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The Influence of Noise Reduction on
Speech Intelligibility, Response Times
to Speech, and Perceived Listening Effort
in Normal-Hearing Listeners
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Wouter A. Dreschler1, and Rolph Houben1,2

Abstract

Single-microphone noise reduction leads to subjective benefit, but not to objective improvements in speech intelligibility. We

investigated whether response times (RTs) provide an objective measure of the benefit of noise reduction and whether the

effect of noise reduction is reflected in rated listening effort. Twelve normal-hearing participants listened to digit triplets that

were either unprocessed or processed with one of two noise-reduction algorithms: an ideal binary mask (IBM) and a more

realistic minimum mean square error estimator (MMSE). For each of these three processing conditions, we measured

(a) speech intelligibility, (b) RTs on two different tasks (identification of the last digit and arithmetic summation of the

first and last digit), and (c) subjective listening effort ratings. All measurements were performed at four signal-to-noise

ratios (SNRs): �5, 0, þ5, and þ1 dB. Speech intelligibility was high (>97% correct) for all conditions. A significant decrease

in response time, relative to the unprocessed condition, was found for both IBM and MMSE for the arithmetic but not the

identification task. Listening effort ratings were significantly lower for IBM than for MMSE and unprocessed speech in noise.

We conclude that RT for an arithmetic task can provide an objective measure of the benefit of noise reduction. For young

normal-hearing listeners, both ideal and realistic noise reduction can reduce RTs at SNRs where speech intelligibility is close

to 100%. Ideal noise reduction can also reduce perceived listening effort.
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Introduction

Challenging listening situations require extra cognitive
effort for speech understanding (Gatehouse & Gordon,
1990). In noisy environments, a listener needs to separ-
ate the speech from intrusive background noise. To ease
listening in noisy environments, devices such as mobile
phones, hearing aids, and cochlear implants contain
noise-reduction algorithms. The majority of the
currently marketed digital hearing aids contain single-
microphone noise-reduction algorithms. The aim of the
noise-reduction algorithm is to improve the signal-
to-noise ratio (SNR) by adjusting the gain in each
time-frequency region according to the estimated SNR
in that specific region (Bentler & Chiou, 2006). Hearing-
aid users have been shown to prefer noise reduction

(Bentler, 2005; Boymans & Dreschler, 2000; Ricketts &
Hornsby, 2005). Researchers have been trying to under-
stand this preference and to develop objective measures
to quantify the benefit of noise reduction.

Several studies examining the objective effect of noise
reduction have focused on speech intelligibility (SI).
These studies revealed that existing single-microphone
noise-reduction algorithms do not improve SI in noise
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and may even worsen it (Alcántara, Moore, Kühnel, &
Launer, 2003; Bentler, Wu, Kettel, & Hurtig, 2008;
Boymans & Dreschler, 2000; Desjardins & Doherty,
2014; Neher, Grimm, & Hohmann, 2014; Ricketts &
Hornsby, 2005; Sarampalis, Kalluri, Edwards, &
Hafter, 2009). Therefore, it seems that noise-reduction
algorithms either do not adequately eliminate the noise
that masks speech or they remove the noise resulting in
speech distortion (Jorgensen & Dau, 2011; Houben,
Dijkstra, & Dreschler, 2012; Lunner, Rudner, &
Rönnberg, 2009).

The evaluation of noise-reduction algorithms has
recently shifted from a focus on SI toward a focus on
the objective assessment of cognitive measures, particu-
larly listening effort. As yet there is no standard defin-
ition of listening effort. The British Society of Audiology
recently proposed the following definition in a white
paper: ‘‘the mental exertion required to attend to, and
understand, an auditory message’’ (McGarrigle et al.,
2014, p. 434). Currently, there is also no standard
method of measuring listening effort. In fact, for several
known methods, it is not known whether they in fact
correspond to listening effort (McGarrigle et al., 2014).
Listening effort has been indirectly measured using
response times (RTs), for instance, in a dual-task para-
digm where the secondary task is nonauditory
(Desjardins & Doherty, 2014; Downs, 1982; Neher
et al., 2014; Pals, Sarampalis, & Baskent, 2013;
Sarampalis et al., 2009). Sarampalis et al. (2009), for
example, used a dual-task paradigm to evaluate the
effect of noise reduction and found significantly better
recall of words and faster reaction times as a benefit of
noise reduction at the lower SNRs (�2 and �6 dB SNR).
They hypothesized that noise-reduction algorithms could
reduce the noise in a way that is comparable with the
ability of the auditory and cognitive systems in the brain
to ignore the noise (Sarampalis et al., 2009). Noise reduc-
tion could support this function of the brain, not by
improving the SI, but rather by relieving the cognitive
load, thereby resulting in a perceived improvement in
listening comfort and a decrease in listening effort
(Brons, Houben, & Dreschler, 2013; Huckvale & Frasi,
2010; Lunner et al., 2009; Marzinzik, 2000; Sarampalis
et al., 2009). In contrast, noise-reduction algorithms
might also introduce signal distortions, leading to a
reduction in perceived listening comfort or listening
effort (Lunner et al., 2009; Ng, Rudner, Lunner,
Pedersen, & Rönnberg, 2013).

A few researchers have attempted to measure listening
effort objectively using RTs to auditory stimuli alone
without the addition of a nonauditory secondary task
(e.g., in a dual task; Gustafson, McCreery, Hoover,
Kopun, & Stelmachowicz, 2014; Houben, van Doorn-
Bierman, & Dreschler, 2013; Huckvale & Frasi, 2010;
Huckvale & Leak, 2009). Houben et al. (2013) used

triplets of spoken digits presented in a background
noise to assess differences in listening effort between
different SNRs. They found that RTs increased with
decreasing SNRs, even when SI was optimal. The
authors hypothesized that the addition of background
noise increased the listening effort required to maintain
the same intelligibility scores.

In summary, there is an ongoing search for objective
measures that quantify the effects of noise-reduction
algorithms on listening effort, even or especially when
SI is unaffected. In the present study, we investigated
whether measuring RTs to digits triplets in noise with
the method introduced by Houben et al. (2013) is appro-
priate for this purpose. This method, which makes use of
existing auditory-only stimuli, has been shown to be sen-
sitive to the effects of noise, even when the noise does not
affect SI.

In the study by Houben et al. (2013), normal-hearing
participants performed two tasks: identification (ID) of
the last digit in each triplet (ID task) and addition of the
first and last digit (arithmetic [AR] task). Because the
effect of noise reduction on these two specific tasks is
as yet unknown, we decided to include both tasks in
our experiments. We also included an SI test to ver-
ify whether noise-reduction processing affected SI.
Finally, we included a subjective rating scale to assess
perceived listening effort. This rating scale has previ-
ously been used by several authors for this purpose
(Brons, Houben, & Dreschler, 2012; Luts et al., 2010;
Marzinzik, 2000).

The aim of this study was to assess whether the bene-
fit of noise-reduction algorithms is reflected in a change
in RTs during tests of speech understanding in noise
as well as in perceived listening effort, at SNRs where
SI is optimal. In other words, can RT be used to assess
listening effort when listening to unprocessed speech in
noise and speech in noise processed with a noise-
reduction algorithm, when this speech in noise is highly
intelligible?

We evaluated the influence of noise-reduction algo-
rithms on four different outcomes: SI, RT to speech sti-
muli in two different tasks, and subjective listening effort.
We compared unprocessed stimuli with stimuli that were
processed with one of two noise-reduction algorithms: an
ideal binary mask (IBM; Wang, 2005) and a minimum
mean square error estimator (MMSE; Ephraim &
Malah, 1984). The IBM algorithm receives speech and
noise separately and thus has a priori knowledge on the
real input SNR. Although this unrealistic algorithm
cannot be used in hearing aids, it provides a useful tool
to investigate the maximum achievable effect of noise
reduction. IBM can improve SI in noise (Brons et al.,
2012; Wang, Kjems, Pedersen, Boldt, & Lunner, 2009),
unlike realistic single-microphone noise reduction. The
second noise-reduction algorithm, MMSE, is a realistic
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algorithm that estimates the SNR from the mixed
input signal. This algorithm is not expected to improve
SI, but may affect listening effort.

Previous studies have shown that noise-reduction pro-
cessing depends on the input SNR (Bentler & Chiou,
2006). Consequently, the perceptual effects of noise
reduction may depend on SNR (Brons et al., 2013).
We therefore included four SNR levels (�5, 0, þ5,
and þ1 dB) at which all speech is expected to be fully
intelligible, even for the unprocessed condition. We
selected these levels because they were expected to lead
to optimal SI and because they are relevant for many
daily listening situations (Luts et al., 2010; Olsen,
1998). At the selected SNRs, the noise reduction does
not improve SI because intelligibility is already optimal.
In addition, we verified the effect of IBM and MMSE on
SI at a suboptimal SNR of �10 dB in a separate experi-
ment. This extension to an SNR with an expected sub-
optimal (<100%) SI was included because it has been
shown that IBM can improve SI, in contrast to more
realistic noise-reduction methods. We wanted to verify
whether this effect in intelligibility indeed occurs and
to see how reaction times are influenced at an SNR
level of �10 dB.

Methods

Participants

Twelve normal-hearing listeners participated in the cur-
rent study that was approved by the Medical Ethical
Committee of Academic Medical Centre Amsterdam
on 29 May 2013 (reference number NL44143.018.13).
Participants were recruited via a poster on a billboard
at the Medical Faculty of the University of Amsterdam.
All 12 participants (2 male and 10 female) were normal-
hearing adults and native Dutch speakers. Pure tone
thresholds were equal to or better than 20 dB Hearing
Level at octave frequencies 250 to 8000Hz. Listeners
ranged in age from 19 to 34 years, with a mean of 24
years (SD¼ 4.15).

The required sample size was estimated using a power
analysis based on the study by Houben et al. (2013). Our
aim was to identify a within-subject effect size similar to
the smallest effect size resulting in a change of 5 dB SNR
in their study. Houben et al. found the smallest effect in
the ID task, with a change in SNR from �1 toþ 4 dB;
the difference in RT between these SNRs was 0.028 s,
with a between-participant standard deviation of
0.023 s (for n¼ 12). Power analysis revealed that for a
significance level of .05 and a power of 80%, a sample
size of 12 was required (two-tailed paired t test). For this
reason and due to the need to balance 12 conditions
(four SNRs and three processing conditions), we
included 12 normal-hearing listeners in this study.

Stimuli

We used spoken digits from the newest version of the
Dutch digit triplet test (Smits, Goverts, & Festen,
2013). The triplets in this test contain digits from zero
to nine spoken by a male speaker, and each triplet con-
tains a unique combination of three different digits. The
digit triplets include silent intervals of 150ms between
the digits and do not include natural coarticulation or
prosody (Smits et al., 2013). We selected all triplets that
allowed the AR task to be conducted with a single key
press (i.e., sum of first and third digit< 10; resulting in 60
of the 120 available triplets).

The stationary long-term average speech spectrum
noise of the digit triplet test (Smits et al., 2013) was used
to obtain four different SNRs:�5, 0,þ5, andþ1 dB (i.e.,
in quiet, thus no noise added). The level of the noise was
kept constant at 65 dB(A) for all SNRs except at þ1 dB,
where the average level of the speech was 65 dB(A). The
noise had a symmetrical onset- and offset-ramp (Hann-
window, 200ms-ramp), starting 250ms before the first
digit and ending 200ms after the final digit.

Noise-Reduction Algorithms

For each SNR, the triplets in noise were processed with
two noise-reduction algorithms: the IBM (Wang, 2005)
and an MMSE (Ephraim & Malah, 1984; Huckvale &
Frasi, 2010).

IBM can be considered an ideal noise-reduction algo-
rithm because it receives noise and speech as separate
inputs and does not require estimation of either noise
or speech from the mixed signal. The SNR of the
signal in a specific time-frequency unit determines
whether this unit is preserved (if the SNR is above
threshold) or eliminated (if the SNR is below threshold).
The MATLAB implementation of the IBM algorithm
used in this study was provided by Loizou and was pre-
viously used in several studies (Brons et al., 2012; Hu &
Loizou, 2008; Li & Loizou, 2008). We used the same
fixed threshold of 0 dB SNR as was done before. In
Figure 1 (right-hand panels), the physical effect of IBM
on a digit triplet in noise is presented at four SNRs. Both
the effects on the time signal and the attenuation as a
function of time and frequency are shown. The time
domain signals show the input signals in dark gray and
the signals after IBM processing in light gray. The spec-
trogram-like plots show the attenuation as a function of
time and frequency, with the time-frequency units that
were removed (infinite attenuation) in black and those
that were retained in white. For lower input SNRs, the
number of noise-dominated time-frequency units
increases, and thus more signal parts were removed by
the IBM (i.e., number of white pixels decreases).

The realistic noise-reduction algorithm, MMSE,
assumes that both the speech and the noise in the
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combined signal are independent Gaussian samples. It
derives the MMSE of the clean speech spectrum, based
on the noise amplitude, and attenuates the gain primarily
at frequencies where the SNR is estimated to be the
poorest (Sarampalis et al., 2009). We applied the
MMSE algorithm implemented by Brookes (1997), pre-
viously used by Huckvale and Frasi (2010). Figure 1
(left-hand panels) shows the effects of MMSE on a
digit triplet in noise and the resulting attenuation
in the time-frequency domain, at four SNRs. White
time-frequency units were retained, whereas gray time-
frequency units were attenuated, with stronger attenu-
ation for darker pixels. At þ5 dB input SNR, the
noise-reduction algorithm was able to recognize the

speech from the noise and to retain speech-dominated
time-frequency units (i.e., the pattern of white pixels is
comparable with that of the IBM). For lower SNRs,
however, it gradually becomes more difficult to separate
the speech from the noise, and most of the signal was
attenuated by the MMSE algorithm.

The three processing conditions (unprocessed, IBM,
and MMSE) and four SNRs (�5, 0, þ5, and þ1 dB)
resulted in a total of 12 conditions.

Equipment

Participants performed the experiment in a soundproof
testing room with stimuli presented diotically through
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Figure 1. Acoustical effects of the two noise-reduction algorithms, IBM (right-hand panel) and MMSE (left-hand panel), on a digit

triplet in noise at four SNRs. In the time domain signals, dark gray indicates the input signal, and light gray indicates the time signal

after noise-reduction processing. In addition, the corresponding changes in gain as a function of time and frequency are shown in the

spectrogram-like plots. For IBM, black pixels indicate noise-dominated time-frequency units that were removed (infinite attenuation),

and white pixels are speech-dominated units that were retained. For MMSE, the attenuation is color coded from white (0 dB) to

black (30 dB).

IBM¼ ideal binary mask; MMSE¼minimum mean square error estimator; SNR¼ signal-to-noise ratio.
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headphones (Sennheiser HDA200, Sennheiser,
Wedemark, Germany), which were connected to a com-
puter (Dell precision T3500) via an audio interface (RME
Fireface 800). The presentation of the stimuli was con-
trolled by software in MATLAB (version 7.14.0.739, The
Mathworks, R2012a), and response data were collected
using MATLAB’s Psychophysics Toolbox extensions
(Version 3; Brainard, 1997; Brookes, 1997). Participants
responded by using the numerical keypad of a keyboard
that was placed close to the hand with which the partici-
pants responded. The experimental set up was calibrated
using an artificial ear (B&K 4153, Brüel & Kjaer,
Naerum, Denmark) equipped with a flat-plate adaptor,
connected to a sound level meter (B&K 2260
Investigator, Brüel & Kjaer, Naerum, Denmark).

Procedure

We included two RT tasks: an ID task and an AR task.
In the ID task, the participants had to identify the final
digit of each triplet, and in the AR task, the participants
had to add the initial and final digit of a triplet.
Participants were instructed to respond as fast as pos-
sible using the numeric keypad.

The experiment was divided into two visits per sub-
ject. The first visit started with pure tone audiometry.
Each visit contained an RT task (either the ID or the
AR task), an SI task, and a listening effort rating (LEr)
task. The two RT tasks were divided among the two
visits; half of the participants performed the ID task in
the first visit and the AR task during the second visit,
while for the other half of the participants, the order was
reversed. The duration of a visit was approximately
1.5 hr, including short breaks. All participants signed
an informed consent form prior to starting the experi-
ment. We collected data from a total of 1,920 triplet
presentations per subject, distributed over the ID, AR,
SI, and LEr task.

Each visit started with a practice session, in which a
total of 20 triplets were presented divided among four
different conditions containing all three processing con-
ditions and all four SNRs. This allowed participants to
practice with the ID or AR task and to familiarize them-
selves with the equipment and the processing conditions.
In addition, the practice session was used to verify that
the participants fully understood the instructions.

For both the ID and AR tasks, the 60 triplets were
split into two sets. These sets and the two tasks were
balanced across participants, and across the two visits,
to avoid order effects. During the course of the two visits,
all participants performed both tasks using both sets in
all conditions. Conditions were balanced across partici-
pants based on a Latin square design (Wagenaar, 1969)
to minimize possible training effects on the group data.
Triplets were presented in random order, in blocks of

30 triplets per condition. Participants started the RT
(either ID or AR) task in 12 blocks (i.e., conditions).
These blocks consisted of the first set of 30 triplets.
After a short break, the RT task was repeated using
the 12 blocks in the same order, but with the other set
of 30 triplets. The RT task was followed by a pause.

After the pause, participants performed the SI and LEr
tasks combined. The SI and LEr tasks were done per con-
dition: first, for Condition 1, SI followed by LEr, then for
Condition 2, SI followed by LEr, and so forth. The
instruction for the SI task was to enter all three stimulus
digits, without any time constraint. The 12 conditions
were balanced across participants, presented once per
visit, and each condition contained 20 randomly pre-
sented triplets. During the SI task, each condition was
followed by the LEr task, in which participants were
asked to rate their perceived listening effort for the pre-
ceding block of 20 triplets. The following question had to
be answered: ‘‘How much effort did it take to understand
the last 20 triplets?’’ The participants scored their
perceived listening effort on a 9-point rating scale (based
on ITU 1996; Brons et al., 2012; Luts et al., 2010;
Marzinzik, 2000), ranging from no effort (1) to extremely
high effort (9). This combined measurement of the SI and
LEr tasks was performed during each visit. The order of
tasks in the two visits is summarized in Table 1.

Additional SNR

At SNRs lower than the SNRs included in our design,
intelligibility is expected to worsen for the unprocessed

Table 1. Summary of the Content of the Two Visits.

Task

Visit 1

1 Pure Tone Audiometry

2 Practice RT task

3 RT task (either ID or AR)

Break

4 Repeat RT task

Break

5 SI and LEr task combined

Visit 2

1 Practice RT task

2 RT task (either ID or AR task, whichever

was not performed in Visit 1)

Break

3 Repeat RT task

Break

4 SI and LEr task combined

Note. RT¼response time; ID¼ identification; AR¼ arithmetic;

SI¼ speech intelligibility; LEr¼ listening effort rating.
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and MMSE conditions, but not for IBM. IBM can
improve intelligibility at low SNRs because of its a
priori knowledge on the signal (Wang, 2005). To verify
whether this improvement in intelligibility indeed occurs,
and to see how reaction times are influenced in this situ-
ation, we included an additional SNR level of �10 dB in
an extra session. The same group of participants per-
formed all four tasks at two SNR levels: at �10 and
þ1 dB. The inclusion of the þ1 dB SNR condition
allowed us to compare this supplementary data to the
main results. However, we did not include these data in
the statistical analysis of the main results for two rea-
sons: (a) they were gathered in a separate experiment and
were thus not included in the same balanced design as the
other conditions and (b) they do not fulfill the require-
ment of maximum SI.

Data Analysis

The data analysis was performed using MATLAB (ver-
sion 7.14.0.739, The Mathworks, R2012a). A response
for the SI measurement was considered correct only if
all three digits of a triplet were repeated accurately.
The percentage of appropriate responses was calculated
per condition for each subject. To satisfy the homosce-
dasticity criterion for statistical analysis, this percent-
age was transformed to rationalized arcsine units
(Studebaker, 1985), and the LEr scores were arcsine
transformed.

For the ID and AR task, the RTs were the main out-
come variables. The time between the end of the wave-
form of the third digit and the subsequent key press by
the participant was defined as the RT. Data of the prac-
tice sessions were discarded. Only correct responses were
included in the analyses. Unrealistically long RTs can be
discarded by selecting a fixed cut-off value. This applica-
tion of a fixed cut-off value to remove spuriously long
RTs has been shown to be suitable for RT data (Ratcliff,
1993; Whelan, 2008). For each task, 1.25% of all RTs
was removed with cut-off values for the ID and AR task
of 0.80 s and 3.34 s, respectively. The value of 1.25% was
chosen to be the same as that used by Houben et al.
(2013).

To examine the effect of SNR and processing condi-
tion, we calculated changes in response time (�RT) by
subtracting the RT at þ1 dB SNR from the RT at all
other SNRs per processing condition, for each task-sub-
ject-triplet combination. As a result, by definition, the
condition at þ1 dB SNR has both �RT values and
confidence intervals of zero. Thus, �RT reflects the
effect of added noise and signal processing on the RT.
Positive �RT values denote prolonged RTs compared
with the condition without noise (i.e., at þ1 dB SNR).

We used mixed-effect models as suggested by Baayen
and Milin (2010) to analyze RT data. Mixed-effect

models offer better modeling of the dependency on par-
ticipant and triplets, by using multiple random effects. In
this way, the mixed model can be regarded as a repeated
measures model that contains two (subject, triplet) rather
than one random effect (subject). Thus, a mixed-effect
model has the advantage that differences between both
participants and triplets can be accurately modeled
(Houben et al., 2013). This is important because the sti-
muli were originally developed to be equally intelligible
(Smits et al., 2004) rather than having equal RT (Houben
et al., 2013). Because a mixed model can also be used to
analyze data with a single random effect (repeated meas-
ures design), we used a mixed-model analysis of variance
(ANOVA) on the intelligibility and LEr data as well
(with only a single random effect). The significance
level for all statistical tests was set at .05. Post hoc pair-
wise comparisons for multiple testing were performed
with Bonferroni correction, including calculation of the
effect size r.

Results

Speech Intelligibility

The intelligibility scores for all conditions within the
SNR region of interest (i.e., �5 to þ1 dB), averaged
over all 12 participants, were equal to or above 97.7%
correct, as shown in Figure 2. We performed a mixed-
model ANOVA on the rationalized arcsine unit-
transformed intelligibility scores. Processing condition,

Figure 2. Speech intelligibility results averaged over all subjects.

Closed markers present the performance on the speech intelligi-

bility task for the SNR region of interest, in RAU (left ordinate) and

percentage (right ordinate) correct responses. Error bars denote

95% confidence intervals between subjects. Open markers depict

the result of the additional SNR.

IBM¼ ideal binary mask; MMSE¼minimum mean square error

estimator; SNR¼ signal-to-noise ratio; Unpr¼ unprocessed;

RAU¼ rationalized arcsine unit.
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SNR, and the interaction of these two variables were
considered fixed factors, and participant a random
factor. The model demonstrated that the effect of pro-
cessing condition was significant, F(2, 121)¼ 3.7, p< .05.
Pairwise comparisons with Bonferroni correction (n¼ 3),
considering the data of all SNRs together per processing
condition, showed a significantly better performance
of 0.68% on SI of IBM versus unprocessed stimuli,
t(47)¼�2.56, p< .05, r¼ .35. ANOVA showed that
the main effect of SNR was also significant,
(F(3, 121)¼ 4.17, p< .01. The post hoc Bonferroni cor-
rected (n¼ 6) pairwise comparisons, considering data of
all processing conditions together per SNR, resulted in a
significantly lower score at both �5 and 0 dB SNR com-
pared with þ1 dB SNR—t(35)¼�3.36, p< .05, r¼ .49,
difference is 1.25%; t(35)¼ 2.26, p< .05, r¼ .36, differ-
ence is 0.63%, respectively. The interaction of processing
condition and SNR was not significant, F(6, 121)¼ 1.67,
p¼ .13.

The extra data points at �10 dB SNR in Figure 2
show that SI for MMSE and unprocessed stimuli was
indeed considerably lower at poorer SNRs, while this
reduction in performance was not present for the stimuli
processed with IBM.

ID Task

To test whether the participants were able to perform the
tasks reliably, in spite of instructions to do it quickly, we
assessed the percentage of correct responses of the ID
task first. The percent correct responses averaged over
all conditions was 98.7%. Percent correct data were

analyzed using another ANOVA, with processing condi-
tion and SNR as fixed factors and participant as random
factor. No significant effects of processing condition,
F(2, 121)¼ 2.73, p¼ .07, and SNR, F(3, 121)¼ 1.34,
p¼ .26, were found. For analysis of the �RTs, we used
only the correct responses; considering all data did not
change the statistical outcomes.

On average, the participants responded more than
twice as fast in the ID task (0.31 s) compared with the
AR task (0.82 s). For the presentation in the figures and
for statistical analysis, RT data were calculated relative
to the condition at þ1 dB SNR per processing condi-
tion, SNR, subject, and triplet, and subsequently aver-
aged across participants. This relative RT is denoted by
�RT.

Figure 3 shows the result of the �RTs for the ID task.
The influence of processing condition and SNR on �RT
in the ID task was analyzed with a mixed-model
ANOVA. Processing condition, SNR, and their inter-
action were the fixed variables, whereas participant and
triplet were entered as random factors. Thus, prior to
analysis, RT data were not averaged across participants
or triplets. Because �RT at þ1 dB SNR is zero by
definition, this SNR was not included in the ANOVA.
SNR thus had three levels: �5, 0, þ5 dB. Post hoc com-
parisons can easily be done relative to a fixed value (e.g.,
zero), and thus þ1 dB SNR was included in the post
hoc analysis. The analysis showed a significant effect of
SNR, F(2, 6124)¼ 8.15, p< .001, whereas the effect of
processing condition, F(2, 6124)¼ 0.75, p¼ .47, and
the interaction of processing condition and SNR,
F(6, 6124)¼ 0.54, p¼ .71, were not significant. We also

Figure 3. Response time results for the identification task averaged across all subjects. The panel on the left presents the data for all

measured SNRs, while the one on the right zooms in on the region of interest. Closed markers show �RT (i.e., the response times to the

identification task, relative to þ1 dB SNR) for the SNR region of interest and open markers for �10 dB. Error bars denote 95%

confidence intervals between subjects.

IBM¼ ideal binary mask; MMSE¼minimum mean square error estimator; SNR¼ signal-to-noise ratio; Unpr¼ unprocessed;

�RT¼ changes in response time.
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conducted pairwise comparisons with Bonferroni correc-
tion (n¼ 6) on all combinations of SNRs. This analysis
revealed that the �RTs at the lowest SNR (�5 dB), aver-
aged over processing conditions, were significantly
longer than the �RTs at all other SNRs (0 dB,
t(1976)¼ 2.95, p< .005, r¼ .07; þ5 dB, t(1981)¼ 3.49,
p< .001, r¼ .08; þ1 dB, t(2064)¼ 6.53, p< .001,
r¼ .14).

At the supplementary SNR of �10 dB, the �RTs were
on average 390ms longer than in the ceiling region
(SNRs5�5 dB). Moreover, IBM significantly reduced
the �RT compared with the unprocessed stimuli by
89ms, t(1270)¼ 11.53, p< .001, r¼ .31, and compared
with stimuli processed with MMSE by 97ms,
t(1251)¼ 11.45, p< .001, r¼ .31. The �RT values for
MMSE did not differ significantly from the unprocessed
stimuli, t(1207)¼ 1.42, p¼ .16, r¼ .04.

AR Task

Averaged over all conditions, the percent correct
responses for the AR task was 96.8%. Percent correct
data were analyzed using another ANOVA, with pro-
cessing condition and SNR as fixed factors and partici-
pant as random factor. This analysis showed no
significant effects of either processing condition, F(2,
121)¼ 0.05, p¼ .96, or SNR, F(3, 121)¼ 0.69, p¼ .56.

Figure 4 shows the results of the �RTs for the AR
task. We analyzed the AR data with a mixed-model
ANOVA analogous to the results of the ID task. This
analysis revealed a significant effect of processing condi-
tion, F(2, 5884)¼ 13.74, p< .001, and SNR, F(2,
5884)¼ 6.87, p< .001. The interaction between

processing condition and SNR was not significant,
F(4, 5884)¼ 0.51, p¼ .73.

Post hoc pairwise comparisons between the three pro-
cessing conditions reveal that the mean �RT of the
unprocessed condition was significantly (125ms) longer
than the �RTs of IBM, t(1838)¼ 5.09, p< .001, r¼ .12,
and 28ms longer than the �RTs of MMSE (245ms),
t(1832)¼ 3.53, p< .001, r¼ .08. Comparison of the dif-
ferent SNRs primarily demonstrated that on average, the
�RT at the lowest SNR (�5 dB) was significantly longer
than the �RTs atþ 5 dB SNR, t(1836)¼ 4.23, p< .001,
r¼ .10, and þ1 dB SNR, t(1980)¼ 5.96, p< .001,
r¼ .13.

Figure 4 shows that the �RTs at the supplementary
point of �10 dB SNR are on average 939ms longer than
at the other SNRs. At �10 dB SNR, IBM again had a
significantly reduced �RT compared with unprocessed
stimuli with 324ms, t(1409)¼ 10.11, p< .001, r¼ .26,
and compared with MMSE with 378ms, t(1389)¼
11.47, p< .001, r¼ .29. The �RT values for MMSE
and unprocessed stimuli were not significantly different
from each other, t(1387)¼ 1.68, p¼ .09, r¼ .05.

Subjective Listening Effort

The results of LErs are presented in Figure 5. To
satisfy the ANOVA criteria, we transformed LErs
with an arcsine transformation. A mixed-model
ANOVA was accomplished with SNR, processing
condition, and their interaction as fixed factors and par-
ticipant as a random factor. We found significant effects
of processing condition, F(2, 265)¼ 23.27, p< .001;
SNR, F(3, 265)¼ 149.89, p< .001; and the interaction

Figure 4. Response time results for the arithmetic task averaged across all subjects. The left panel shows the data for all measured SNRs,

while the right panel zooms in on the region of interest. Closed markers show �RT (i.e., the response times to the identification task,

relative to þ1 dB SNR) for the region of interest and open markers for �10 dB SNR. Error bars denote 95% confidence intervals

between subjects.

IBM¼ ideal binary mask; MMSE¼minimum mean square error estimator; SNR¼ signal-to-noise ratio; Unpr¼ unprocessed;

�RT¼ changes in response time.
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between processing condition and SNR, F(6, 265)¼ 3.94,
p< .001.

Table 2 shows the significant pairwise comparisons of
processing condition and SNR after Bonferroni correc-
tion (n¼ 3 for processing conditions, n¼ 6 for SNRs,
and n¼ 27 for their interactions). These results show
that unprocessed and MMSE-processed digit triplets
were rated as requiring significantly more effort than
the triplets processed with IBM. Zooming in on SNR,
this significant result was present at�5 dB, but at þ5 dB
only unprocessed stimuli were rated significantly more
effortful (score: 2.8) than IBM (score: 2.0). At the add-
itional SNR of �10 dB, the effect of processing condition
seems to persist; participants rated less effort for IBM
compared with unprocessed stimuli with 3.6 points,
t(47)¼ 5.20, p< .001, r¼ .60, and compared with
MMSE with 3.4 points, t(47)¼ 5.25, p< .001, r¼ .61.

The main effect of SNR indicates that the LEr
decreased significantly over all SNRs. Considering the
combinations of SNR per processing condition (i.e.,
the interaction), this decrease held for both the unpro-
cessed and MMSE processed conditions, except for the
combination of 0 dB versus þ5 dB SNR. For IBM, only
three combinations of SNRs showed significantly differ-
ent ratings, as presented in Table 2.

Discussion

Speech Intelligibility

We measured SI to verify whether noise reduction
affected intelligibility at the SNRs in our region of inter-
est (�5 dB to þ1 dB). As expected, all intelligibility
scores at �5 dB SNR and higher were close to 100%
(5 97.7%). Nevertheless, statistical analysis revealed

small but significant differences between processing con-
ditions and between SNRs. SI was significantly higher in
the IBM condition (99.8%) than in the MMSE (99.1%)
and unprocessed (99.1%) conditions. IBM is known to
improve the speech reception threshold (i.e., the SNR
corresponding to 50% correct) by approximately 13 dB
for speech-shaped noise (Brons et al., 2012; Wang et al.,
2009). Thus, in our study, for decreasing SNRs, the

Table 2. Significant Pairwise Comparisons of Listening Effort

Ratings.

df t p r

Processing conditions

Main effect

IBM<Unpr 95 6.69 <.001 .75

IBM<MMSE 95 5.27 <.001 .48

Interactions

SNR¼�5 dB

IBM<Unpr 23 6.63 <.001 .81

IBM<MMSE 23 5.22 <.001 .74

SNR¼þ 5 dB

IBM<Unpr 23 4.77 <.001 .71

SNRs

Main effect

�5 dB> 0 dB 71 8.00 <.001 .69

�5 dB>þ5 dB 71 11.45 <.001 .81

�5 dB>þ1 dB 71 17.42 <.001 .90

0 dB>þ5 dB 71 4.33 <.001 .46

0 dB>þ1 dB 71 11.65 <.001 .81

þ5 dB>þ1 dB 71 8.78 <.001 .72

Interactions

Processing condition¼Unpr

�5 dB> 0 dB 23 7.53 <.001 .84

�5 dB>þ5 dB 23 9.68 <.001 .90

�5 dB>þ1 dB 23 15.95 <.001 .96

0 dB>þ1 dB 23 11.99 <.001 .93

þ5 dB>þ1 dB 23 7.74 <.001 .85

Processing condition¼MMSE

�5 dB> 0 dB 23 4.46 <.001 .68

�5 dB>þ5 dB 23 6.23 <.001 .79

�5 dB>þ1 dB 23 11.66 <.001 .93

0 dB>þ1 dB 23 8.74 <.001 .88

þ5 dB>þ1 dB 23 5.19 <.001 .73

Processing condition¼ IBM

�5 dB>þ5 dB 23 5.10 <.001 .73

�5 dB>þ1 dB 23 7.08 <.001 .83

0 dB>þ1 dB 23 3.61 <.01 .60

Note. The p values are Bonferroni corrected. Insignificant contrasts were

omitted from the table. Overall, three comparisons of processing condi-

tions, six comparisons of SNRs, and 27 comparisons of interactions

were made. SNR¼ signal-to-noise ratio; IBM¼ ideal binary mask;

MMSE¼minimum mean square error estimator; Unpr¼ unprocessed.

Figure 5. Listening effort ratings averaged across all subjects.

Closed markers show the perceived listening effort for the SNR

region of interest, open markers for �10 dB SNR. Error bars

denote 95% confidence intervals between subjects.

IBM¼ ideal binary mask; MMSE¼minimum mean square error

estimator; SNR¼ signal-to-noise ratio; Unpr¼ unprocessed.
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intelligibility scores for IBM will remain close to 100%,
where scores for unprocessed speech in noise start to
decrease. Indeed, the results at the additional reference
point of �10 dB SNR show that SI scores with IBM
processing were still close to 100%, whereas performance
for the MMSE and unprocessed condition had decreased
to approximately 94%. SI was significantly higher for
speech at þ1 dB SNR (99.9%) than for the two
lowest SNRs (�5 and 0 dB, 98.7% and 99.3%, respect-
ively) in the region of interest. Differences between suc-
cessive SNRs were nonsignificant. Hence, in line with our
goal, the included SNRs represent the ceiling levels for SI
for the speech materials used.

ID and AR Task

For objective evaluation of the influence of noise reduc-
tion, we measured RTs to speech in noise for the ID and
AR tasks.

We found no significant effect of processing condition
on the �RTs for the ID task. In the AR task, however,
both noise-reduction algorithms significantly reduced the
�RTs in comparison with the unprocessed condition.
This indicates a benefit of noise reduction at SNRs
where there is no loss of intelligibility. Previous studies
did not find a significant effect of noise reduction on RTs
to speech stimuli (Huckvale & Frasi, 2010; Huckvale &
Leak, 2009) using a dual task (Sarampalis et al., 2009) at
SNRs where intelligibility reached ceiling level. Note that
at the same SNRs, our results showed either no improve-
ment (MMSE) or only a small improvement (IBM) in
intelligibility. Gustafson et al. (2014) found improved
verbal RTs to nonwords due to digital noise reduction
of two hearing aids in children, but at SNRs with an
average SI of about 62%. In the study of Huckvale
and Leak (2009) and Huckvale and Frasi (2010), RTs
to digits in noise did not change due to processing with
MMSE. The RT method used in those studies is com-
parable with the ID task used in this study, in which we
also did not find any significant effect of noise reduction.
The probable reason for the higher sensitivity of the AR
task will be discussed in more detail at the end of this
section.

In both the ID and AR task, at the supplementary
SNR of �10 dB, MMSE did not significantly change
the �RT compared with unprocessed stimuli, whereas
IBM did significantly reduce the �RT compared with
both the unprocessed and MMSE condition. These
results indicate an interaction between processing condi-
tion and SNR, which was not found at higher SNRs. For
the AR task, this finding suggests that realistic noise-
reduction algorithms provide a benefit, that is, less lis-
tening effort, at high SNRs, and that there is no benefit
at poorer SNRs (4�10 dB SNR). This is in line with the
visual impression from Figure 1, where at higher input

SNR, the MMSE was able to preserve parts of the
speech signal while attenuating the noise, but at low
input SNR, the speech could no longer be separated
from the noise. The IBM, on the contrary, used infor-
mation on the clean speech and noise input signal and
was therefore able to preserve parts of the speech better,
even at �10 dB SNR.

Noise reduction is known to involve a trade-off
between speech distortion and noise removal (Brons
et al., 2013; Houben et al., 2012; Lunner et al., 2009;
Luts et al., 2010). For IBM, the signal distortions are
mainly caused by quick changes in gain (Wang, 2008),
and at lower SNR also by removing parts of the speech
signal (see Figure 1). MMSE causes distortions because
of errors in separating the speech and noise from the
mixed input signal. These distortions may increase the
cognitive load (Lunner et al., 2009), resulting in longer
�RTs in our results. Apparently, for IBM, the positive
effect of reducing noise dominates over the negative
effect of distortions on all input SNRs in our experi-
ments, whereas for MMSE, the negative effect of distor-
tions is stronger at lower SNR. However, for IBM, the
negative effect of distortions was also visible in the �RT,
which increased as the input SNR decreased. If IBM
were able to isolate the speech from the noise without
distortions, reaction times could be expected to remain
as low as for speech in quiet.

In summary, our results reveal that at high SNRs,
realistic noise reduction can provide an objective benefit
for listeners in terms of reduced cognitive load, as
reflected by shortened RTs. This beneficial effect was
not present at the lower SNRs (see the extra condition
at SNR¼�10 dB). Ideal noise-reduction processing
(IBM) can successfully reduce RTs even at �10 dB SNR.

In the AR task, some data points in Figure 4 are
negative for IBM and MMSE, indicating that partici-
pants were faster at those SNRs compared with þ1
dB SNR (i.e., when no noise was added). This can prob-
ably be attributed to a residual learning effect that may
have persisted despite the balancing between the 12 con-
ditions. Although we started with a training session
before the main experiment, RTs may have a residual
learning effect in the first few conditions of the main
experiment. This learning effect may be larger in the
more complex AR task compared with the ID task. In
addition, the average RTs varied considerably across
participants. Balancing the conditions is only effective
if all participants experience the exact same learning
effect, which may not have been the case here. To
reduce the effect of learning on the data in future experi-
ments, the length of the training session should be
extended.

The effect of SNR on �RT was significant for both
tasks, indicating that at poorer SNRs, participants took
more time to respond. Pairwise comparison revealed that
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�RT for �5 dB SNR was higher than for all other
SNRs. Houben et al. (2013) found that �RT differed
significantly between all successive SNRs included. This
difference in the effect of SNR on �RTs could be
explained by comparing the SI data of the two studies.
SI results show that the intelligibility performance in
Houben et al. (2013) reached> 97% at higher SNR
(�1 dB SNR, their Figure 1) than for our materials
(�5 dB SNR). This difference implies that our measure-
ments were done at SNRs with higher intelligibility,
resulting in smaller differences in performance and
�RT between successive SNRs, because the ceiling
effect was stronger in our region of interest.

One possible reason for higher intelligibility in the
same SNR region in our results compared with the
results of Houben et al. (2013) is that they used different
speech materials. The speech material used by Houben
and colleagues was an older version of the digit triplet
test (Smits et al., 2004), uttered by a female speaker and
using a band-limited speech spectrum (300Hz to
3.4 kHz). Our stimuli were uttered by a male speaker
and used the full speech spectrum (50Hz to 16 kHz)
and thus contained more speech information. Even
when the speech is (partially) masked by the noise, the
additional information contained in the frequencies that
were not present in the previous band-limited stimuli
may add to SI. For the same increase in SNR
(e.g., 1 dB higher SNR), additional speech information
will be added with broadband stimuli (i.e., the informa-
tion contained in the frequencies below 300Hz
and above 3.4 kHz). Hence, our stimuli produced results
in data that showed a ceiling effect for intelligibility
scores that started at a lower SNR. Similarly, the effect
of the addition of noise on the RT will be different for
the previous band-limited stimuli and our broadband
stimuli. We observed smaller differences in �RTs
between the successive SNRs in our experiment than
those observed by Houben et al. (2013), and this might
be related to the stronger ceiling effect in our region of
interest.

We observed that the RTs were approximately 0.5 s
longer for the AR task than for the ID task. This was
expected because the required calculation in the AR task
makes this task more complex than the ID task (Houben
et al., 2013). In addition, the complexity of the AR task
led to a lower performance or percentage of correct
responses (96.8%) than in the ID task (98.7%). To evalu-
ate whether this performance was at ceiling level during
the ID and AR task, we analyzed the percentage of cor-
rect responses for both tasks. This analysis revealed no
significant effects of processing condition or SNR, con-
firming that the measurements were at maximum per-
formance, or ceiling level.

With respect to the two different tasks, the AR task
appears to be more sensitive in the evaluation of noise

reduction than the ID task. This difference between the
two tasks is in line with the findings of Houben et al.
(2013), who concluded that the AR task is more affected
by the noise level than the ID task, which suggests that
noise reduction may influence the AR task more as well.
Sarampalis et al. (2009) explained that communication is
a complex process, involving more than just physio-
logical auditory functions, for instance, selectively
attending to sound sources, storing information in
memory, and generating quick appropriate responses.
These processes were more involved in the AR task
than in the ID task. Moreover, the results are consistent
with the assumption that noise reduction may release
attention resources in the brain, which could then be
used for other, simultaneous tasks (Lunner et al., 2009;
Rudner, Lunner, Behrens, Thorén, & Rönnberg, 2012;
Sarampalis et al., 2009) such as AR.

Subjective Listening Effort

LErs revealed that listening to triplets processed with
IBM required significantly less effort than listening to
unprocessed stimuli and stimuli processed with MMSE.
Thus, ideal noise reduction (IBM) significantly reduces
subjective listening effort, while realistic noise reduction
(MMSE) does not. This concurred with the observations
made by Brons et al. (2012). However, the results of
other studies on the influence of realistic noise reduction
on subjective listening effort differ. Some studies found
that LErs were significantly lower due to noise reduction
(Bentler et al., 2008; Luts et al., 2010), while other studies
found no difference in LEr for noise reduction and no
processing (Alcántara et al., 2003; Brons et al., 2013;
Desjardins & Doherty, 2014). The reason for these dif-
fering results is unknown but could lie in the different
noise-reduction algorithms, SNRs, and presentation of
stimuli used in the studies.

The results of the AR task and LEr task are
very similar in that both showed the best results
(�RT and ratings) for the IBM, the worst results for
the unprocessed condition, and for both tasks, the
MMSE results lay in between the results for IBM and
the unprocessed stimuli. However, the reduction in
�RTs was significant for both noise-reduction algo-
rithms compared with the unprocessed condition, while
the reduction in LEr was significant only for the stimuli
processed with IBM.

The previously mentioned hypothesis that noise
reduction relieves the cognitive load (Sarampalis et al.,
2009) suggests that listening effort is reduced by noise-
reduction processing. The measured differences in �RTs
may be considered an objective measure of change in
cognitive load. In other words, we argue that the RTs
can capture effects related to noise reduction that are real
and objective but that nevertheless may not be found in
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the subjective rating task. Our results imply that the
objective AR task may be more sensitive in detecting
the influence of noise reduction on cognitive load than
the subjective rating task. Alternatively, it could be that
the measured �RT and LEr index reflect different things.
RTs are believed to be related to speech processing rate,
representing auditory processing speed (McGarrigle
et al., 2014). On the other hand, subjective LErs are
thought to measure perceived listening effort, and both
measures (RT and LEr) might be determined by different
underlying mechanisms. Neher et al. (2014) evaluated the
benefit from different binaural noise reduction settings
with a dual-task paradigm (speech recognition and
visual reaction time) and a measure of perceived listening
effort using a 9-point scale. They found that reaction
time and perceived listening effort scores were unrelated
and state that this outcome implies that the two meas-
ures capture different perceptual aspects. In our study,
we found a consistent positive effect of MMSE relative to
unprocessed stimuli (see Figure 5). However, this effect
was nonsignificant and smaller than the effect of IBM.
The finding that MMSE caused a significant reduction in
RT, but not in LEr, may be attributed to speech distor-
tion as mentioned in the previous section, which is more
pronounced in MMSE than in IBM. Although in terms
of RTs the distortions did not completely cancel out the
positive effect of reduced noise by MMSE, it seems that
in rating the perceived effort the participants put more
weight on this negative effect of noise reduction than on
the positive effect of reduced noise.

Conclusions

We measured objective benefit for both noise-reduction
algorithms in that they reduced the RTs to digit triplets
at high SNRs (SI> 97%). This effect of noise reduction
was found only for the more complex AR task and not
for the ID task. In other words, the measurement results
suggest that RT to an AR task can provide an objective
measure of the benefit of noise reduction. Subjectively,
rated listening effort showed a significant benefit of IBM
only. The finding that MMSE led to significantly
improved RTs suggests that our method using RTs is
more sensitive than other methods applied because this
effect could not be detected with our SI test or subjective
LEr. The next required step would be to examine if this
effect also holds for hearing-impaired listeners, hearing-
aid users, other types of signal processing, and how RT
relates to perceived listening effort.

Acknowledgments

We would like to thank all participants who took part in this
study, and Sabine Engels who was willing to edit this article for

language errors.

Declaration of Conflicting Interests

The authors declared no potential conflicts of interest with

respect to the research, authorship, and/or publication of this
article.

Funding

The authors received no financial support for the research,
authorship, and/or publication of this article.

References
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Rönnberg, J. (2013). Effects of noise and working memory
capacity on memory processing of speech for hearing-aid

users. International Journal of Audiology, 52(7), 433–441.
Olsen, W. O. (1998). Average speech levels and spectra in vari-

ous speaking/listening conditions: A summary of the

Pearson, Bennett, & Fidell (1977) report. American
Journal of Audiology, 7(2), 21–25.

Pals, C., Sarampalis, A., & Baskent, D. (2013). Listening effort

with cochlear implant simulations. Journal of Speech,
Language, and Hearing Research, 56(4), 1075–1084.

Ratcliff, R. (1993). Methods for dealing with reaction time

outliers. Psychological Bulletin, 114(3), 510–532.
Ricketts, T. A., & Hornsby, B. W. (2005). Sound quality meas-

ures for speech in noise through a commercial hearing aid
implementing ‘‘digital noise reduction.’’. Journal of the

American Academy of Audiology, 16(5), 270–277.
Rudner,M.,Lunner, T., Behrens, T., Thorén, E. S.,&Rönnberg,
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