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Abstract: An inverse procedure was proposed to identify the material parameters of polyurea
materials. In this procedure, a polynomial hyperelastic model was chosen as the constitutive model.
Both uniaxial tension and compression tests were performed for a polyurea. An iterative inverse
method was presented to identify parameters for the tensile performance of the polyurea. This
method adjusts parameters iteratively to achieve a good agreement between tensile forces from the
tension test and its finite element (FE) model. A response surface-based inverse method was presented
to identify parameters for the compression performance of the polyurea. This method constructs a
radial basis function (RBF)-based response surface model for the error between compressive forces
from the compression test and its FE model, and it employs the genetic algorithm to minimize the
error. With the use of the two inverse methods, two sets of parameters were obtained. Then, a
complete identified uniaxial stress–strain curve for both tensile and compressive deformations was
obtained with the two sets of parameters. Fitting this curve with the constitutive equation gave the
final material parameters. The present inverse procedure can simplify experimental configurations
and consider effects of friction in compression tests. Moreover, it produces material parameters that
can appropriately characterize both tensile and compressive behaviors of the polyurea.

Keywords: polyurea; hyperelastic model; inverse procedure; finite element; experiment

1. Introduction

Polymers such as engineering plastics and rubbers have been widely applied in
industry. Their mechanical properties have attracted extensive research interests. Many
researchers have studied the tension performance [1], compression performance [2–4],
strain-rate-dependent behavior [4–6], and impact resistance of polymers [7]. Polyurea
is a relatively new polymer material. It possesses many attractive properties, such as
excellent ductility, good adhesion, high wear resistance, and high impact resistance. It
has been increasingly used in the water proofing, anti-corrosion, and impact protection
of engineering structures. To design engineering structures with polyurea materials, it
is of great significance to have accurate constitutive models and corresponding model
parameters for the structural reasonability and reliability.

The investigation of mechanical behaviors and constitutive models of polyurea mate-
rials has attracted extensive research interests. Raman et al. [8] performed an experimental
study on the tensile behavior of polyurea with the strain rate ranging from 0.006 to 388 s−1.
Mohotti et al. [9] proposed a strain-rate-dependent constitutive model to predict the
high-strain-rate behavior of polyurea under tensile loading. Bai et al. [10] established a
hyper-viscoelastic constitutive model to characterize the material behavior of polyurea
subjected to uniaxial compressive loading. Guo et al. [11] developed a visco-hyperelastic
constitutive model to describe the mechanical behavior of a polyurea material and vali-
dated its effectiveness for different loading conditions and strain rates. Li and Lua [12]
developed a constitutive model considering both hyperelastic and viscoelastic behaviors of
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polyurea. Gamonpilas and McCuiston [13] proposed a nonlinear viscoelastic constitutive
model for polyurea.

In previous studies, material parameters in constitutive models of polyurea have
generally been obtained by directly fitting stress–strain curves derived from standard
tests, such as the uniaxial tension test and compression test. During the derivation of
stress–strain curves from standard test results, it is required to assume simple stress
states. For example, the assumption of one-dimensional stress state is required for uniaxial
tension and compression tests. However, stress states for practical uniaxial tension and
compression tests usually deviate from the ideal one-dimensional stress state to some
extent. Especially, for uniaxial compression tests, friction between the specimen and test
machine is inevitable and results in a nonuniform stress distribution in a specimen. Thus,
the direct fitting method brings errors to material parameters. Besides, in most previous
studies, material parameters for polyurea have been determined by either a tension or
compression test. They may be only applicable to special loading conditions, for example,
tension or compression loading only. This phenomenon is highlighted in the latter part of
this work.

The inverse identification technique provides an alternative for overcoming the prob-
lem in the direct derivation of material parameters with standard tests. Many inverse
identification methods have been developed to identify mechanical parameters for vari-
ous materials [14–21]. The general idea of inverse parameter identification is to perform
experimental tests, establish corresponding numerical models, and optimize material pa-
rameters to minimize the mismatch between experimental and numerical results. An
obvious advantage of inverse parameter identification is that it allows complex stress states
in experimental tests and can simplify experimental procedures. In this work, an iterative
inverse method and a response surface-based inverse method are presented to identify
hyperelastic model parameters for the tensile and compressive performance of polyurea,
respectively. Based on this, the parameters that describe both tensile and compressive
performance are determined.

The remainder of the paper is organized as follows: Section 2 briefs the constitutive
model used for polyurea materials; Section 3 details the identification of material parame-
ters for the tensile performance of a polyurea; Section 4 details the identification of material
parameters for the compressive performance of the polyurea; Section 5 presents the de-
termination and validation of material parameters that can appropriately characterize
both tensile and compressive performance; the last section draws the main conclusions of
this work.

2. Constitutive Model for Polyurea

Polyurea is generally considered an isotropic incompressible hyperelastic material.
The polyurea considered in this work was the one-part polyurea SWD 9526, which was
provided by SWD New Material (Shanghai) Co., Ltd. (Shanghai, China) It is mainly
composed of 4,4′-diphenylmethane diisocyanate, polyether polyol, and silicon dioxide. It
has the characteristics of a hyperelastic material, according to our material tests detailed
below. Its deformation appeared to be elastic during a large strain range, and its stress–
strain relationship showed apparent nonlinearity. A hyperelastic constitutive model was
employed to characterize its material property. It is known that there are many hyperelastic
constitutive models, such as the Mooney–Rivlin model, Ogden model, and polynomial
model. In these models, different strain energy functions are used to characterize the
stress–strain relationship. The polynomial model was adopted here, as the order of the
polynomial strain energy function of this model can be adjusted flexibly to characterize
material properties accurately. The general form of the strain energy function for the
polynomial model is defined as

U =
N

∑
i+j=1

Cij
(

I1 − 3
)i(I2 − 3

)j
+

N

∑
i=1

1
Di

(J − 1)2i (1)
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where U is the strain energy per unit volume, N is the order of the polynomial model, Cij

and Di are material constants, J is the volume ratio, and I1 and I2 are defined as

I1 = λ
2
1 + λ

2
2 + λ

2
3 (2)

and
I2 = λ

−2
1 + λ

−2
2 + λ

−2
3 , (3)

respectively, where λi = J−1/3λi (i = 1, 2, 3), and λi is the principal stretch ratio. For an
incompressible material, J = λ1λ2λ3= 1. Thus, Equation (1) can be rewritten as

U =
N

∑
i+j=1

Cij(I1 − 3)i(I2 − 3)j, (4)

where
I1 = λ2

1 + λ2
2 + λ2

3, (5)

and
I2 = λ2

1λ2
2 + λ2

1λ2
3 + λ2

2λ2
3. (6)

During the following inverse parameter identification, the order of the polynomial
model is taken as 2 in order to appropriately describe material behaviors of the polyurea
and limit the number of material parameters. The second-order strain energy function is

U = C10(I1 − 3) + C01(I2 − 3) + C20(I1 − 3)2 + C11(I1 − 3)(I2 − 3) + C02(I2 − 3)2, (7)

where C10, C01, C20, C11, and C02 are material parameters that need to be identified.
To identify the five material parameters, direct experimental methods usually employ

uniaxial tension or/and compression tests, where specimens are under quasi-uniaxial
tension or/and compression states. For an ideal uniaxial stress state, the three principal
stretch ratios are

λ1 = λU, λ2 = λ3 = λ−1/2
U , (8)

where λU is the principal stretch ratio in the loading direction, and the two strain invariants
can be expressed as

I1 = λ2
U +

2
λU

, I2 = 2λU +
1

λ2
U

. (9)

With the use of the principle of virtual work, the nominal stress TU in the loading
direction can be expressed as

TU =
∂U
∂λU

=
∂U
∂I1

∂I1

∂λU
+

∂U
∂I2

∂I2

∂λU
. (10)

Inserting Equations (7) and (9) into Equation (10) yields

TU = 2

(
1− 1

λ3
U

)
{C10λU + C01+2C20λU(I1 − 3) + C11[(I1 − 3) + λU(I2 − 3)]+2C02(I2 − 3)}. (11)

The above equation defines the TU–λU relationship for an ideal uniaxial stress state,
which is a linear equation of the five material parameters. Once the TU–λU relationship
is tested with experiments, the five material parameters can be directly determined by
fitting the test data with Equation (11). However, it is not easy to obtain an exact TU–λU
relationship via experimental methods for compressive loading, because in traditional
uniaxial compression tests, friction inevitably exists between the test machine and specimen
and results in a deviation from the ideal uniaxial stress state. For tensile loading, it is
relatively easy to obtain a good test result of the TU–λU relationship, compared with
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compression loading, but this should be achieved with the aid of a special deformation
meter tracking the deformation of the gauge length of a tension specimen.

This work introduces inverse methods to identify the five material parameters for
the tensile and compressive performance of the polyurea. They do not require a special
deformation meter to track the deformation of the gauge length of a specimen in a tension
test, and they allow friction and the complex stress state in a compression test. The methods
can simplify experimental procedures and produce accurate material parameters.

3. Inverse Identification of Material Parameters for Tensile Performance
3.1. Uniaxial Tension Test

Uniaxial tension tests were performed to provide experimental data to inversely
identify material parameters for the tensile performance of the polyurea. The specimens
used in the tests were dumbbell-shaped, as shown in Figure 1a. The nominal dimensions of
the specimens are given in Table 1. The specimens were fabricated by the casting method.
To fabricate a specimen, polyurea is poured into a lower mold (see Figure 1b). After the
lower mold is filled up with polyurea, an upper mold is pressed in the lower mold. The
sample is left in the mold to cure for one week. Then, it is taken out of the mold and
polished with 2000-mesh abrasive papers. The specimen fabricated is shown in Figure 1c.

Figure 1. Specimen and its fabrication: (a) shape of specimen; (b) mold; (c) practical specimen.

Table 1. Nominal dimensions of specimen.

Name Symbol Value/mm

Total length Lt 115
Width of two ends We 25
Length of two ends Le 20

Length of middle part Lm 33
Width of middle part Wm 6

Radius of concave transition edge R1 14
Radius of convex transition edge R2 25

The uniaxial tension tests were carried out with a universal testing machine produced
by Dongguan Deray Instrument Co., Ltd. (Dongguan, China), as shown in Figure 2. The
testing machine has a maximum loading capacity of 1 kN. During the tests, the specimens
were clamped at the two ends by grippers for a length of 16 mm. The tensile velocity
was set to 500 mm/min. The variation in tensile force (F) with tensile distance (d) was
recorded. The tensile distance d was directly measured as the moving distance of the upper
gripper, which is the total deformation of the sample. Tension tests were conducted for
three specimens. The tests for the three specimens are denoted as tests 1, 2, and 3 in the
following. The tensile force–distance (F–d) curves measured from the tests are given in
Figure 3. The curves agree well with each other. For each sample, the deformation at
fracture can reach more than three times the length of the middle part of the sample where
deformation mainly occurs. This indicates that the polyurea possesses good ductility.
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Figure 2. Experimental configuration for tension test of polyurea.

Figure 3. Tensile force–distance curves.

3.2. Inverse Parameter Identification

An inverse method is presented for the identification of material parameters in the
hyperelastic constitutive model for characterizing the tensile performance of the polyurea.
In the method, a finite element (FE) model for the uniaxial tension test is established based
on the finite element software ABAQUS [22], and an iterative strategy is proposed to
optimize the material parameters to seek a good match between the tensile force–distance
curves obtained from the FE model and the test.

The FE model is shown in Figure 4. The model is established for test 1. The actual
geometry of the specimen is used in the model. The actual dimensions of the specimen
show some differences to the nominal ones given in Table 1 due to contraction in the drying
process. In order to generate the actual geometry of the specimen, contraction ratios in
length and width were measured. They were determined as the ratios of the actual total
length and width of the middle part to the corresponding nominal ones, which were 0.938
and 0.892, respectively. The in-plane geometry of the specimen was constructed by scaling
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the geometry in Figure 1a with the contraction ratios determined above. The thickness of
the specimen in the model was taken as that measured from the specimen (1.8 mm). The
specimen was discretized with 40,064 elements. The surface nodes of the lower end of
the specimen with a length of 16 mm were constrained in the x-, y-, and z-directions. The
surface nodes of the upper end of the specimen with a length of 16 mm were given the
actual tensile velocity in the y-direction and constrained in the x- and z-directions.

Figure 4. FE model for tension test of polyurea.

In the iterative strategy for the identification of material parameters, initial values of
these parameters should be estimated first. To this end, the principal stretch ratio at tensile
distance d is estimated as

λ0
U(d) = d/l0, (12)

and the nominal stress at tensile distance d is estimated as

T0
U(d) = F(d)/S0, (13)

where l0 is the actual length of the middle part of the specimen, which is 30.97 mm, F(d)
is the tensile force at tensile distance d obtained from the test, and S0 is the actual initial
area of the cross-section of the specimen, which is 9.63 mm2. Based on Equations (12)
and (13), the TU–λU curve is estimated. Using the least-squares method, we fit the curve
with Equation (11) and obtained the initial values of material parameters (see the material
parameters for iteration number 0 in Table 2).

Table 2. Material parameters for tensile performance of polyurea.

Iteration Number C10/Pa C01/Pa C20/Pa C11/Pa C02/Pa

0 −186,300 2,843,500 −2900 1200 351,300
1 −5,035,000 9,433,700 63,700 −419,400 2,462,500
2 −5,368,900 9,743,600 72,800 −476,300 2,657,200
3 −5,413,200 9,787,600 75,200 −490,700 2,695,200

The initial material parameters were used in the FE model to simulate the uniaxial
tension test. Figure 5 shows the simulated results with these parameters. As seen from
Figure 5a, the stress distribution on the cross-section of the middle part of the specimen is
quite uniform. Thus, the nominal stress of the middle part estimated with Equation (12)
should be accurate. From Figure 5b, it can be seen that the middle part of the specimen
deformed uniformly. However, beside the middle part, the other part of the specimen
also shows obvious deformation and contributes to the total deformation of the specimen.
Figure 6a gives a comparison between the total deformation of the specimen (d) and the
deformation of the middle part (∆l), and Figure 6b gives the deformation ratio θ (θ = d/∆l).
It can be clearly seen that there are significant differences between the two deformations,
so estimating the principal stretch ratio of the middle part with Equation (13) will result in
significant error, and generally, this will produce larger principal stretch ratios than the
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true ones. Thus, the material parameters obtained based on T0
U and λ0

U are inaccurate and
need to be corrected.

Figure 5. FE simulation results of uniaxial tension test: (a) true stress in the loading direction; (b) true strain in the loading
direction.

Figure 6. Deformations of different parts of the specimen: (a) total deformation and middle part’s deformation; (b) ratio of
the two deformations.

In this work, the material parameters were iteratively corrected until the F-d curves
obtained from the test and the FE simulation were in a good agreement. The iterative
correction process is given as follows:
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(1) The deformation ratio for the nth iteration (θn) is calculated with the nth FE simulation
result. It is calculated for m tensile distances where FE simulation results are output.
The deformation ratios at different tensile distances θn(di) (i = 1, 2, . . . , m) are fitted
with the following 7th-order polynomial

θn(d) = a7d7 + a6d6 + a5d5 + a4d4 + a3d3 + a2d2 + a1d1 + a0. (14)

(2) The principal stretch ratio of the middle part for the (n + 1)th iteration is corrected as

λn+1
U (d) = λ0

U(d)/θn(d). (15)

The corrected principal stretch ratio λn+1
U (d) is calculated at k tensile distances, which

are recorded in the tensile test. The nominal stresses at the same k tensile distances
are calculated with Equation (13). They remain the same as the initial values and
require no correction. The reason for this is that nominal stress can be estimated by
Equation (13) with very good accuracy, as stress distribution on the cross-section of
the specimen is quite uniform, as seen in Figure 5a. With the above calculations, the
T0

U(d)-λ
n+1
U (d) curve is constructed.

(3) The least-squares method is used to fit the T0
U(d)-λ

n+1
U (d) curve with Equation (11),

and the material parameters for the (n + 1)th iteration is obtained.
(4) The (n + 1)th FE simulation is conducted with the material parameters obtained in

Step (3).
(5) The F-d curve is output for the (n + 1)th FE simulation and compared with the one

measured from the test. If F-d curves obtained from the test and the FE simulation
achieves a good agreement, then the iterative process is terminated. If not, go to
Step (1).

The convergence of the above iterative process is very fast. Three iterations are only
required to be performed. Figure 7 gives the convergence of deformation ratio θ and tensile
force F. Table 3 gives the coefficients of the 7th-order polynomial deformation ratio function
for different iterations. Table 1 gives the material parameters for different iterations. As
seen from Figure 7b, the F-d curves obtained from the test and the FE simulation achieve
an excellent agreement after three iterations. Thus, the material parameters obtained
from the third iteration were taken as the final result and used to characterize the tensile
performance of the polyurea.

Figure 7. Convergence: (a) deformation ratio; (b) tensile force.
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Table 3. Coefficients of polynomial deformation ratio function.

Iteration
Number a7 a6 a5 a4 a3 a2 a1 a0

1 5.1822 × 106 −2.0426 × 106 2.8397 × 105 −1.0173 × 104 −1.5652 × 103 218.1200 −11.7220 1.7534
2 3.2930 × 107 −1.2729 × 107 1.7989 × 106 −9.4296 × 105 −2.0048 × 103 451.9100 −19.0830 1.7560
3 3.7495 × 107 −1.4333 × 107 1.9980 × 106 −1.0239 × 105 −2.3050 × 103 485.8700 −19.7710 1.7564

4. Inverse Identification of Material Parameters for Compressive Performance
4.1. Uniaxial Compression Test

Uniaxial compression tests were performed to provide experimental data to inversely
identify material parameters for the compressive performance of the polyurea. The speci-
mens used in the tests were cylindrical. The nominal diameter and height of the cylindrical
specimen were 29.0 and 12.5 mm, respectively. Similar to the tensile specimens, the compres-
sive specimens were fabricated by the casting method with the mold shown in Figure 8a.
A typical specimen is shown in Figure 8b. Three compressive specimens were used in the
following tests. The actual dimensions of these specimens are listed in Table 4. They were
slightly smaller than the nominal ones, mainly due to contraction in the drying process.

Figure 8. Fabrication of specimen: (a) mold for fabricating specimen; (b) specimen.

Table 4. Actual dimensions of specimens.

Specimen Number Diameter/mm Height/mm Weight/g

1 26.54 11.17 7.99
2 26.40 11.20 7.92
3 26.37 11.15 8.06

Uniaxial compression tests were performed with a universal testing machine produced
by Shanghai Hualong Test Instruments Co., Ltd. (Shanghai, China), as shown in Figure 9.
The testing machine has a maximum loading capacity of 100 kN. The compressive velocity
was set to 150 mm/min, which makes the strain rate of compression tests comparable
to that of the tension tests. The total compression distance was set to 5.6 mm. In the
compression test, it is important to reduce the effect of friction, so lubricants are usually
used [23]. In this work, silicone oil was used as lubricant to reduce the friction between
contact surfaces of the specimen and the loading device. The variation in compressive
force (F) with compressive distance (d) was recorded for three specimens by three tests,
which are denoted as tests 1, 2, and 3 in the following. The compressive force–distance
curves measured from the tests are given in Figure 10. Overall, the test results for the three
specimens are in good agreement, though some differences can be observed. Figure 11
shows the specimens at the maximum compressive distance. It can be seen that the samples
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become drum-shaped. This is mainly because frictional forces exist at the top and bottom
surfaces and resist the lateral deformations in the samples, which results in a deviation for
the ideal uniaxial stress state.

Figure 9. Experimental configuration for compression test.

Figure 10. Compressive force–distance curves.
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Figure 11. Deformations of specimens at the maximum compressive distance: (a) test 1; (b) test 2; (c) test 3.

4.2. Inverse Parameter Identification

The stress and strain distributions in the compressive specimens are not as uniform as
those in the middle parts of the tensile specimens, so the inverse method for identifying ma-
terial parameters for tensile performance is not applicable to the identification of material
parameters for compressive performance. Here, an inverse method based on the response
surface is presented to identify material parameters in the hyperelastic constitutive model
for characterizing the compressive performance of the polyurea. The compressive F–d
curve of test 1 was used for inverse identification.

The procedure for the response surface-based inverse method is given in the following
description. First, initial material parameters are estimated with the compressive F–d curve
from the test. Secondly, a sensitivity analysis of material parameters is performed to deter-
mine the material parameters being identified and their search ranges, after which the Latin
hypercube sampling (LHS) method is employed to generate samples. Then, an FE model of
the uniaxial compression test is established. With this model, simulated compressive F–d
curves are obtained for all the samples. Then, errors between compressive forces obtained
from FE simulations and the test are calculated, and an RBF response surface model is
constructed for the error of compressive force. Finally, the genetic algorithm is employed
to minimize the error of the compressive force and obtain optimal material parameters.

The initial material parameters for characterizing the compressive performance were
estimated in a similar way in Section 3.1. Based on the assumption of an ideal uniaxial
stress state for the compressive specimen, the principal stretch ratio at compressive distance
d is estimated as

λU(d) =
(
l′0 − d

)
/l′0, (16)

and the nominal stress at compressive distance d is estimated as

TU(d) = F(d)/S′0, (17)

where l′0 is the actual initial height of the compressive specimen, and S′0 is the actual initial
cross-sectional area of the specimen. For test 1, l′0 and S′0 are 11.17 mm and 552.93 mm2,
respectively. The TU-λU relationship estimated by Equations (16) and (17) is fitted with
Equation (11) by the least-squares method. The initial material parameters are obtained
and given in Table 5. These material parameters are not accurate, because the actual stress
state is not a strictly uniaxial stress state, due to the existence of friction, which can be seen
in the FE simulation result of the compression test with these parameters (see Figure 12).
However, the stress–strain curve defined by these parameters will be approximate to the
true one or in the same order at least. Thus, they were used as baseline values below for
determining parameters’ search ranges in the inverse identification.
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Table 5. Initial values, search range, and identified values of material parameters for comprehensive performance.

Parameter Initial Value/Pa Search Range/Pa Identified Value/Pa

C10 57,909,000 [56,924,547, 58,893,453] 57,462,445
C01 −45,375,000 [−46,146,375, −44,603,625] −46,146,375
C20 30,132,000 [29,619,756, 30,644,244] 30,155,937
C11 −13,617,000 [−13,685,085, −13,548,915] −13,548,915
C02 2,813,000 [2,798,935, 2,827,065] 2,827,065

Figure 12. Stress distributions from FE simulation of uniaxial compression test with initial material parameters: (a) using
actual friction coefficient (0.19); (b) no friction.

A sensitivity analysis was performed to observe the effects of material parameters on
the uniaxial stress–strain response defined by the second-order polynomial hyperelastic
model. Each parameter was analyzed independently and ranged from (1−ω)C0

ij to

(1 + ω)C0
ij, where ω is a factor. ω was set to 2% in the sensitivity analysis. Figure 13 shows

the sensitivity of the uniaxial stress–strain response to different material parameters. The
stress–strain response is sensitive to all the five material parameters. Thus, all of these
parameters are taken as parameters required to be identified. From Figure 13, it can be seen
that unreasonable stress–strain responses exist in some cases, for example, stress becomes
positive at a principal stretch ratio of 0.4 when C20 is 0.98C0

20, which means tensile stress
occurs at large compressive strain. In the following parameter identification, to avoid this
unreasonable stress–strain response in the samples, search ranges of material parameters
were determined as those given in Table 4, namely, ω was taken as 1.7%, 1.7%, 1.7%, 0.5%,
and 0.5% for C0

10, C0
01, C0

20, C0
11, and C0

02, respectively.
To provide samples for constructing a surface response model, the LHS method was

employed, and 50 samples were generated, as shown in Table A1 (see the Appendix A). For
each sample, an FE simulation was carried out with the material parameters of each sample
to produce compressive forces during the compressive process. The FE model used for the
simulation of the compression test is shown in Figure 14. The two load cells were modeled
with rigid surfaces. The specimen was discretized with 51,678 elements. The lower load
cell was fixed, and the upper load cell was given the actual compressive velocity in the
y-direction. A friction coefficient of 0.19, whose determination is detailed below, was set
for the contact between the load cells and the specimen.
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Figure 13. Sensitivity of uniaxial stress–strain response to material parameters: (a) C10; (b) C01; (c) C20; (d) C11; (e) C02.
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Figure 14. FE model for compression test.

The friction coefficient was experimentally determined as shown in Figure 15. The
specimen was placed on the load cell of the compression test machine. A weight of 250 g
was placed on the upper surface of the specimen to increase the frictional force and reduce
the test error. The lubrication condition between the specimen and the load cell was set as
same as that in the compression test. A digital force gauge with a measuring range of 0 to
2 N was driven slowly by a guide screw under the control of a digital motion controller
to pull the specimen horizontally and slowly. The force gauge recorded the maximum
frictional force during the process of the specimen from the static state to the moving
state. The friction coefficient was calculated with the maximum force and the weight of the
specimen. Three specimens were tested. The friction test was repeated eight times for each
specimen. The average friction coefficient of the three specimens was 0.19.

Figure 15. Friction coefficient test configuration.

For each sample, an error between the compressive forces obtained from the FE
simulation and the test was calculated. The error is defined as

eF(xi) =
N

∑
j=1

[
FS
(
xi, dj

)
− FT

(
dj
)]2/FT

2(dj
)
, (18)

where x = [C10 C01 C20 C11 C02] is the parameter vector, FS denotes the compressive force
obtained from the FE simulation, FT is the compressive force obtained from the test, di is
the ith compressive distance at which compressive force is reported, and N is the number
of reporting points of compressive force.

With the samples in Table A1, an RBF surface response model for the error of com-
pressive force was constructed. The form of the RBF surface response model is:

eF(x) =
M

∑
i=1

wi ϕ(ri), (19)
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where M is the number of samples that is 50, as mentioned above, w is the weight, ϕ is
the radial basis function, and ri = ‖x− xi‖/106 is the Euclid distance between an arbitrary
point and the sample i. In this work, ϕ was chosen as the Gaussian function whose
expression is

ϕ(r) = e−αr2
, (20)

where α is a constant, which is usually taken as 1/η, where η is the number of input
variables (material parameters) for a sample. η was 5 in this work. The weights for the RBF
surface response model are given in Table 6.

Table 6. Weights for surface response model.

Weight Value Weight Value Weight Value Weight Value Weight Value

w1 −19,324.12 w11 13,911.72 w21 14,859.58 w31 7542.22 w41 13,704.27
w2 −5524.97 w12 14,329.52 w22 39,776.94 w32 −38,263.53 w42 −15,283.83
w3 −8940.66 w13 2048.72 w23 −30,647.00 w33 19,663.34 w43 143.39
w4 18,555.15 w14 32,648.17 w24 −3056.50 w34 14,514.78 w44 49,202.01
w5 3652.96 w15 −2106.49 w25 17,048.97 w35 −7536.94 w45 −4307.05
w6 13,630.87 w16 3199.16 w26 −49,268.38 w35 1701.26 w46 1662.73
w7 561.36 w17 3161.56 w27 11,733.29 w37 −1693.64 w47 −33,476.46
w8 42,337.42 w18 −13,972.10 w28 1604.59 w38 −3278.22 w48 −33,254.66
w9 4363.38 w19 −9061.07 w29 −34,785.08 w39 −26,533.68 w49 −10,181.13
w10 −43,354.89 w20 7439.65 w30 25,865.51 w40 21,541.27 w50 −6418.09

To validate the accuracy of the RBF surface response model, thirty random samples
were generated. Figure 16 compares the errors of compressive force obtained with the
surface response model and FEM simulation. It can be seen that the surface response model
produces good accuracy.

Figure 16. Validation of surface response model.

To identify the material parameters, the GA algorithm was employed to minimize
the error function of compressive force. The population size was set to 100, and the
maximum generation was set to 200, when using the GA algorithm. The identified material
parameters are given in Table 5. With these material parameters, an FE simulation of the
compressive test was performed. Figure 17 compares the compressive forces obtained from
the simulation and the test. The two compressive curves agree well with each other. This
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proves the accuracy of the material parameters and confirms the effectiveness of the above
parameter identification method.

Figure 17. Comparison between test result and simulated result with the identified parameters.

5. Material Parameters Characterizing Both Tensile and Compressive Performance

In Sections 4 and 5, two sets of material parameters are separately identified. They
are accurate for describing tension and compression performance, respectively. For conve-
nience, the two sets of parameters are referred to as tension and compression parameters,
respectively. Figure 18 shows the uniaxial stress–strain curves defined by the tension
and compression parameters for a wide strain range. As seen in the figure, the tension
parameters cannot be extended to accurately characterize the compression performance
and vice versa.

Figure 18. Uniaxial stress-strain curves over a wide strain range for two sets of material parameters.

To overcome the above problem, a complete identified stress–strain curve (shortened
to identified curve for the following description) was formed by combining the tensile part
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of the uniaxial stress–strain curve defined by the tension parameters and the compressive
part of uniaxial stress–strain curve defined by the compression parameters. This identified
curve accurately describes both the tension and compression behaviors of the polyurea. The
curve was fitted with different-order polynomial hyperelastic constitutive models through
the least-squares method. Table 7 gives the fitted material parameters, and Figure 19 shows
the uniaxial stress-strain curves defined by the fitted parameters (shortened to fitted curves
for the following description).

Table 7. Material parameters of polynomial hyperelastic constitutive models.

Model
Order C10/Pa C01/Pa C20/Pa C11/Pa C02/Pa C30/Pa C21/Pa C12/Pa C03/Pa

First 1,492,265 1,069,365 / / / / / / /
Second 1,584,196 1,036,727 5038 −24,416 −7969 / / / /
Third 1,639,722 1,980,931 −10,743,503 21,625,125 −11,805,576 −4689 88,598 2,213,877 −461,844

Figure 19. Fitted result of polynomial hyperelastic model.

As seen from Figures 18 and 19, the three sets of fitted parameters based on the
identified curve appropriately describe both uniaxial tension and compression behaviors
of the polyurea and produce a much better description than the tension parameters and
compression parameters. Among the three models, the third-order model gives the best
description for the stress–strain behavior of the polyurea. Using different-order hyperelas-
tic constitutive models with the fitted parameters in Table 7, we performed simulations
of the tension and compression tests. Figure 20 gives a comparison between the tensile
and compressive forces obtained from the simulations and the corresponding tests. For the
tensile test, the simulated results of different-order models achieve a very good agreement
with the experimental results. The L2 relative errors between the simulated and exper-
imental results are 5.2%, 3.9%, and 1.5% for the first-, second-, and third-order models,
respectively. For the compression test, the simulated results also qualitatively agree well
with the experimental result, but relatively large errors are observed. The L2 relative errors
are 23.7%, 22.4%, and 15.7%, respectively. According to the above analysis, the third-order
model is the best choice for the polyurea in terms of accuracy.
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Figure 20. Comparison between simulated results with different-order models and experimental results for different
material tests: (a) tension test; (b) compression test.

6. Conclusions

An inverse procedure was developed to identify material parameters of a hyperelastic
model of polyurea materials. With this procedure, material parameters of a one-part
polyurea SWD9526 were obtained. The material parameters for tensile performance were
obtained with an iterative inverse method, and the material parameters for compressive
performance were determined with a response surface-based inverse method. The two
sets of parameters can describe well the tensile and compressive behaviors of the polyurea,
respectively. Through the examination of material behaviors in a large strain range, it was
found that tensile parameters cannot be extended to describe compressive behaviors and
vice versa. This implies that we should be cautious when the hyperelastic model parameters
obtained from a given loading condition are extended to general conditions. Attempts were
made to determine the material parameters, which are accurate for describing both tensile
and compressive performance of the polyurea. Different-order polynomial hyperelastic
models were employed. Parameters for the first-, second-, and third-order polynomial
models were obtained by fitting a uniaxial stress–strain curve that includes both tension
and compression deformations. The parameters appropriately characterize both tensile and
compressive behaviors of the polyurea. With these parameters, FE simulations of tension
and compression tests were performed. The simulated results showed that the third-order
model produces the best accuracy. The inverse procedure presented in this work can
simplify the tensile test procedure and consider the effect of friction in the compression test.
The constitutive parameters of polyurea SWD9526 obtained here is useful for the design of
engineering structures with the polyurea.
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Appendix A

Table A1. Samples.

Number
Material Parameters Error

C10/Pa C01/Pa C20/Pa C11/Pa C02/Pa eF

1 57,731,533 −44,990,762 30,591,501 −13,635,294 2,802,844 7.3252
2 57,618,340 −44,677,769 30,142,513 −13,669,108 2,808,178 5.9387
3 58,890,896 −45,224,028 29,901,240 −13,593,703 2,810,329 7.5327
4 58,485,552 −45,921,879 30,181,594 −13,550,301 2,822,947 2.3098
5 57,781,641 −45,825,905 30,544,288 −13,659,296 2,822,287 1.3729
6 57,310,315 −44,905,478 30,520,057 −13,668,363 2,811,750 5.0177
7 58,507,005 −44,621,108 30,081,987 −13,564,378 2,807,408 13.7179
8 58,366,045 −45,554,308 30,068,804 −13,624,641 2,825,668 3.0320
9 57,237,462 −44,929,971 29,977,031 −13,572,149 2,820,010 2.4398
10 57,342,937 −46,052,083 29,711,154 −13,578,752 2,819,064 0.9069
11 58,823,557 −45,185,904 30,341,650 −13,649,862 2,826,448 10.9455
12 58,060,003 −45,421,517 29,778,898 −13,645,709 2,813,529 1.3077
13 56,928,004 −45,029,079 30,017,516 −13,672,235 2,820,978 0.7055
14 57,148,246 −45,790,710 30,040,637 −13,601,969 2,810,878 0.0973
15 57,384,098 −46,079,383 30,483,174 −13,586,184 2,823,579 0.2090
16 58,688,520 −45,354,095 29,667,685 −13,614,844 2,808,558 3.6017
17 57,918,167 −45,158,279 30,432,096 −13,678,571 2,819,366 5.4828
18 58,181,891 −46,000,684 29,919,989 −13,552,527 2,826,695 0.4437
19 57,989,724 −45,315,537 29,880,924 −13,619,399 2,814,131 2.0895
20 57,193,964 −45,089,629 30,091,993 −13,639,150 2,810,168 1.3942
21 58,724,661 −44,845,256 30,330,788 −13,655,406 2,802,072 13.7155
22 57,566,917 −45,619,444 29,821,408 −13,600,548 2,804,285 0.1569
23 57,509,661 −45,446,800 29,837,740 −13,606,523 2,799,732 0.3419
24 58,243,238 −44,751,855 30,629,048 −13,587,458 2,807,327 15.0834
25 57,959,352 −45,052,203 30,199,495 −13,660,998 2,804,752 4.9746
26 57,636,155 −45,882,975 29,953,721 −13,630,861 2,806,219 0.0843
27 58,392,087 −44,875,789 30,623,627 −13,664,535 2,821,688 13.6965
28 58,745,791 −45,682,066 30,534,125 −13,575,247 2,814,850 7.2798
29 58,326,120 −45,716,758 29,785,692 −13,638,328 2,813,851 0.9134
30 57,545,166 −46,137,386 29,633,723 −13,643,663 2,820,529 2.7508
31 57,455,331 −45,505,669 30,304,174 −13,684,303 2,800,503 0.7737
32 57,821,617 −45,387,308 30,453,734 −13,582,883 2,817,138 4.2651
33 56,970,132 −45,630,113 29,760,623 −13,621,653 2,806,597 0.4587
34 58,631,079 −45,709,237 29,693,758 −13,614,162 2,805,628 1.5028
35 58,270,639 −45,868,537 30,217,695 −13,569,356 2,816,726 1.8330
36 57,405,201 −44,716,238 30,234,835 −13,590,597 2,824,104 6.2618
37 58,087,418 −44,810,475 30,114,338 −13,597,364 2,801,050 8.0181
38 57,109,249 −45,496,331 29,659,018 −13,653,048 2,817,713 0.2723
39 58,590,731 −45,303,653 30,288,998 −13,609,468 2,825,083 7.9334
40 57,830,761 −45,207,407 30,577,936 −13,558,351 2,801,516 6.6710
41 58,114,950 −45,263,331 30,473,814 −13,605,070 2,803,876 6.4922
42 58,191,358 −45,764,840 29,722,523 −13,580,548 2,811,954 0.5690
43 58,432,489 −44,645,687 29,997,828 −13,554,696 2,824,330 12.5355
44 57,688,666 −45,942,967 29,850,281 −13,565,593 2,812,840 0.0826
45 57,249,303 −44,769,276 30,155,730 −13,647,732 2,803,090 3.5810
46 57,889,440 −46,099,117 30,272,009 −13,676,195 2,815,374 0.1234
47 57,047,992 −45,575,663 29,929,088 −13,629,014 2,815,838 0.0761
48 58,575,749 −44,971,125 30,416,703 −13,681,896 2,809,107 11.2981
49 57,004,542 −45,103,674 30,383,100 −13,627,717 2,799,281 1.8727
50 58,810,808 −45,971,693 30,362,932 −13,560,895 2,818,534 4.1431
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