
 1 

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 

Transcriptional control of T cell tissue adaptation and effector function in 10 
infants and adults. 11 

 12 
 13 
 14 
 15 
 16 
 17 
 18 
 19 
 20 
 21 
 22 
Peter A. Szabo1, Hanna M. Levitin2, Thomas J. Connors3, David Chen2, Jenny Jin4, Puspa Thapa1, 23 
Rebecca Guyer1, Daniel P. Caron1, Joshua I. Gray1, Rei Matsumoto1,5, Masaru Kubota1,5, Maigan 24 
Brusko6, Todd M. Brusko6, Donna L. Farber1,5,*, Peter A. Sims2,7,* 25 
 26 
 27 
 28 
 29 
 30 
 31 
1 Department of Microbiology and Immunology, Columbia University Medical Center, New 32 
York, NY 10032. 33 
2 Department of Systems Biology, Columbia University Medical Center, New York, NY 10032. 34 
3 Department of Pediatrics, Columbia University Medical Center, New York, NY 10032. 35 
4 Medical Scientist Training Program, Columbia University Medical Center, New York, NY 36 
10032. 37 
5 Department of Surgery, Columbia University Medical Center, New York, NY 10032. 38 
6 Department of Pathology, Immunology, and Laboratory Medicine, University of Florida, 39 
Gainesville, FL 32611. 40 
7 Department of Biochemistry and Molecular Biophysics, Columbia University Medical Center, 41 
New York, NY 10032. 42 
 43 
 44 
*Correspondence: df2396@cumc.columbia.edu, pas2182@cumc.columbia.edu  45 

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted February 6, 2025. ; https://doi.org/10.1101/2025.02.01.636039doi: bioRxiv preprint 

https://doi.org/10.1101/2025.02.01.636039
http://creativecommons.org/licenses/by-nc/4.0/


 2 

ABSTRACT 46 

The first years of life are essential for the development of memory T cells, which rapidly 47 

populate the body’s diverse tissue sites during infancy. However, the degree to which tissue 48 

memory T cell responses in early life reflect those during adulthood is unclear. Here, we use single 49 

cell RNA-sequencing of resting and ex vivo activated T cells from lymphoid and mucosal tissues 50 

of infant (aged 2-9 months) and adult (aged 40-65 years) human organ donors to dissect the 51 

transcriptional programming of memory T cells over age. Infant memory T cells demonstrate a 52 

unique stem-like transcriptional profile and tissue adaptation program, yet exhibit reduced 53 

activation capacity and effector function relative to adults. Using CRISPR-Cas9 knockdown, we 54 

define Helios (IKZF2) as a critical transcriptional regulator of the infant-specific tissue adaptation 55 

program and restricted effector state. Our findings reveal key transcriptional mechanisms that 56 

control tissue T cell fate and function in early life. 57 

  58 
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 The maturation of adaptive immunity in early life is essential for the establishment of 59 

protective immune memory that can last a lifetime. The first years of age represent an intense 60 

period of exposure to novel antigens that generate memory T cells required for orchestrating 61 

acquired immunity and vaccine-induced protection against infectious disease. However, infants 62 

exhibit reduced or diminished responses to ubiquitous pathogens and vaccines relative to adults1. 63 

While recent studies uncovered distinct activation pathways and effector profiles for infant and 64 

adult T cells2,3, the underlying mechanisms for this discrepancy in functional capacity remain 65 

unknown. Understanding the interplay between the maturation and function of T cells in infancy 66 

is necessary for advancing vaccine strategies and immunotherapies targeted to early life. 67 

 T cell responses in infancy are distinct from those in adulthood. While initial studies 68 

describe infant T cells as intrinsically impaired in effector functions relative to adults, an updated 69 

paradigm holds that infant T cells exhibit distinct effector responses that are adapted to the unique 70 

demands of early life4. Infant naïve T cells preferentially produce T helper type 2 (TH2) cytokines 71 

or chemokines (e.g., CXCL8) instead of pro-inflammatory (TH1) cytokines upon activation5-8. We 72 

and others previously showed that infant naïve T cells are more sensitive to T cell receptor (TCR)-73 

stimulation, exhibit augmented proliferative responses, and demonstrate biased differentiation 74 

towards short-lived effector cells compared to adults9-12. Features of this infant-specific response 75 

may be traced to transcriptional programming or distinct progenitors within the naïve T cell pool, 76 

predisposing cells towards mounting effector responses during infections at the expense of forming 77 

memory3,10,11,13. However, the mechanisms governing effector responses of memory T cell 78 

populations that are formed during infancy are not well understood. 79 

We previously showed that the generation of T cell memory in early life begins in tissues, 80 

particularly in mucosal sites such as the lungs and intestines that represent the frontlines of antigen 81 
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exposure, while the vast majority of T cells in the blood remain naïve14-16. These infant tissue 82 

memory T cells predominantly exhibit an effector memory (TEM) phenotype with markers of 83 

tissue residency (e.g., CD69 and CD103) but show decreased expression of tissue 84 

homing/adhesion molecules and reduced production of inflammatory mediators upon stimulation 85 

compared to older children and adults16,17. We recently defined transcriptional profiles of tissue 86 

memory T cells during infancy and childhood including expression of transcription factors (TFs) 87 

associated with T cell development16. How these and other transcriptional regulators control 88 

maturation and effector responses of tissue memory T cells during infancy is not known. 89 

 Here, we use single cell RNA-sequencing (scRNA-seq) of resting and ex-vivo activated T 90 

cells from lymphoid and mucosal tissues of infant (aged 2-9 months) and adult (aged 40-65 years) 91 

human organ donors to dissect the transcriptional programming of tissue memory T cells in early 92 

life. We apply a consensus-implementation of single cell Hierarchical Poisson Factorization 93 

(consensus-scHPF)18 to define transcriptional states associated with T cell activation, effector 94 

function, and tissue adaptation across tissues in infants and adults. We find that relative to adults, 95 

infant tissue memory T cells demonstrate a stem-like transcriptional profile (TCF1, LEF1, SOX4), 96 

yet exhibit restricted transcriptional responses to TCR-mediated stimulation. We elucidate unique 97 

tissue-associated transcriptional states between infant and adult tissue memory T cells and uncover 98 

drivers of these programs by gene regulatory network reconstruction. Using CRISPR-Cas9 99 

knockdown in primary tissue T cells, we define Helios (IKZF2) as a critical regulator of an infant-100 

specific tissue adaptation program and demonstrate that Helios also restricts infant T cell effector 101 

function after stimulation. Together, our results reveal key mechanisms by which age impacts T 102 

cell fate and function, with important implications for targeting T cell responses during the 103 

formative years of infancy.  104 

105 
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RESULTS 106 

A single cell transcriptional map of T cell activation across infant and adult tissues.  107 

To define the transcriptional programming of T cells across tissues in early life, we 108 

performed scRNA-seq on T cells from lymphoid and mucosal sites in infants (2-9 months old) and 109 

adults (40-65 years old) (Supplementary Table 1). Blood and tissues were obtained from 110 

deceased organ donors at the time of life-saving transplantation, including lymphoid organs (bone 111 

marrow, spleen, tonsil, intestinal Peyer’s patches, and lung-, jejunum-, and colon-associated lymph 112 

nodes) and mucosal/barrier tissues (lungs, jejunum, ileum, colon). Purified T cell populations from 113 

these sites were obtained by magnetic selection and cultured overnight in media alone (“resting”) 114 

or stimulated with anti-CD3 and anti-CD28 antibodies (“activated”) prior to single cell sequencing 115 

using the 10x Genomics Chromium platform (Fig. 1a). We merged this dataset with our previous 116 

study of resting and activated T cells from adult human organ donors and living blood donor 117 

volunteers19, for a total of ~275,000 single cell profiles of T cells across 12 tissues. 118 

 We first defined T cell subsets for CD4+ and CD8+ T cells in the merged dataset as 119 

naïve/central memory T cells (Naive/TCM), effector memory T cells (TEM), CD4+ regulatory T 120 

cells (CD4+ Tregs), and γδ T cells using a Naïve Bayes classifier (Supplementary Fig. 1, see 121 

Methods). Visualization of the dataset by uniform manifold approximation and projection 122 

(UMAP)20 revealed that age cohort and stimulation conditions were dominant sources of 123 

transcriptional variability within T cell subsets (Fig. 1b). The expression levels of canonical 124 

marker genes defining the T cell subsets were highly conserved between infants and adults: CD4+ 125 

(CD4) and CD8+ (CD8A) naïve/TCM were enriched in lymphoid homing molecules CCR7 and 126 

SELL (coding for CD62L); CD4+ Tregs uniquely expressed FOXP3; CD4+ and CD8+ TEM highly 127 

expressed CCL5 as a marker of TEM cells defined previously19; γδ T cells showed increased 128 
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expression of TRDC and decreased expression of TRAC, which encode the eponymous δ-chain or 129 

α-chain constant region of the TCR for γδ or conventional αβ T cells, respectively (Fig. 1c and 130 

Supplementary Fig. 2). 131 

 For a direct comparison of T cell populations across infant and adult tissues, we focused 132 

our analysis on tissue sites that were represented in both age cohorts: blood, bone marrow, lung- 133 

and jejunum-associated lymph nodes, spleen, lungs, jejunum and colon. In infants, the vast 134 

majority of T cells in blood and lymphoid sites were CD4+ and CD8+ naïve/TCM, with minor 135 

populations of CD4+ Tregs, and few TEM or γδ T cells (Fig. 1d). Mucosal sites and spleen showed 136 

greater proportions of TEM, particularly for CD8+ T cells, and the majority of intestinal T cells 137 

were either CD4+ or CD8+ TEM, consistent with our previous findings14-16. By contrast, in adults 138 

CD4+ and CD8+ TEM predominated relative to naïve/TCM in mucosal sites and the spleen (Fig. 139 

1e). Notably, we observed much lower proportions of CD8+ naïve/TCM as compared to CD4+ 140 

naïve/TCM T cells in infants across most tissues relative to adults (Fig. 1d,e). These findings are 141 

consistent with an exponential increase in T cell memory observed across infancy and childhood 142 

compared to adults16.  143 

 144 

Infant TEM exhibit distinct a stem-like transcriptional state relative to adults. 145 

  We directly investigated changes in gene expression between infant and adult T cells in 146 

the resting state using pairwise differential expression analysis across all donors and tissues with 147 

adequate representation for each subset (see Methods). CD4+ and CD8+ TEM exhibited a large 148 

number of differentially expressed genes (193 and 173, respectively) between the age cohorts 149 

(Extended Data Fig. 1a and Supplementary Table 2). Many of these differentially expressed 150 

genes were shared across CD4+ and CD8+ TEM in infants (Extended Data Fig. 1b), demonstrating 151 
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a conserved transcriptional state in early life. We also detected shared genes expressed by CD4+ 152 

and CD8+ naïve/TCM that were upregulated in adults (Extended Data Fig. 1c), which was likely 153 

due to increased frequencies in TCM populations16, whose profiles could not be readily 154 

distinguished from naïve T cells by gene expression alone21.  155 

Infant CD4+ and CD8+ TEM showed significant upregulation of genes encoding TFs linked 156 

to T cell stemness/self-renewal and quiescence, including TCF7 (TCF1), LEF1 and KLF2 (Fig. 157 

2a,b)22-24. SOX4, which cooperates with TCF/LEF family TFs in the Wnt signaling pathway25, and 158 

IKZF2 (Helios), typically associated with Treg differentiation and function26,27, were also 159 

upregulated in infant TEM across sites. Infant CD4+ TEM were enriched for expression of the 160 

TH2-driving TF GATA328, while infant CD8+ TEM expressed high levels of the resident- and 161 

effector-associated TFs ZNF683 (Hobit) and ID329,30 relative to adults. We also observed an 162 

increase in transcripts associated with innate-like T cells (ZBTB16, NCR3, KLRB1, FCER1G)31 in 163 

infants across tissues (Fig. 2a,b). Lastly, we found increased expression of genes encoding T cell 164 

co-stimulatory or inhibitory surface molecules (CD27, CD28, CD38, KLRG1) in both lineages of 165 

infant TEM relative to those in adults.  166 

Expression of genes associated with T cell effector function were variably expressed 167 

between infant and adult TEM (Fig. 2a,b). Across tissues, genes coding for cytokines (LTB, MIF, 168 

IL16) and chemokine receptors (CXCR3, CXCR4) were upregulated in infant TEM, while 169 

chemokines (CCL4, CCL5) and mediators of cytotoxicity (GZMB, SLAMF7) were upregulated in 170 

adults. Infant TEM also exhibited upregulated expression of genes associated with activation 171 

(CD38, CD40LG) and effector T cell fate (KLRG1), consistent with ongoing activation and 172 

effector differentiation in infants encountering many new antigens. By contrast, adult CD4+ and 173 

CD8+ TEM showed increased expression of transcripts associated with tissue adaptation and 174 
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adhesion, including LGALS1 (galectin-1), ANXA1 (annexin-1), VIM (vimentin), and ITGA1 175 

(CD49a)19,32. 176 

Given the critical and multi-faceted roles of TCF1 and LEF1 in T cell identity and 177 

function33, we sought to validate the augmented expression of both TFs in infant versus adult TEM 178 

on the protein level by flow cytometry. The expression of TCF1 and LEF1 by CD8+ TEM was 179 

significantly increased in infants compared to adults in the spleen, while only LEF1 was increased 180 

on CD4+ TEM (Extended Data Fig. 1d,e). Taken together, our findings demonstrate that infant 181 

CD4+ and CD8+ TEM exhibit a distinct transcriptional state with increased expression of 182 

transcriptional regulators of stemness and memory differentiation relative to adults.  183 

 184 

Consensus-scHPF reveals unique signatures of tissue adaptation and effector function across 185 

infant and adult tissue T cells.  186 

 To uncover unique gene expression programs between infant and adult tissue T cells, we 187 

utilized consensus-scHPF18, a probabilistic Bayesian factorization method for the de novo 188 

discovery of latent transcriptional co-expression signatures or “factors” in scRNA-seq data 189 

(diagrammed in Fig. 3a). We applied consensus-scHPF to all infant and adult tissue T cells and 190 

identified discrete factors defined by the top genes in the consensus gene score matrix (Fig. 3b,c 191 

and Supplementary Table 3). To assess whether a given factor was associated with specific 192 

features of dataset, we performed multivariate linear regression using age cohort (infant or adult), 193 

tissue localization (lymphoid or mucosal), T cell subset (naïve/TCM or effector), T cell lineage 194 

(CD4 or CD8), and activation condition (resting or activated) as covariates and plotted regression 195 

coefficients for each comparison (Fig. 3d). In total, we identified 18 distinct signatures 196 
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corresponding to T cell subsets, metabolism, tissue adaptation, activation states, and/or effector 197 

functions across infant and adult tissue T cells. 198 

Consensus-scHPF revealed three factors associated with tissue localization and adaptation 199 

that differed between infants and adults. The first tissue factor (“Infant Tissue”) was defined by 200 

transcripts that were highly differentially expressed in infant TEM relative to adults from our 201 

previous analysis (from Fig. 2), including SMC4, NCR3, CXXC5, LAYN, and IKZF2, and was 202 

strongly enriched in infant CD8+ TEM from mucosal tissues (Fig. 3c,d). The second tissue factor 203 

(“Tissue Signature”) was characterized by genes that we previously identified as a signature of T 204 

cells residing in tissues compared to the blood19,32, including S100A4/6, CRIP1, LGALS1, KLRB1, 205 

and ANXA2, and was associated with adult TEM (Fig. 3c,d). The third tissue factor (“Gut 206 

Residency”) was strongly biased towards adult TEM and was distinguished by markers of 207 

intestinal homing and adhesion (CCR9, ITGA1, CTNNA1)32,34 and tissue-resident memory T cell 208 

(TRM) development (AHR, JUN, FOSB)35,36 (Fig. 3c,d).  209 

Three scHPF factors were associated with distinct T cell effector states. The “Cytotoxicity” 210 

factor was defined by cytolytic molecules GZMK, GNLY, GZMA, NKG7 and PRF1, and was highly 211 

enriched in mucosal CD8+ TEM associated with the resting condition (Fig. 3c,d), reflecting a 212 

poised cytotoxic state. Relatedly, the “Chemokine/Cytotoxic” factor included highly ranked 213 

transcripts for cytotoxic mediators (GZMB, GZMH, FASLG, PRF1) and potent chemoattractants 214 

(CCL3, CCL4, CCL3L1, CCL3L3), and was strongly associated with mucosal CD8+ TEM in the 215 

activated condition (Fig. 3c,d). By contrast, the “Inflammatory Cytokine” factor was biased 216 

towards CD4+ TEM and characterized by genes for IFNG, IL2, TNF, CSF2, and LTA (Fig. 3c,d). 217 

Importantly, all three factors relating to effector functions and indeed most factors associated with 218 
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activated conditions in general (e.g., Activation/Survival, Immunoregulatory, Treg), were more 219 

strongly associated with adults compared to infants (Fig. 3d).  220 

 221 

Infant T cells demonstrate a reduced activation capacity relative to adults.  222 

We uncovered several scHPF factors related to T cell activation and effector function that 223 

were more strongly associated with adult T cells compared to those in infancy. To interrogate these 224 

apparent differences in functional capacity, we investigated the expression of the top genes in both 225 

Inflammatory Cytokine and Chemokine/Cytotoxic factors across TCR-simulated CD4+ and CD8+ 226 

TEM from all paired tissues in infants and adults. We found moderate differences in the expression 227 

of genes in the Inflammatory Cytokine factor in CD4+ TEM between age groups, but strikingly 228 

increased expression of these genes among CD8+ TEM in adults (Fig. 4a). For the 229 

Chemokine/Cytotoxic factor, we also observed a prominent increase in expression for its top genes 230 

in adult T cells compared to infants, especially for CD8+ TEM (Fig. 4b). As orthogonal 231 

confirmation, we directly assessed the functional capacity of infant and adult TEM via intracellular 232 

cytokine staining by flow cytometry after a short term ex-vivo stimulation. Both splenic CD4+ and 233 

CD8+ TEM in adults exhibited much greater frequencies of IFNγ, IL-2 and TNFα-producing cells 234 

relative to infants (Fig. 4c,d), consistent with our findings from scRNA-seq. We also found 235 

increased intracellular production of the cytotoxic mediator granzyme B from unstimulated 236 

conditions in adult TEM relative to infants, reflecting their augmented poised cytotoxic state 237 

suggested by our scHPF analysis (Fig. 4c,d).  238 

 For unbiased comparison of T cell activation across age groups, we modeled activation 239 

trajectories of T cells from both resting and activated conditions using diffusion maps, for CD4+ 240 

or CD8+ TEM separately. These diffusion maps separated resting T cells (in blue) on the left and 241 
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activated T cells (in red) projecting out to the right (Fig. 4e). The trajectories for CD4+ TEM 242 

showed moderate differences in activation between age cohorts, with adults exhibiting an 243 

increased number of cells along the activation axis (i.e., x-axis) relative to infants; however, the 244 

CD8+ TEM trajectories showed strikingly more adult cells along the activation axis compared to 245 

infants. Visualizing cell scores of the Inflammatory Cytokine (Fig. 4f) and Chemokine/Cytotoxic 246 

(Fig. 4g) factors from scHPF further highlighted the increased expression of effector signatures on 247 

adult CD4+ and CD8+ T cells compared to infants. These findings collectively demonstrate reduced 248 

transcriptional responses to stimulation and a restricted capacity for effector function in infant 249 

memory T cells relative to adults. 250 

 251 

Gene regulatory network inference uncovers distinct transcriptional regulators of tissue 252 

adaptation in infant and adult tissue T cells.  253 

 Consensus-scHPF identified three factors related to tissue residency and adaptation that 254 

differed across infants and adult mucosal T cells (Fig. 3c). The top genes from the Infant Tissue 255 

factor were highly enriched among infant CD4+ and CD8+ TEM (Extended Data Fig. 2a), while 256 

genes from the Tissue Signature factor were expressed across both infant and adult tissues 257 

(Extended Data Fig. 2b). By contrast, top genes from the Gut Residency factor were exclusively 258 

enriched in the intestinal sites (jejunum, colon, jejunum-associated lymph nodes) of adult CD4+ 259 

and CD8+ TEM (Extended Data Fig. 2c), demonstrating a unique transcriptional state.  260 

To investigate the differences in tissue adaptation between age cohorts, we used diffusion 261 

maps to model maturation trajectories of resting infant and adult TEM from the intestines 262 

(jejunum), where virtually all TEM are tissue-resident in both age groups16. For both CD4+ and 263 

CD8+ TEM, the trajectories reflected a continuous transition from an infant state (left, purple) to 264 
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an adult state (right, green) and visualizing cell scores for the three tissue-associated scHPF factors 265 

on the trajectories highlighted the features of this transition (Fig. 5a). The Infant Tissue factor was 266 

largely specific to the left-most population of infant TEM, whereas high cell scores for the Tissue 267 

Signature factor appeared at an intermediate position expressed by subpopulations of both infant 268 

and adult TEM. High cell scores for the Gut Residency factor were enriched in adult TEM in the 269 

right-most population. This analysis demonstrated a continuous tissue adaptation process in infant 270 

and adult mucosal TEM, including a shared intermediate state. 271 

 We next sought to identify the putative TFs responsible for driving the functional and 272 

tissue-associated transcriptional states in infant and adult T cells. We applied the Algorithm for 273 

the Reconstruction of Accurate Cellular Networks (ARACNe), which reverse engineers a gene 274 

regulatory network from gene expression data by inferring direct relationships between TFs and 275 

their target genes37,38. ARACNe generated a set of target genes for each TF, known as a “regulon” 276 

(Supplementary Table 4). We performed gene set enrichment analysis39 between the positively 277 

regulated genes in each TF’s regulon and the ranked list of genes for each scHPF factor to associate 278 

individual TFs with the cell states defined by each factor. The top two TF regulons with the highest 279 

normalized enrichment scores for each scHPF factor are shown in a heatmap in Fig. 5b. This 280 

analysis identified many TFs previously known to be linked to their respective T cell states 281 

including, IRF1 and STAT1 for responses to IFN signaling40,41, NFKB1 for T cell activation42, 282 

IRF7 regulating IFN responses and Tregs43,44, ZEB2 for cytotoxic T cell function45, and KLF2, 283 

TCF1 (TCF7) and LEF1 regulating naïve T cell stemness and quiescence24. 284 

Importantly, this analysis identified Helios (IKZF2) as the top regulator of the Infant Tissue 285 

factor and KLF6 as the top regulator of both the Tissue Signature and Gut Residency factors (Fig. 286 

5b). We visualized the relationship between the top genes in the tissue adaptation factors with each 287 

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted February 6, 2025. ; https://doi.org/10.1101/2025.02.01.636039doi: bioRxiv preprint 

https://doi.org/10.1101/2025.02.01.636039
http://creativecommons.org/licenses/by-nc/4.0/


 13 

TF’s regulon using a network, with the mutual information between each TF-gene pair as a 288 

measure of their interaction strength. Among the top 50 genes in the Infant Tissue factor, 24 genes 289 

were inferred to be regulated by Helios (Fig. 5c). Of the top 50 genes in the Tissue Signature and 290 

Gut Residency factors, KLF6 was inferred to regulate 21 and 23 genes, respectively (Extended 291 

Data Fig. 2d). 292 

To assess differences in the activities of TFs across infants and adult T cells, we next 293 

performed Virtual Inference of Protein-activity by Enriched Regulon (VIPER) analysis, which 294 

utilizes the relative expression of a TF’s up- and down-regulated targets to infer its activity in a 295 

given cell46. We plotted the TF activities of both Helios and KLF6 on the tissue adaptation 296 

trajectories we generated previously and found that Helios activity was restricted to infants, while 297 

KLF6 activity was aligned with the transition from infant to adults and increased on all adult CD4+ 298 

and CD8+ TEM (Fig. 5d). We next compared the differences in gene expression and activities for 299 

each TF in infants versus adults to identify those that were both highly differentially expressed and 300 

highly active in each age cohort. Helios was among the top differentially expressed and 301 

differentially active TFs in infants CD4+ and CD8+ TEM (Extended Data Fig. 2e,f), along with 302 

the other stem-like TFs (TCF1, LEF1, SOX4) that we identified by differential gene expression 303 

alone. KLF6 was only mildly enriched in activity and expression in adults, suggesting that 304 

differences in the function of KLF6 in infants and adults is not controlled on the level of 305 

transcription. Together, these analyses facilitated the discovery of individual TFs associated with 306 

T cell states defined by scHPF and identified Helios as putative regulator of the infant-specific T 307 

cell tissue adaptation program. 308 

 309 
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Helios (IKZF2) drives an infant-specific transcriptional program and restrains T cell effector 310 

function in early life. 311 

  To interrogate the functional role of Helios (IKZF2) in infant T cells, we first confirmed 312 

its expression on the protein level by intracellular staining via flow cytometry. Helios was highly 313 

expressed by all subsets of CD8+ T cells in infants relative to adults, while only naïve T cells were 314 

significantly enriched for Helios in infants among CD4+ T cells (Fig. 6a).  315 

We directly investigated the role of Helios in regulating its inferred targets by disrupting 316 

Helios expression in primary infant T cells using CRISPR-Cas9 gene editing. We isolated CD3+ 317 

T cells from the spleen of infant donors (ages 2 and 3 months old), transfected T cells with Cas-9 318 

ribonucleoproteins targeting Helios without prior T cell stimulation, confirmed protein knockout 319 

(KO) by flow cytometry, and assessed the transcriptional profiles of Helios-KO infant T cells 320 

relative to controls at rest or following TCR-stimulation using scRNA-seq (Fig. 6b). CRISPR-321 

Cas9 KO of Helios resulted in ~60% reduction of Helios-expressing cells by flow cytometry for 322 

both infants (Fig. 6c). To validate the targets of Helios in our regulatory network, we assessed 323 

changes in gene expression of Helios-activated and Helios-repressed targets in Helios-KO CD8+ 324 

TEM relative to negative controls from the resting condition in the scRNA-seq data. We observed 325 

a marked inversion in expression of Helios’ gene targets in KO cells compared to controls, where 326 

Helios-activated targets were decreased and Helios-repressed targets were increased in both infants 327 

(Fig. 6d). These results experimentally confirm Helios’ ARACNe-inferred regulon, which is 328 

highly enriched in genes from the Infant Tissue factor that defines an infant-specific transcriptional 329 

state. 330 

 Following TCR-stimulation, we found only minor differences in gene expression for 331 

Helios-KO cells relative to controls in both CD4+ and CD8+ TEM (Extended Data Fig. 3a,b). 332 
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However, Helios-KO in CD8+ naïve/TCM resulted in reduced expression of genes associated with 333 

IFN signaling (MX1, GBP1, GBP4, GBP5) and TFs regulating CD8+ memory T cell differentiation 334 

and function, including ID247, PLAC848, HIC49, TOX250 (Fig. 6e). Conversely, we observed 335 

increased expression of an array of chemokines (XCL1, XCL2, CCL3, CCL4, CCL4L2, CCL20), 336 

pro-inflammatory cytokines (IL2, CSF2), cytotoxic mediators (GZMB), and co-stimulatory 337 

molecules (TNFRSF9, TNFSF9, TNFRSF14) (Fig. 6f). TCR-stimulated CD4+ naïve/TCM 338 

populations showed a similar pattern of increased expression for cytokines (IL2, CSF2, EBI3), 339 

chemokines (XCL1, XCL2) and co-stimulatory molecules and receptors (TIGIT, KLRB1, 340 

TNFRSF4, TNFRSF9, TNFRSF18, TNFSF14, FCER1G, IL18R1, IL1R1) in the Helios-KO 341 

condition relative to negative controls (Extended Data Fig. 6c,d). Together, our data demonstrate 342 

that Helios restricts effector functions of infant naïve/TCM cells after TCR-mediated activation, 343 

in addition to regulating a transcriptional program associated with T cell adaptation to tissues in 344 

infants.   345 
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DISCUSSION 346 

Our study provides in-depth transcriptional and functional analyses of tissue T cell 347 

responses and their underlying programming during a critical period of immune development in 348 

infancy relative to adulthood. We reveal unique transcriptional programs and multiple TFs 349 

expressed by infant memory T cells across tissues relative to adults. Infant memory T cells retain 350 

high levels of expression LEF1, TCF1, and KLF2, typically associated with stemness and 351 

quiescence among naïve T cells51,52. Also upregulated in infant memory T cells across tissues is 352 

the SRY-related HMG-box family TF SOX4, a critical transcriptional regulator that cooperates 353 

with TCF1 and LEF1 to facilitate T cell differentiation in the thymus53. Previous studies 354 

demonstrate that SOX4 regulates CD8+ memory T cell development54, antagonizes TH2 355 

development in tandem with LEF1 in CD4+ T cells55,56, and facilitates stemness in cancer cells57, 356 

suggesting this TF network may play an important role in maintaining quiescence and 357 

differentiation potential among infant memory T cells. Furthermore, a recent study identified a 358 

small population of blood naïve T cells in healthy young adults expressing SOX4 and Helios 359 

(IKZF2) as recent thymic emigrants (RTEs)58. Several genes in RTE signature overlap with the 360 

top genes in the Infant Tissue signature (e.g., TOX, SMC4, PDE7B, IKZF2), raising the intriguing 361 

possibility that the infant-specific transcriptional state may arise from the generation of memory T 362 

cells from RTEs59.  363 

Our findings demonstrate a globally reduced capacity for TCR-mediated activation among 364 

infant memory T cells relative to those in adults. This work expands on previous observations by 365 

our group and others showing that mucosal memory T cells from infants exhibit decreased 366 

production of inflammatory cytokines relative to older individuals16,17,60. These findings provide 367 

an intriguing contrast to our earlier work showing that naïve T cells from infants are more sensitive 368 
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to TCR-stimulation and are biased towards differentiation into short-lived effector cells relative to 369 

adults9,11. Together, these data suggest that the infant immune system preferentially utilizes short-370 

lived effector responses from naïve T cells to respond to infections, rather than effector memory 371 

responses in tissues.  372 

 We identify transcriptional programs strongly enriched in mucosal CD4+ and CD8+ TEM 373 

associated with tissue adaptation and residency. These findings extend and unify our previous 374 

work describing a shared tissue-associated signature in TEM from the bone marrow, lungs, and 375 

lymph nodes19 and tissue-specific adaptation signatures across barrier tissues32. Here, we elucidate 376 

a common tissue signature in TEM across multiple tissues in both infants and adults as well as a 377 

highly intestine-specific signature associated with gut homing, adhesion, and residency unique to 378 

adults. We identify KLF6 as a putative transcriptional regulator of both common and intestine-379 

specific resident signatures using gene regulatory network inference. Accordingly, a recent study 380 

in mice also defines Klf6 as a TF specific to the tissue-resident cell state using populational level 381 

RNA-seq and the Assay for Transposase-Accessible Chromatin using sequencing (ATAC-seq) 382 

data from a total of 10 murine studies61. Our trajectory analysis further suggests a role for KLF6 383 

in the acquisition of a mature adult-like TRM phenotype over age, providing critical context to our 384 

previous work demonstrating staged maturation of TRM during infancy and childhood16.  385 

Our study uncovers a distinct infant-specific transcriptional state in CD4+ and CD8+ TEM 386 

defined by expression of Helios (IKZF2), epigenetic modifiers SMC4 and CXXC5, and regulators 387 

of tissue adhesion (LAYN, CD9). We provide direct experimental evidence of Helios’ role in 388 

driving the expression of genes in this transcriptional state using CRISPR-Cas9 knockdown, which 389 

also reveals Helios as a repressor of T cell effector function after TCR-stimulation. This finding is 390 

consistent with a previous report of human patients with Helios loss-of-function mutations that 391 
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show enhanced IL-2 production by T cells from the peripheral blood62 or small populations of 392 

Helios-expressing T cells in the blood with reduced effector capacity63. Helios also promotes 393 

human fetal Treg differentiation and phenotype, where experimental knockdown of Helios 394 

enhances expression of pro-inflammatory genes in ex-vivo induced fetal Tregs27. Taken together, 395 

these data provide compelling evidence for tolerogenic state maintained by Helios in infant T cells.  396 

This investigation reveals critical differences in transcriptional programming and 397 

activation capacity between infant and adult tissue T cells, with important implications for the 398 

generation and maintenance of protective immunity throughout the body. The expression of stem-399 

like TFs in infant T cells may represent a developmental adaptation that facilitates rapid 400 

establishment of the tissue memory T cell niche. Conversely, the reduced activation capacity and 401 

effector function of infant memory T cells may serve to limit excessive inflammatory responses in 402 

tissues during this vulnerable period of development, but may also impair the ability to mount 403 

protective immune responses upon re-infection. Our work provides direct evidence for a cell-404 

intrinsic mechanism regulating the infant-specific transcriptional state. This study lays the 405 

foundation for understanding the mechanisms governing infant T cells responses, which may aid 406 

identification of novel therapeutic targets to modulate T cell function in early life and promote 407 

long-lasting, protective adaptive immunity.  408 

  409 
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METHODS 410 

Human organ donors and tissue acquisition 411 

 We obtained human organ tissue from deceased (brain-dead) organ donors directly at the 412 

time of acquisition for life-saving clinical transplantation through approved research protocols and 413 

materials transfer agreements with organ procurement organizations (OPOs) in the United States. 414 

Tissues from adult organ donors were obtained from an approved protocol with the OPO for the 415 

New York metropolitan area, LiveOnNY and included donors from our previous study19. Tissues 416 

from infant organ donors were obtained from LiveOnNY as well as through the Human Atlas for 417 

Neonatal Development (HANDEL) program based on the network for Pancreatic Organ Donors 418 

(nPOD). Consent for use of tissues for research was obtained by next of kin. All organ donors used 419 

in the study (Supplementary Table 1) were free of cancer, chronic disease, seronegative for 420 

hepatitis B, C and HIV and did not show evidence for active infection based on blood, urine, 421 

respiratory and radiological surveillance testing. The use of tissues from deceased organ donors 422 

does not qualify as human subjects research as confirmed by the Columbia University institutional 423 

review board.  424 

 425 

Tissue processing, T cell isolation and stimulation 426 

 Organ donor tissue samples were maintained in saline or University of Wisconsin solution 427 

on ice for transport to the laboratory and processing, typically within 2-24 hours of acquisition. 428 

Processing of infant and adult tissues to single cell suspensions was performed as previously 429 

described16,19. Briefly, blood was obtained by venipuncture, bone marrow was aspirated from the 430 

superior iliac crest, and mononuclear cells from both sites was obtained by density gradient 431 

centrifugation using Lymphocyte Separation Medium (Corning) or Ficoll-Paque Plus (Cytiva). 432 
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Lymph nodes were isolated by dissection from the intestinal mesentery or the tracheobronchial 433 

tree of the lungs. Isolated lymph nodes, spleen and tonsil samples were placed in complete media 434 

composed of IMDM or RPMI 1640 (Gibco), 10% fetal bovine serum (GeminiBio), and 1% L-435 

Glutamine:Pen:Strep Solution (GeminiBio), and mechanically dissociated with surgical scissors. 436 

Lung parenchymal tissue was dissected from the large airways, mechanically dissociated, and 437 

placed in digestion media composed of complete media, 1mg/ml Collagenase D (Millipore Sigma), 438 

0.1 mg/ml DNase (Millipore Sigma) in a shaker at 37⁰C for 30 minutes. Intestinal tissues were 439 

dissected by their anatomical locations (jejunum, ileum, colon, Peyer’s patches), washed with 440 

sterile PBS (Corning) to remove luminal content, mechanically dissociated with scissors, and 441 

placed into digestion media in a shaker at 37⁰C for 30 minutes. Dissociated and/or digested cell 442 

suspensions of the lymph nodes, spleen, tonsils, lungs, and intestines were filtered using a 100 um 443 

filter (VWR) and centrifuged on a density gradient as above to remove debris and isolate 444 

mononuclear cells, followed by resuspension in complete media. 445 

  T cells from individual tissue single cell suspensions were enriched via magnetic negative 446 

selection (EasySep Human T cell Enrichment Kit; STEMCELL Technologies) followed by dead 447 

removal (Milteyni Biotec) resulting in +80-95% purity. We cultured 0.5-1 million T cell-enriched 448 

cells from each tissue for 16 hours at 37⁰C in complete medium, with or without TCR stimulation 449 

using ImmunoCult Human CD3/CD28 T Cell Activator (STEMCELL Technologies), after which 450 

dead cells were removed (as above) before single cell encapsulation. 451 

 452 

Single cell RNA-sequencing and data processing 453 

 T cell-enriched samples were loaded onto the Next GEM Chromium Controller using the 454 

Chromium Next GEM Single Cell 3’ Reagent kit v3.1 from 10x Genomics for single cell 455 
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encapsulation and library construction as per manufacturer’s suggested protocols. Libraries were 456 

sequenced on an Illumina NovaSeq 6000, targeting ~300M raw reads per sample (~60,000 raw 457 

reads per cell).  458 

scRNA-seq data were aligned and demultiplexed as described in Szabo et al19 using a 459 

publicly available pipeline (https://github.com/simslab/DropSeqPipeline8). Briefly, for each 460 

sample we trimmed read 2 to remove 3’-poly(A) tails (>7 A’s in length), discarded reads with 461 

fewer than 24 nucleotides remaining after trimming, and aligned the rest to GRCh38 (GENCODE 462 

v.24 annotation) using STAR v.2.5.064. We assigned an address comprised of a cell-identifying 463 

barcode, unique molecular identifier (UMI) barcode, and gene identifier to each read with a unique, 464 

strand-specific exonic alignment. We followed the method in Griffiths et al.65 to filter the reads 465 

for index swapping and collapsed PCR duplicates using the UMIs after correcting sequencing 466 

errors in both the cell-identifying and UMI barcodes to generate an initial, unfiltered count matrix 467 

for each sample. 468 

To identify cell-identifying barcodes that correspond to actual cells and to filter low-quality 469 

single-cell profiles, we used the methodology described in Zhao et al.66. Briefly, we used the 470 

EmptyDrops algorithm67 to remove cell-identifying barcodes that primarily contain ambient RNA. 471 

We then filtered the resulting count matrix to remove cell barcodes with high mitochondrial 472 

alignment rates (>1.96 standard deviations above the mean for a sample), high ratio of whole gene 473 

body to exonic alignment (>1.96 standard deviations above the mean for a sample), high average 474 

number of reads per transcript or transcripts per gene (>2.5 standard deviations above the mean 475 

for a sample), or cells where >40% of UMI bases are T or where the average number of T-bases 476 

per UMI is at least four. 477 

 478 
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In silico T cell purification 479 

While the EmptyDrops algorithm used above is adept at removing cell-identifying 480 

barcodes that correspond to ambient RNA, debris or molecular aggregates are more problematic67. 481 

We used a Gaussian mixture model (GMM)-based filter to further identify low-quality cells that 482 

could result from unfiltered index-swapping artifacts. We noticed that histograms of the number 483 

of transcripts per cell for some samples contained a lower mode, particularly for samples that were 484 

co-sequenced with samples external to this study (Supplementary Fig. 3a). To identify and isolate 485 

these modes, we modeled each sample’s log-scale transcript per cell distribution as a two-486 

component GMM using sklearn.mixture.GaussianMixture (scikit-learn, version 0.21.3) and 487 

considered samples with a high-mode to low-mode ratio of at least 1.2 (on a log2-scale) as 488 

candidates for further filtering at the single-cell level. For these samples, we set a cutoff at three 489 

standard deviations above the mean for the high mode, using the square-root of the GMM’s 490 

estimate of the high-mode’s variance (sklearn.mixture.GaussianMixture.covariance), and 491 

removed cells below this cutoff. Differential expression analysis between the filtered and 492 

unfiltered cells showed that these low-coverage, filtered cells were likely contaminants and 493 

enriched in neural markers like NNAT, BSN, NCAM2, NRXN1, GRIA1, GABRA1, and BDNF. 494 

With count matrices for high-quality cells in hand for each sample, we removed all non-T 495 

cells from the data, including contaminating cells, multiplets, and cells in which apparent T cell 496 

marker expression was likely an artifact of cross-talk19. We first performed unsupervised Louvain 497 

clustering using Phenograph68 with highly variable marker selection and k-nearest-neighbor graph 498 

construction as described in Levitin et al69. Highly variable marker selection was performed at the 499 

donor level and applied to each sample within a given donor. Next, we labeled each cluster as a 500 

putative T cell cluster (t1), contaminant cluster (t-1), or unknown cluster (t0) based on the average 501 
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normalized expression of CD3D, CD3E, and CD3G. For each sample, we then examined the 502 

distribution of the number of reads per transcript (RPT), which estimates the number of PCR 503 

amplicons per transcript. PCR recombination can result in a multi-modal RPT distribution as 504 

described in Szabo et al19. To determine an RPT threshold for non-artifactual transcripts, we 505 

modeled this distribution as a two-component Geometric-Negative Binomial using the Scipy 506 

functions scipy.stats.genom.pmf, scipy.stats.nbinom.pmf, and scipy.optimize.curve_fit and took the 507 

intercept of the two components. We defined high-confidence T cells within each t1 cluster as cells 508 

that expressed any of CD3D, CD3E, CD3G, TRAC, TRBC1, TRBC2, TRDC, TRGC1, and TRGC2 509 

with RPT greater than the sample-specific threshold.  Next, we performed pairwise differential 510 

expression analysis (as described below) between the high-confidence cells in the t1 cluster and 511 

the cells in the t-1 cluster for each sample. We used this analysis to construct a contaminant gene 512 

list for each donor. We considered a gene to be contaminant-specific if it was at least 10-fold 513 

enriched in at least two t-1 clusters across the donor with FDR<10-5 and if it was not enriched in 514 

more than one t1 cluster with greater than 10% enrichment and FDR<10-2. For each sample, we 515 

computed the proportion of the contaminant gene list that each cell expresses above the sample-516 

specific RPT, which we call pc. We then fit a truncated Gaussian distribution to the distribution of 517 

pc specifically for the high-confidence T cells from t1 clusters to establish a threshold proportion 518 

pt at three standard deviations above the mean of the fit. Finally, to call T cells, we identified cells 519 

in t1 clusters with any of CD3D, CD3E, CD3G, TRAC, TRBC1, TRBC2, TRDC, TRGC1, and 520 

TRGC2 detected with RPT greater than the sample-specific threshold and pc < pt as T cells. We 521 

also identified cells in t0 clusters with any of CD3D, CD3E, CD3G, TRAC, TRBC1, TRBC2, TRDC, 522 

TRGC1, and TRGC2 detected with RPT greater than the sample-specific threshold and pc < pt as 523 
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T cells as long as the cluster’s first quartile for pc was also less than pt. Supplementary Fig. 3b-g 524 

contains a graphical depiction of each step in this procedure for a sample. 525 

To validate the above procedure, we clustered all T cells that resulted with Phenograph and 526 

found no clusters with systematically lower expression of CD3D, CD3E, or CD3G (i.e., less than 527 

half of their mean expression). Furthermore, we clustered and performed differential expression 528 

analysis on all cells for each sample that were not called T cells to verify that most populations 529 

represented non-T cells and that all CD3D, CD3E, or CD3G-expression populations also expressed 530 

contaminants in common with non-T cells (i.e., possible multiplets). We did not find any clusters 531 

without clear contaminants. 532 

 533 

Consensus single cell Hierarchical Poisson Factorization 534 

scHPF is a Bayesian algorithm for probabilistic factorization of scRNA-seq count matrices 535 

that produces highly interpretable factors or gene co-expression signatures69. Here, we applied the 536 

consensus implementation of scHPF, which generates and integrates many independent models of 537 

large scRNA-seq data sets, identifies recurrent factors from these models, and learns a final 538 

consensus model18. We used consensus scHPF to generate a single factor model for the entire T 539 

cell data set presented here including infant, adult, resting, and activated T cells from all tissue 540 

sites. 541 

To construct the class-balanced dataset for scHPF, we randomly sampled 1,000 cells from 542 

each sample from tissues where we had at least one adult and one infant donor (blood, bone 543 

marrow, jejunum, jejunum lymph node, colon, lung lymph node, and spleen). To correct for 544 

coverage differences between samples, we downsampled the count matrices in this training set to 545 

the same mean number of transcripts per cell (2,086 transcripts/cell). We then filtered the training 546 
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data to contain only protein coding genes detected in at least 1% of cells after downsampling. We 547 

additionally created an equivalently downsampled test set of cells that were not in the training set, 548 

with up to 200 cells for each experimental sample in the training data. 549 

Due to scHPF’s highly multi-modal posterior on this complex dataset, we used the 550 

consensus approach described previously18, which allowed us to capture highly robust patterns of 551 

expression that consistently appear across scHPF training models with different random 552 

initializations, while still giving the model the freedom to approximate the parameter values the 553 

best explain the data. First, we ran scHPF with 10 random initializations for k =10 through 20 and 554 

selected three out of each set of 10 models with the lowest mean negative log likelihood on the 555 

training data for each value of k. Using Walktrap clustering, we identified 29 modules of similar 556 

factors that were observed in multiple models, and used their median gene weights to reinitialize 557 

scHPF and learn a refined, consensus model with 29 factors.  558 

We evaluated the consensus-initialized model as compared to randomly initialized models 559 

with the same number of factors using the mean negative log-likelihood of the held-out test set. 560 

The consensus-initialized model had significantly better loss than any of the randomly initialized 561 

models (2.3953 with consensus-initialized vs 2.4006+/-0.0002 SEM for the 10 randomly 562 

initialized models). Thus, the consensus model achieved better log-likelihood for the held-out data, 563 

ensured that the factors were robust against random initializations, and effectively automated the 564 

selection of the number of factors k.  565 

 To project the full dataset onto the reference model obtained above, we downsampled all 566 

cells that were not included in training to have the same mean number of transcripts per cell as the 567 

training data. We then used the scHPF command prep-like to generate an appropriately filtered 568 
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and formatted count matrix for these remaining cells and projected them into the consensus model 569 

using the scHPF command project with default parameters.  570 

 571 

T cell subset classification and analysis 572 

We used scHPF’s embeddings in combination with gene expression values to annotate T 573 

cell subsets. CD4+ and CD8+ T cells can be difficult to distinguish based on transcriptional profiles 574 

alone due to transcript drop-out, particularly for CD4+ T cells, and because CD4 vs. CD8 status is 575 

highly correlated with effector status for the cells profiled here. This problem is further exacerbated 576 

in stimulated T cells where subset-specific markers are downregulated. Because scHPF breaks 577 

transcriptional profiles down into component expression programs, we can leverage its 578 

representations to distinguish between subsets, even for activated T cells. 579 

We used a Naïve Bayes classifier on scHPF’s cell scores concatenated with expression 580 

values for several key markers: CD4, CD8A, CD8B, CCL5, SELL, TRDC, TYROBP, CCR7, 581 

CTLA4, and FOXP3.  We first defined separate training sets for infant and adult resting T cells 582 

from within the scRNA-seq dataset based on co-expression of these markers for CD4+ naïve/TCM, 583 

CD8+ naïve/TCM, CD4+ TEM, CD8+ TEM, CD4+ Tregs, and γδ T cells, according to the scheme 584 

in Supplementary Table 5. Next, we generated a concatenated matrix comprised of the scHPF 585 

cell scores for the consensus model described above and the log-normalized expression of the 586 

above markers. Size factors for normalized counts were computed using the computeSumFactors 587 

function in scran as described by Lun et al70. We then standardized the resulting concatenated 588 

feature matrix using the sklearn.preprocessing.StandardScaler function (scikit-learn, version 589 

0.23.2), trained a Naïve Bayes classifier separately for resting infant and adult T cells with 590 

sklearn.naive_bayes.GaussianNB.fit, and predicted the remaining resting infant and adult T cells 591 
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separately using sklearn.StandardScaler.transform. We repeated this exact procedure for the 592 

infant and adult T cells separately, but this time including both resting and activated T cells and 593 

omitting the CD4+ Treg class.  We could not classify CD4+ Tregs from the activated T cells in our 594 

dataset, because conventional T cells upregulate many canonical CD4+ Treg markers upon 595 

stimulation. Thus, this second round of classification allowed us to share information between the 596 

resting and activated T cells while obtaining an annotation for the activated T cells that excluded 597 

the CD4+ Treg class. Finally, for activated T cells, we used the annotation obtained from this 598 

second round of classification for downstream analysis. For resting T cells, we used this same 599 

annotation, but substituted the CD4+ Treg class for any cell classified as a CD4+ T cell in the 600 

second round of classification that was also classified as a CD4+ Treg in the first round. 601 

We used several approaches to validating this classifier. First, we obtained excellent 602 

agreement between the expression patterns of canonical T cell subset markers and the classifier 603 

results as shown in Fig. 1c. Second, because the resting and activated T cells originate from 604 

matched samples, the number of resting and activated cells in each class should be roughly equal 605 

to each other for cells from the same sample. As shown in Supplementary Fig. 4 the median 606 

absolute deviation between resting and activated cell frequencies for CD4+ and CD8+ T cells is 2.3 607 

and 1.6%, respectively. Similarly, for naïve/TCM, TEM, and γδ T cells we obtain 3.4%, 3.1%, and 608 

0.2%, respectively.  609 

Our third approach was to estimate the accuracy of the classifier and therefore we applied 610 

it to a multi-tissue immune cell dataset from an organ donor from which we obtained CITE-seq 611 

data from blood, bone marrow, lung, lung lymph node, jejunum, and spleen21,71. We used the 612 

surface protein data from CITE-seq as an orthogonal ground truth to the corresponding RNA 613 

expression data from each cell to which we applied the Naïve Bayes classifier. First, we defined 614 
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cells into high-confidence subsets based on the surface protein data. We defined these subsets as: 615 

CD4+ naïve (CD4+ CD8- TCRγδ- CD45RA+ CD45RO- CCR7+ CD62L+ CD27+ CD25-), CD8+ 616 

naïve (CD4- CD8+ TCRγδ- CD45RA+ CD45RO- CCR7+ CD62L+ CD27+), CD4+ TEM (CD4+ 617 

CD8- TCRγδ- CD45RA- CD45RO+ CCR7- CD62L- CD27- CD25-), CD8+ TEM (CD4- CD8+ 618 

TCRγδ- CD45RA- CD45RO+ CCR7- CD62L- CD27-), CD4+ Treg (CD4+ CD8- TCRγδ- CD45RA+ 619 

CD45RO- CCR7+ CD62L+ CD27+ CD127- CD25+), and γδ T cells (CD4- TCRγδ+) and ensured 620 

that these classes were mutually exclusive. To define positive and negative cell populations for 621 

each surface protein marker, we log-transformed the marker’s expression level (log2(counts per 622 

thousand +1)) and fit a two-component Gaussian mixture model to the transformed expression 623 

distribution (Supplementary Fig. 1a). For each fit, we computed defined three expression 624 

thresholds: 1.96 standard deviations below the mean of the higher mode Gaussian (L1), 1.96 625 

standard deviations above the mean of lower mode (L2), and the local minimum of the Gaussian 626 

mixture fit between the means of the two components (L3). We then set our thresholds for marker-627 

negative and positive subpopulations as min(L1,L2,L3) and max(L1,L2,L3), respectively, to establish 628 

our ground truth T cell subsets. Finally, we trained a consensus scHPF model on the scRNA-seq 629 

component of the CITE-seq dataset, trained the Naïve Bayes classifier using the same procedure 630 

as described above based only on the scRNA-seq, and classified the high-confidence cells 631 

established using CITE-seq. Importantly, the Naïve Bayes classifier was blinded to the surface 632 

protein data used to define the high-confidence subsets and to the high-confidence subset 633 

annotations themselves. By comparing the Naïve Bayes classifier results to the high-confidence 634 

subsets established from surface protein expression, we found that the Naïve Bayes classifier was 635 

highly performant with favorable results for sensitivity, specificity, precision, and accuracy across 636 

T cell subsets (Supplementary Fig. 1b).  637 

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted February 6, 2025. ; https://doi.org/10.1101/2025.02.01.636039doi: bioRxiv preprint 

https://doi.org/10.1101/2025.02.01.636039
http://creativecommons.org/licenses/by-nc/4.0/


 29 

 For downstream analysis, we interrogated T cells that were classified as CD4+ naïve/TCM, 638 

CD8+ naïve/TCM, CD4+ TEM, CD8+ TEM, CD4+ Tregs, and γδ T cells. We visualized the data 639 

using supervised dimensionality reduction and embedded the data into two dimensions by 640 

UMAP20, with T cell subsets as classes. Plotting UMAP embeddings and markers for each T cell 641 

subset was performed with scanpy. 642 

 643 

Differential gene expression between infant and adult T cells 644 

 We performed differential expression analysis across age groups for each conventional T 645 

cell subset (CD4+ naïve/TCM, CD8+ naïve/TCM, CD4+ TEM, CD8+ TEM, CD4+ Treg), using all 646 

tissue samples that met criteria of at least 100 cells per subset-donor-tissue combination. For CD4+ 647 

and CD8+ naïve/TCM, this included the blood, jejunum- and lung-associated lymph nodes, and 648 

spleen; for CD4+ and CD8+ TEM, this included the jejunum, lung and spleen; and for CD4+ Tregs, 649 

this included jejunum- and lung-associated lymph nodes as well as the spleen. For each tissue 650 

group within a subset, we performed pairwise differential expression using scanpy v1.9.3 651 

(rank_genes_groups; Wilcoxon with tie correction) between each infant donor versus every adult 652 

donor, using equalized cell counts (subsampled) and total counts (downsampled) for each group. 653 

We used the intersection of differentially expressed genes (FDR adjusted p-value < 0.05, log-fold 654 

change > 1) for every infant-adult comparison (i.e., must be differentially expressed in each infant 655 

donor compared to every adult donor) within each tissue to generate a list of differentially 656 

expressed genes across age in a given tissue. We next used the union of differentially expressed 657 

genes across all tissue comparisons within a subset to generate a final list of genes by T cell subset 658 

(Supplementary Table 2). UpSet plots were generated using the python package UpSetPlot 659 

v0.8.0. 660 
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 661 

Activation trajectories by diffusion maps 662 

We constructed activation trajectories for CD4+ and CD8+ TEM for mucosal tissues, where 663 

these subsets are highly enriched in TRM using diffusion component analysis as described 664 

previously19. Briefly, for CD4+ TEM and CD8+ TEM separately, we randomly sampled the same 665 

cell numbers from resting infant, resting adult, activated infant, and activated adult conditions from 666 

the mucosal sites lung, jejunum, ileum, and colon. Next, we computed a pairwise Euclidean 667 

distance matrix for the scHPF cell scores of the sampled mucosal CD4+ and CD8+ TEM, and used 668 

the DMAPS package (https://github.com/hsidky/dmaps) to embed the scHPF model into its first 669 

two diffusion components, which consistently separated the cells based on activation status. 670 

 671 

ARACNe and VIPER analysis 672 

We used ARACNe-AP (https://github.com/califano-lab/ARACNe-AP) to infer gene 673 

regulatory networks from the scRNA-seq dataset37,38 using the metacell workflow described by 674 

Vlahos et al72. While ARACNe has been widely used for regulatory network inference from bulk 675 

RNA-seq data, the sparsity of scRNA-seq data requires the construction of pseudo-bulk profiles 676 

that average the expression profiles of multiple individual cells called metacells. To quantify cell-677 

cell similarity for generating metacells, we used the cell score matrix from the consensus scHPF 678 

model described above into a Pearson correlation matrix from which we generated a k-nearest 679 

neighbors graph with k=50 to aggregate scRNA-seq profiles into metacell profiles by averaging 680 

over 50 similar cells as described previously72. Finally, we used ARACNe-AP to compute a 681 

transcription factor-target gene regulatory network consolidated from 200 rounds of bootstrapping 682 
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using the metacell matrix and a list of 688 transcription factors that met the criteria for inclusion 683 

in our scHPF model (see above). 684 

We used the gene regulatory network to associate transcription factors with scHPF factors. 685 

For this, we identified the subset of ARACNe-inferred targets that were activated by a given 686 

transcription factor using the aracne2regulon function in the VIPER package46. Then, we 687 

performed GSEA for each scHPF factor-transcription factor pair where the ranked gene list was 688 

obtained by ranking all genes by their scHPF gene score for a given scHPF factor and the gene 689 

sets were the set of activated targets for each transcription factor. This calculation yielded a 690 

normalized enrichment score reflecting the enrichment of a given transcription factor’s activated 691 

targets among the top-ranked genes in a given scHPF factor. We also used the gene regulatory 692 

network to infer transcription factor activities at the single-cell level using the VIPER algorithm 693 

(v1.26.0), a companion tool for calculating protein activity from ARACNe-inferred networks46. 694 

Specifically, we used the viper function with the z-scored, log-normalized scRNA-seq expression 695 

matrix (using scran as described above) to compute transcription factor activities with default 696 

parameters. Similarly, to assess differential VIPER activity between two conditions (e.g., for the 697 

Helios KO experiments described below), we generated a gene signature for the two conditions 698 

using the rowTtest function in VIPER, a null model using the ttestNull function in VIPER with 699 

1,000 permutations, and the msviper function in VIPER with default parameters. 700 

 701 

Flow cytometry and intracellular staining 702 

Single cell suspensions of tissue mononuclear cells washed with staining buffer comprised 703 

of PBS (Corning), 2% FBS (GeminiBio) and 2 mM EDTA (Gibco), incubated with Human 704 

TruStain FcX (BioLegend) for 10 minutes on ice. Cells were then stained with fluorescently 705 
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labeled antibodies (Supplementary Table 6) for 30 minutes on ice and washed with staining 706 

buffer to remove unbound antibodies. We used the True-Nuclear Transcription Factor Buffer Set 707 

(BioLegend) for fixation, permeabilization and intracellular transcription factor antibody staining 708 

(Supplementary Table 6) according to manufacturer’s recommended protocols.  709 

For stimulation assays, single cell suspensions of tissue mononuclear cells were cultured 710 

in complete media in 96-well U-bottom plates (Corning) at ~2-5 million cells per well and 711 

stimulated with 50 ng/ml PMA (Sigma) and 1 ug/ml Ionomycin (Sigma) in the presence of 712 

GolgiStop and GolgiPlug (BD Biosciences) for 4 hours at 37⁰C. Cells were then washed with 713 

staining buffer and stained with surface antibodies as above. For fixation, permeabilization and 714 

intracellular cytokine antibody staining (Supplementary Table 6), we used the BD 715 

Cytofix/Cytoperm Fixation/Permeabilization Kit (BD Biosciences) as per manufacturer’s 716 

recommended protocols.  717 

For all flow cytometry assays, we acquired cell fluorescence data using the Cytek Aurora 718 

spectral flow cytometer and analyzed data using FlowJo v10.10 (BD Life Sciences). For a gating 719 

strategy to identify T cell subsets refer to Supplementary Fig. 5.  720 

 721 

CRISPR-Cas9 deletion of Helios (IKZF2) in primary human tissue T cells 722 

 Mononuclear cell suspensions from infant spleens were obtained and T cell magnetic 723 

negative selection was performed as described above. For CRISPR-Cas9 deletion of Helios 724 

(IKZF2) we used a Cas9 RNP transfection approach73. Briefly, 3 Alt-R CRISPR-Cas9 crRNAs 725 

targeting Helios or negative controls (Supplementary Table 6) were individually complexed to 726 

Alt-R CRISPR-Cas9 tracrRNAs (IDT) in equimolar concentrations. Cas9 RNPs were prepared by 727 

combining crRNA:tracrRNA duplexes with TrueCut Cas9 Protein v2 (Thermo Fisher Scientific) 728 
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at a molar ratio of 3:2. RNP nucleofection of T cells was performed using a Lonza 4D-Nucleofector 729 

X unit using the Lonza P3 Primary Cell 4D-Nucleofector X Kit with 3 ul of each RNP complex in 730 

20 ul of nucleofection buffer and a pulse code of EH100. Nucleofected T cells were immediately 731 

placed in complete media with 5% human AB serum (Millipore Sigma) and cultured for 3 days at 732 

37⁰C in an incubator for 3 days. Helios protein expression in Helios-KO T cells or negative controls 733 

was assessed after 3 days in culture by flow cytometry as described above. To assess the effects of 734 

Helios-KO on the T cell transcriptome, we first removed dead cells (Miltenyi Biotech) and either 735 

rested Helios-KO cells or negative controls overnight in complete media or stimulated cells with 736 

anti-CD3 and anti-CD28 and performed scRNA-seq as above.    737 

 We processed scRNA-seq data, identified T cells and categorized cells into T cell subsets 738 

using the Naïve Bayes classifier described above. We performed differential expression analysis 739 

between Helios-KO and negative control T cells in the activated condition, for each T cell subset 740 

with in each donor individually. We used the same method as above for identifying differentially 741 

expressed genes between KO and negative control cells (equalized cell numbers and counts; 742 

differential expression by Wilcoxon with tie correction). For visualizing differentially expressed 743 

genes (averaged FDR adjusted p-value < 0.05, averaged log2-fold change > 1) in volcano plots in 744 

Fig. 6e, we plotted averaged FDR-adjusted p-values and log-fold changes from both donors. Only 745 

genes that were differentially expressed between KO and negative control samples in both donors 746 

were plotted in Fig. 6f.   747 

 748 

Statistical Analysis 749 

 Descriptive analyses and statistical testing of flow cytometry data were performed using 750 

GraphPad Prism (v9.5.2) and comparisons between groups were made using statistical tests 751 
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indicated in the figure legends. We considered comparisons as statistically significant for  p < 0.05. 752 

For multivariate linear regression analysis between scHPF factor gene scores and relevant binary 753 

covariates (age, tissue type, subset, lineage, activation), we performed an ordinary least squares 754 

regression (statsmodels.OLS). Factor gene scores were z-scored for input and resulting regression 755 

coefficients were plotted for each factor and covariate.  756 

 757 

Data and Code Availability 758 

Raw scRNA-seq data and metadata have been deposited in GEO (accession number GSE195844). 759 

Original source code with tutorials for scHPF, which is used to build individual models in 760 

consensus scHPF can be found at https://github.com/simslab/scHPF. Code for running consensus-761 

scHPF along with helper scripts and instructions can be found 762 

at https://github.com/simslab/consensus_scHPF_wrapper. 763 
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FIGURES 796 

 797 
Figure 1: A single cell transcriptomic map of resting and activated T cells from human 798 

lymphoid and mucosal tissues. a) Schematic of scRNA-seq experimental design and workflow 799 

including T cell isolation from infant and adult tissues using negative selection, overnight rest or 800 

TCR-mediated stimulation with anti-CD3 and anti-CD28 antibodies, and single cell encapsulation 801 

with the 10x Genomics Chromium system. b) UMAP embeddings of merged scRNA-seq profiles 802 

from resting and activated T cells from all samples, colored by age cohort, tissue of origin, 803 

stimulation condition and T cell subset classification. c) Dot plot displaying expression of T cell 804 

lineage defining markers across T cell subsets for infants and adults. Color intensity reflects mean 805 

gene expression by group and dot size reflects percentage of cells in each group expressing 806 

indicated marker genes. Number of cells in each T cell subset across all donors and tissues for each 807 
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age cohort is indicated in the bar plot on the right. d) Heatmap indicating percentage of cells for 808 

each T cell subset within a tissue (i.e., row-normalized) for infants where color intensity indicates 809 

higher frequencies. e) Heatmap same as (d) but for adults. Abbreviations: blood (BLD), bone 810 

marrow (BOM), colon (COL), colon-associated lymph node (CLN), ileum (ILE), jejunum (JEJ), 811 

jejunum-associated lymph node (JLN), lung (LNG), lung-associated lymph node (LLN), Peyer’s 812 

patch (PEP), spleen (SPL), tonsil (TON).  813 

  814 
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 815 
Extended Data Figure 1: Differential gene expression analysis and TF staining by flow 816 

cytometry across infant and adult T cells.  a) Bar plot showing number of differentially 817 

expressed genes upregulated in infants or adults by T cell subset across all tissues with adequate 818 

cell representation (see Methods). b) UpSet plot showing number of differentially expressed genes 819 

in infants relative to adults shared across at least two T cell subsets. c) UpSet plot similar to (b) 820 

but for differentially expressed genes upregulated in adults. d)  Representative histograms showing 821 

TCF1 or LEF1 expression and quantification of geometric mean fluorescence intensity relative to 822 

isotype controls (∆gMFI) in infant (n = 5) and adult (n = 4) CD4+ TEM from the spleen by flow 823 

cytometry. e) Representative histograms and quantification for TCF1 and LEF1 same as (d) but 824 

for CD8+ TEM. For panels (d) and (e), statistical comparisons between indicated groups made by 825 

Students’ t-test; “ns” denotes not significant, * p < 0.05, and ** p < 0.01. 826 

  827 
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 828 
Figure 2: Differentially expressed genes across infant and adult TEM across tissues. a) 829 

Heatmap of selected differentially expressed genes in infant versus adult CD4+ TEM from 830 

indicated tissues in the resting condition. Color intensity reflects Z-scored average log(counts per 831 

million+1) expression by row. b) Heatmap of differentially expressed genes in infants and adults 832 

as in (a) but for CD8+ TEM.  833 

  834 
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 835 
Figure 3: Consensus single cell Hierarchical Poisson Factorization (scHPF) reveals 836 

transcriptional co-expression patterns in infant and adult T cells. a) Schematic of consensus-837 

scHPF analysis to identify co-expression patterns or “factors” across the dataset and multivariate 838 

linear regression to associate factors with metadata. b) Heatmap showing scHPF gene scores of 839 

the top 10 genes in each factor. Selected genes for each factor are indicated to the right and a 840 

ranked list of the top 100 genes in all factors is provided in Supplementary Table 3. c) Dot plots 841 

showing the rank and gene score for genes in selected scHPF factors with labels for the top genes. 842 

d) Heatmap of regression coefficients for multivariate linear regression between scHPF factor cell 843 

scores and covariates: age cohort (infant/adult), tissue localization (lymphoid/mucosal), T cell 844 

subset (naïveCM/effector), T cell lineage (CD4/CD8), or activation conditions (resting/activated). 845 

  846 
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 847 
Figure 4: T cell activation capacity and effector function and of CD4+ and CD8+ TEM in 848 

infants and adults. a) Heatmap showing z-scored average gene expression as log(counts per 849 

million+1) of the top 15 genes in the Inflammatory Cytokine factor in CD4+ and CD8+ TEM across 850 

tissues in infants and adults from activated conditions. b) Heatmap as in (a) but showing the top 851 

15 genes in the Chemokine/Cytotoxic factor. c) Representative histograms of effector molecule 852 

expression in infant and adult CD4+ TEM from the spleen assessed by intracellular flow cytometry 853 

staining. Cytokine (IFNγ, IL-2 and TNFα) expression was evaluated after 4-hour stimulation with 854 

PMA and Ionomycin, while granzyme B expression was evaluated in unstimulated conditions. 855 
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Values represent mean +/- standard deviation of percent positive cells of each target across 3 856 

individual donors in each age cohort. d) Representative histograms and percent expression values 857 

as in (c) but for CD8+ TEM. e) Diffusion maps of CD4+ and CD8+ TEM from mucosal tissues 858 

(jejunum and lung), with cells colored by activation condition as resting (blue) or activated (red). 859 

f, g) Diffusion maps as in (e) but colored by cell scores for the Inflammatory Cytokine factor (f) 860 

or Chemokine Cytotoxic factor (g) for CD4+ TEM (top) or CD8+ TEM (bottom).   861 
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 863 
Extended Data Figure 2: Expression of tissue-associated transcriptional programs in infants 864 

and adults. a) Heatmap showing Z-scored average gene expression as log(counts per million+1) 865 

of the top 15 genes in the Infant Tissue factor in CD4+ and CD8+ EM across tissues in infants and 866 

adults. b, c) Heatmap same as (a) but for the top genes in the Tissue Signature factor (b) and Gut 867 

Residency factor (c). d) TF network for KLF6 showing overlap of inferred targets within the top 868 

50 genes in the Tissue Signature (deep red) and Gut Residency (deep blue) factors. Node color 869 

intensity and inverse distance in the network represents interaction strength (mutual information) 870 

between TF and target gene. e, f) Dot plots showing differences in TF activity (infant - adult) and 871 
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log2 fold change in TF gene expression (infant / adult) in CD4+ (e) and CD8+ (f) TEM from the 872 

jejunum. 873 

  874 

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted February 6, 2025. ; https://doi.org/10.1101/2025.02.01.636039doi: bioRxiv preprint 

https://doi.org/10.1101/2025.02.01.636039
http://creativecommons.org/licenses/by-nc/4.0/


 45 

 875 
Figure 5: Gene regulatory network reconstruction to identify transcription factors driving 876 

tissue adaptation in infant and adult tissue T cells. a) Diffusion maps of CD4+ and CD8+ TEM 877 

from the jejunum with cells colored by age cohort as infant (purple) and adult (green) or by cell 878 

scores for the indicated scHPF factors. b) Heatmap showing normalized enrichment score from 879 

GSEA between the genes in each TF’s regulon and the ranked list of genes for each scHPF factor. 880 

The top two TFs with the highest scores for each factor (excluding duplicates) are shown. c) TF 881 

network of Helios (IKZF2) showing inferred TF targets overlapping with the top 50 genes in the 882 

Infant Tissue factor. Node color intensity and inverse distance in the network represents interaction 883 

strength (mutual information) between TF and target gene. d) Diffusion maps from (a) but colored 884 

by Helios (IKZF2) or KLF6 activity determined by VIPER (see Methods). 885 
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 887 
Figure 6: Helios expression and function in infant T cells. a) Percentage of Helios-expressing 888 

cells among conventional (CD3+ γδTCR- FOXP3-) CD4+ and CD8+ T cell subsets from the spleen 889 

in infant (n = 5) and adults (n = 3) by flow cytometry. Statistical comparisons between infant and 890 

adult subsets made by Students’ t-test, where ** denotes p < 0.01, *** denotes p < 0.001. b) 891 

Schematic of CRISPR-Cas9 knockout (KO) of Helios (IKZF2) in infant splenic T cells after 3 days 892 

in culture, overnight rest or activation with anti-CD3 and anti-CD28 antibodies, and single cell 893 

sequencing. c) Histograms showing protein expression of Helios among KO and negative control 894 

infant splenic T cells (γδTCR- FOXP3- CD3+ cells) as determined by intracellular flow cytometry. 895 

Percentage of Helios-expressing cells in each group indicated on the top for both infant donors. d) 896 

msVIPER plots showing relative expression of genes from the Helios regulon (from ARACNe) in 897 

Helios KO relative to negative control cells by scRNA-seq. Genes positively regulated by Helios 898 

(“activated”) are in red and genes negatively regulated by Helios (“repressed”) are in blue. Top 6 899 
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genes from the Infant Tissue factor are labeled. e) Volcano plot showing FDR-adjusted p-value 900 

and log2 fold change in gene expression between Helios-KO and negative control CD8+ 901 

naïve/TCM from infant spleen from the TCR-stimulated condition. Data is averaged over both 902 

donor experiments for plotting and colored for genes with an FDR adjusted p-value < 0.05 and 903 

log2 fold change >1 (red) or <1 (blue) in both donors. f) Heatmap showing Z-scored average gene 904 

expression as log(counts per million+1) of up-regulated genes in Helios-KO versus negative 905 

control CD8+ naïve/TCM from the spleen in both infant donors. 906 
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 908 
Extended Data Figure 3: Differential expression in Helios-KO versus negative control infant 909 

T cells. a,b) Volcano plots showing FDR-adjusted p-value and log2 fold change in gene expression 910 

between Helios KO and negative control CD4+ TEM (a) and CD8+ TEM (b) from infant spleen in 911 

the activated condition. Data are averaged over both donor experiments for plotting and colored 912 

for genes with an FDR adjusted p-value < 0.05 and log2 fold change >1 (red) or <1 (blue) in both 913 

donors. c) Volcano plot as in (a,b) but for CD4+ naïve/TCM. d) Heatmap showing Z-scored 914 

average gene expression as log(counts per million+1) of up-regulated genes in Helios-KO versus 915 

negative control CD4+ naïve/TCM from the spleen in both infant donors. 916 
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