micromanipulator to record the response of taste neurons

in the sensillum. Electrical signals were sampled and digitized with

an IDAC-2 A/D converter (Syntech) and analyzed using

AutoSpike software (Syntech). For each recording, a single

sensillum was stimulated for 2 s, and the number of spikes

generated 0.05–1.05 s after contact with the sensillum was

counted. Successive recordings were conducted at least 2 min

later to minimize the effect of adaptation to the neuronal response.

Tissue paper was gently applied to the electrode tip just prior to

each recording to minimize the effect of solvent evaporation at the

recording/stimulating electrode tip. Most recordings were strong

with regular firing and similar amplitude spikes, which meant that

spikes were elicited from a single cell; however, some recordings

possessed spikes with different small amplitudes. Since most small

spikes are elicited from salt-sensitive cells [8,9,22], only the

number of large spikes was counted, as these were the signals from

the sucrose-best and inositol-specific cells and from the deterrent

cell. Three to six different larvae were used for each concentration

to elucidate dose–response relationships for the taste stimuli, and

the average number of spikes and their standard errors were

calculated.

3. Taste Stimuli
The sucrose-best and inositol-specific cells of the lateral

styloconic sensilla in the two strains, Sawa-J?lem and Daiankyo,

and their F1 progeny were tested for their responses to different

concentrations (0.08, 0.4, 2, 10, 50, 250 mM) of sucrose and myo-

inositol, which were dissolved in 4 mM NaCl as an electrolyte

solution. The deterrent cell of the medial styloconic sensilla in

Sawa-J?lem, Daiankyo, and the F1 were tested for their responses to

both salicin (0.1, 1, 10, 25, 100 mM) and strychnine nitrate

(0.0001, 0.001, 0.01 mM). We used 20 mM NaCl as an electrolyte

solution to obtain a clear result on the responsiveness of the

deterrent cell because a water taste neuron is associated with the

same sensillum and its activity is depressed by mixing a higher

concentration of salts [9]. A stimulant solution of 25 mM salicin

was used to record from individual BF1 progeny larvae. All

chemicals used as stimuli were purchased from Wako Pure

Chemical Industries, Ltd. (Osaka, Japan).

Results

To confirm that the Sawa-J?lem and Daiankyo strains used in

the experiment possessed the same electrophysiological character-

istics as those of the original Sawa-J and normal silkworm strains,

the dose–responses of the sucrose-best and inositol-specific cells in

the lateral styloconic sensilla were examined at different concen-

trations of sucrose and myo-inositol. As shown in Figure 2, Sawa-

J?lem, Daiankyo, and their F1 progeny showed normal dose–

response relationships for these taste stimuli, and no difference was

observed among the responses in the two strains or their F1 larvae.

We also recorded the dose–response of the deterrent cell against

salicin and strychnine nitrate in the medial styloconic sensillum of

Sawa-J?lem, Daiankyo, and their F1 progeny (Fig. 3). Although the

number of spikes in response to 0.01 mM strychnine nitrate in

Sawa-J?lem was slightly lower than that of Daiankyo and the F1, no

Genetic Analysis of Taste in a Silkworm Mutant
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marked difference was observed (Fig. 3, Fig. S1). In contrast, we

found a significant difference in the responses to salicin among the

two strains and the F1. The deterrent cell of Sawa-J?lem did not

respond to salicin at concentrations of 0.1, 1.0, or 10 mM, and the

response was very weak even at 25 mM, whereas Daiankyo and

their F1 larvae clearly responded to 0.1 mM salicin, and the

number of spikes increased with increasing concentration.

Representative responses to 25 mM salicin in these silkworms

are shown in Figure 4A–C, in which the deterrent cell responded

with relatively larger spikes with regular intervals in Daiankyo and

the F1 (arrowheads in Fig. 4B, C). Thus, the strains possessed the

same electrophysiological characteristics of the original Sawa-J

and normal strains for the taste responses reported previously [22];

i.e., maxillary taste neurons of the Sawa-J?lem and Daiankyo

strains had normal dose–response relationships for sucrose,

inositol, and strychnine nitrate, but the deterrent cell of Sawa-

J?lem showed remarkably low sensitivity to salicin, in a manner

similar to that of the original Sawa-J strain.

To investigate whether the low sensitivity to salicin in the two

strains was caused by a single gene mutation in the pph locus, we

first constructed two types of silkworms with the genotypes lem pph

+Ze/lem pph +Ze and +lem +pph Ze/lem pph +Ze in a cross of (Sawa-J?lem

6 Daiankyo)R 6 Sawa-J?lem= (Fig. 1B). Crossing-over does not

occur in female chromosomes of silkworms. Therefore, a BF1 larva

with the lem phenotype (yellow integument) is homozygous for pph

as well as lem, and a larva with the Ze phenotype (zebra stripe

integument) is heterozygous for pph as well as Ze. In the population

of BF1 used for measuring the neural response to salicin, 441 eggs

laid by one BF1 female were used. Among them, 423 larvae

hatched, and the numbers of lem and Ze-phenotype larvae that

survived to the fifth instar were 208 and 206, respectively. The

values indicated that the genes related to the phenotypes and

neural response to salicin did not affect viability during embryonic

or larval development. We randomly selected 10 larvae with each

of the two phenotypes and recorded their response to 25 mM

salicin from the medial styloconic sensilla. All larvae with the lem

Figure 1. Phenotypes and the crossing scheme of the two strains, Sawa-J?lem (lem) and Daiankyo (Ze). A, Larvae of Sawa-J?lem and
Daiankyo showing the phenotypes of the marker genes, lemon (lem) and Zebra (Ze), respectively. B, Crossing of Sawa-J?lem and Daiankyo to obtain F1
and BF1 larvae for an analysis of electrophysiological response to salicin.
doi:10.1371/journal.pone.0037549.g001
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phenotype showed almost no response and only small infrequent

spikes (Fig. 4D), which was similar to the response pattern in the

parent, Sawa-J?lem (Fig. 4A), whereas the Ze-phenotype larvae

gave a clear response to 25 mM salicin with large spikes

(arrowheads in Fig. 4E). These results indicated that the gene

responsible for the different responses to 25 mM salicin is located

on the same third chromosome as the lem and Ze genes. We then

measured the frequency of crossing-over between the salicin

response trait with lem and Ze. To obtain the crossover types

among the loci, we crossed a Sawa-J?lem female and an F1 male

between Sawa-J?lem and Daiankyo and counted the number of

larvae with the lem and Ze characters in the BF1 progeny (Fig. 1B).

The segregation ratio of the lem and Ze phenotypes is shown in

Table 1. The frequency of crossover types between lem and Ze

agreed with the theoretical ratio from the location of lem (3–0.0)

and Ze (3–20.8) loci on the standard linkage map (http://www.

shigen.nig.ac.jp/silkwormbase/ViewAllLinkageMap.do). Fifteen

larvae were then randomly selected from the population with

the normal integument phenotype and 15 larvae were selected

with both the lem and Ze phenotypes as crossover types. We then

tested these larvae for the electrophysiological response of the

deterrent cell in the medial styloconic sensillum to salicin and

counted the number of larvae with a normal reaction (positive

response) and a weak reaction (negative response) to 25 mM

salicin (Table 1). Nineteen larvae showed crossing-over between

the lem locus and the gene controlling the response to salicin, and

11 larvae showed that crossing-over had taken place between the

gene and Ze. Given a distance of 20.8 cM between lem and Ze, the

locus of the gene controlling the response to salicin was calculated

to be at 13.2 cM on the third chromosome. A chi-square analysis

for the 30 crossing-over larvae showed no significant difference

(p=0.97) between the position of the locus of the gene controlling

Figure 2. Dose–response to sucrose and inositol recorded from
the lateral maxillary styloconic sensillum. Sensory response of the
sucrose-best (A) and inositol-specific (B) taste cells in the lateral
styloconic sensillum on the maxillary galea to different concentrations
of sucrose and myo-inositol in the polyphagous silkworm Sawa-J?lem
(N), normal silkworm Daiankyo (#), and their F1 progeny (g). The
response was quantified by the number of spikes generated 0.05–1.05 s
after the onset of stimulation. Values are shown as the average of three
to six different larvae and the standard error. According to the result of
Tukey’s HSD test (a=0.05), no statistical significance was found in the
values among the two parent strains and their F1 progeny.
doi:10.1371/journal.pone.0037549.g002

Figure 3. Dose–response to salicin and strychnine nitrate
recorded from the medial maxillary styloconic sensillum.
Sensory response of the deterrent cell in the medial styloconic
sensillum on the maxillary galea to different concentrations of salicin
(A) and strychnine nitrate (B) in the polyphagous silkworm Sawa-J?lem
(N), normal silkworm Daiankyo (#), and their F1 progeny (g). The
response was quantified by the number of spikes generated 0.05–1.05 s
after the onset of stimulation. Values shown are the average of four to
six different larvae and the standard error. The asterisks indicate the
values of Sawa-J?lem that were significantly different from those of
Daiankyo and the F1 progeny in Tukey’s HSD test (a= 0.05).
doi:10.1371/journal.pone.0037549.g003
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the electrophysiological response and the pph locus that was

reported [21] at 12.9 cM on the third chromosome. According to

the same test at the level of a=0.05, the gene is located on the

locus between 8.9 cM and 16.8 cM, and about 100 putative genes

were found in the China gene model of the B. mori genome

database (KAIKObase, http://sgp.dna.affrc.go.jp/KAIKObase/

index.html).

Discussion

The domesticated silkworm, B. mori, is a monophagous insect: it

eats and grows on mulberry leaves and only a few other closely-

related plant species. Genetic evidence indicates that its feeding

preference behavior is controlled by many different genes. Several

mutants, such as Nonpreference (Np), Nonpreference Shokei

(Nps), Beet feeder (Bt), D5X, and Sek [18,26], have a broad host

range and consume different plants or a basic artificial diet without

mulberry leaf powder; Np, Nps, Bt, and Sek are located on

chromosomes 11, 3, 1, and 5, respectively. In contrast, the

opposite type of feeding preference mutant was reported as ‘not

feeding on an artificial diet’, nfad [27]. In addition to these genes,

one locus controlling feeding preference behavior in the silkworm

has been reported and designayed pph [12,20–24]. The Sawa-J

strain is a polyphagous strain bred from many geographical races

Figure 4. Representative responses of the deterrent cell to 25 mM salicin in larvae with different genotypes. Representative sensory
responses of the deterrent cell in the medial styloconic sensillum on the maxillary galea to 25 mM salicin in the polyphagous silkworm Sawa-J?lem (A),
normal silkworm Daiankyo (B), their F1 progeny (C), and lem- and non-Ze- phenotypes in the BF1 generation (D), and non-lem and Ze phenotypes in
the BF1 generation (E). Because an F1 female was used in the backcross, crossing-over among the genes did not occur in the BF1 individuals.
Therefore, larvae with lem and non-Ze phenotypes possessed the genotype of lem pph +Ze/lem pph +Ze, and larvae with non-lem and Ze phenotype
were +lem +pph Ze/lem pph +Ze. Recordings were performed using 10 larvae with the same genotype, and it was confirmed that they showed similar
patterns. Each response trace shows a duration of 0.3 s beginning 0.5 s after the onset of stimulation. Arrowheads in B, C, and D indicate spikes from
the deterrent cell.
doi:10.1371/journal.pone.0037549.g004

Table 1. The number of larvae with positive and negative responses to 25 mM salicin in the BF1 progeny from a cross between
Sawa-J?lem females and F1 males.

Response to 25 mM salicin

Phenotype Number of larvae Number of larvae tested Positive Negative

lem +Ze 184 N.D.* N.D. N.D.

+lem Ze 189

+lem +Ze 45 15 6 9

lem Ze 46 15 10 5

The larvae with the lem +Ze and +lem Ze phenotypes are non-crossover types.
The larvae with the +lem +Ze and lem Ze phenotypes are crossover types.
*N.D., not determined.
doi:10.1371/journal.pone.0037549.t001
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of silkworms showing abnormal feeding behavior [19]. Sixty-six

geographical races were screened for their feeding habit, and

about 60 larvae were collected as a pool showing an abnormal

feeding habit, such as eating cabbage or beet leaves. The Sawa-J

strain was then created by repeated selection of the larvae showing

abnormal feeding behavior. The breeding process of the Sawa-J

strain suggests that the strain possesses many different genes

allowing the ingestion of a wide variety of plants. Nevertheless,

genetic analysis of the polyphagous character of Sawa-J showed

that the feeding characteristic is controlled by a major gene(s) on

the pph locus along with other, less potent genes [20].

Electrophysiological study of the pph mutant showed that the

sensitivity of the taste neurons in the maxillary styloconic sensilla

to inositol, sucrose, strychnine nitrate, and some other alkaloids,

such as nicotine, brucine, and caffeine, was not much different

from that of the normal silkworm, but the sensitivity to salicin as

well as phloridzin, coumarin, and arbutin was much lower in

Sawa-J compared with that of the normal silkworm [22]. This

suggests that multiple signaling pathways are involved in the

response to different bitter substances, which has also been

proposed for M. sexta larvae on the basis of electrophysiological

and behavioral analysis [15,28]. In the closely related monoph-

agous lepidopterous larvae, Yponomeuta cagnagellus and Y. malinellus,

analysis of F1 progeny revealed that gustatory sensitivities to

dulcitol, phroridzin, and prunasin are controlled by genetically

dominant factors [29]. Few other genetic studies have examined

taste sensitivity and the molecular mechanisms underlying taste

transduction and recognition in lepidopteran larvae, which is in

contrast to the wealth of physiological characterizations of the taste

neurons and related studies on host-selection behavior [1,2].

Our experiment was performed to determine whether the low

sensitivity to salicin in the Sawa-J strain is controlled by the gene(s)

on the pph locus. To perform the experiment, we marked the

chromosome bearing the pph locus with a visible mutant gene, lem,

and created the Sawa-J?lem strain. The new strain possessed the

same electrophysiological taste response characteristics as the

original Sawa-J strain. The F1 larvae of Sawa-J?lem and the normal

strain Daiankyo recovered sensitivity of the deterrent cell to salicin.

The results of a genetic analysis showed that this character was

likely controlled by a single recessive gene because the ratio of

larvae with normal and weak reactions to salicin in the BF1 of

Sawa-J?lem and Daiankyo was about 1:1 [see the results of (Sawa-

J?lem6Daiankyo)R6Sawa-J?lem= and Table 1]. The locus of the

gene controlling the sensitivity to salicin was determined from the

number of crossover-type larvae (+lem +Ze and lem Ze) showing

positive or negative electrophysiological reactions; it was located at

a position nearly identical to pph, which was previously assessed by

feeding behavior [21]. Thus, our genetic analysis suggested that

pph and the locus of the gene controlling the sensitivity of the

deterrent cell to salicin are at the corresponding position on the

third chromosome, suggesting that pph may play a role in

the salicin taste sensation and most likely for some other deterrent

substances in the normal silkworm. Given the relatively small

sample size (Table 1), it is possible that the pph locus corresponds to

a set of tightly linked genes with similar or overlapping functions.

Additionally, even as a single gene, pph may have as-yet unknown

pleiotropic effects beyond the mechanism underlying the polyph-

agous behavior of the Sawa-J strain.

Molecular-level positional cloning and functional identification

of pph are ongoing in our laboratory. Monogenic controls of taste

sensitivity and feeding behavior were reported exclusively for

seven-transmembrane gustatory receptor proteins (Grs) in Dro-

sophila melanogaster [30–34]. Among these, 33 Grs appear to be

expressed in labellar bitter neurons [35]. Two odorant binding

proteins (OBPs) that express in the tarsal taste sensilla of Drosophila

species and presumably interact with two plant fatty acids are

responsible for host-plant preference behavior [36,37]. However,

so far, neither Grs nor OBPs were identified in the chromosome

regions for the pph locus delimited by SNP mapping (T. Iizuka,

personal communication) using the B. mori genome database

(KAIKObase). On the other hand, a TRP channel with

a downstream of phospholipase C (PLC)-dependent signaling

cascade is involved in taste sensation to aristolochic acid but not to

other bitter substances in D. melanogaster [38]. Signaling cascades of

the intracellular second messengers, 39,59 cyclic guanosine

monophosphate (cGMP) and inositol 1,4,5-triphosphate (IP3),

appear to be involved in the transduction or modulation of bitter

taste sensation in flies [39,40]. The genes regulating these

pathways or other unknown genes are candidates for pph.

Supporting Information

Figure S1 Representative responses of the deterrent cell
to 0.01 mM strychnine nitrate in larvae with different
genotypes. Representative sensory responses of the deterrent cell
in the medial styloconic sensillum on the maxillary galea to

0.01 mM strychnine nitrate in the polyphagous silkworm Sawa-

J?lem (A), normal silkworm Daiankyo (B), and their F1 progeny (C).

The experiment to determine the representative response was

performed using 5–10 larvae with the same genotypes and it

confirmed that they showed the same pattern. Each response trace

shows a duration of 0.3 s beginning 0.5 s after the onset of

stimulation.

(TIF)
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