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Differential expression of 
miRNA199b-5p as a novel 
biomarker for sporadic and 
hereditary parathyroid tumors
Sena Hwang1, Jong Ju Jeong   2, Se Hoon Kim   3, Yoon Jung Chung4,6, Sun Yong Song6, 
Yang Jong Lee5 & Yumie Rhee   6

MicroRNAs (miRNAs) are dysregulated in many tumors; however, miRNA regulation in parathyroid 
tumors remains poorly understood. To identify differentially expressed miRNAs between sporadic 
and hereditary parathyroid tumors and to analyze their correlation with clinicopathological features, 
a microarray containing 887 miRNAs was performed; then, the differentially expressed miRNAs 
were validated by qRT-PCR using 25 sporadic and 12 hereditary parathyroid tumors and 24 normal 
parathyroid tissue samples. A receiver operating characteristic curve (ROC) analysis was applied to 
evaluate the utility of the miRNAs for distinguishing parathyroid tumor types. Compared to the miRNAs 
in the normal parathyroid tissues, 10 miRNAs were differentially expressed between the sporadic 
and hereditary parathyroid tumors. Seven of these miRNAs (let-7i, miR-365, miR-125a-3p, miR-
125a-5p, miR-142-3p, miR-193b, and miR-199b-5p) were validated in the parathyroid tumor samples. 
Among these miRNAs, only miR-199b-5p was differentially expressed (P < 0.001); miR-199b-5p was 
significantly downregulated and negatively associated with PTH levels (γ = −0.579, P = 0.002) in the 
sporadic tumors but was upregulated in the hereditary tumors. This miRNA showed 67% sensitivity and 
100% specificity for distinguishing sporadic and hereditary parathyroid tumors. These results reveal 
altered expression of a miRNA between sporadic and hereditary parathyroid tumors and the potential 
role of miR-199b-5p as a novel biomarker for distinguishing these two types of parathyroid tumors.

Primary hyperparathyroidism (PHPT) is a relatively common endocrine disease with a prevalence of three per 
one thousand in the general population1. PHPT occurs sporadically in up to 90% of cases but may also be a major 
component of familial syndromes, such as multiple endocrine neoplasia type 1 (MEN1)2. MEN1 is an autosomal 
dominant inherited disease characterized by the occurrence of several endocrine tumors, particularly in the par-
athyroid gland, endocrine pancreas and pituitary gland3. PHPT shows the highest penetrant expression in this 
syndrome; PHPT occurs in almost 100% of MEN1 patients by the age of 50 yrs, while the MEN1 frequency in 
PHPT patients is estimated to be 1–18%4.

Clinical features, such as age of onset, sex ratio, severity of bone involvement and recurrence rates after par-
athyroidectomy, are different between sporadic and hereditary parathyroid tumors5,6. The discrimination of 
these tumor types is important because the treatment and disease courses are quite different7,8. However, most 
of the current studies have analyzed the PHPT clinical data without distinguishing the different etiologies6,9. 
Theoretically, PHPT in MEN1 patients is present with multinodular hyperplasia of the parathyroid glands; in con-
trast, parathyroid adenoma is present in sporadic PHPT. However, the histopathological discrimination between 
sporadic and hereditary parathyroid tumors is difficult due to a lack of specific abnormalities10.

miRNAs are small non-coding RNAs with roles in a wide range of cellular processes in tumorigenesis11,12. 
Currently, many miRNAs have been demonstrated to be diagnostic and prognostic biomarkers for multiple 
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cancer types13–16. The potential uses of miRNAs for the effective diagnosis and optimal treatment of parathyroid 
tumors have also been investigated17–20. However, there is little data on parathyroid tumor miRNAs that are dif-
ferentially expressed between the sporadic and hereditary forms. The purpose of the present study was to identify 
and analyze differentially expressed miRNAs and to determine their correlation with the clinicopathological fea-
tures of sporadic and hereditary parathyroid tumors. We determined whether miRNA profiling could serve as a 
potential biomarker for distinguishing these tumor types.

Results
Differences in clinical manifestations between sporadic and hereditary parathyroid tumors.  
We compared the clinical and biochemical parameters of sporadic and MEN1 parathyroid tumors. The labo-
ratory results showed higher PTH and calcium levels in patients with parathyroid tumors than in normal con-
trols. Patients with sporadic parathyroid tumors had larger tumor sizes and higher levels of PTH and calcium 
than patients with hereditary parathyroid tumors (Table 1). Consistent with a previous report on the correlation 
between PTH and tumor volume21,22, PTH levels were correlated significantly with tumor size in patients with 
sporadic parathyroid tumors (γ = 0.592, P = 0.002) but not significantly in patients with hereditary parathyroid 
tumors.

Differential expression of miRNA between sporadic and MEN1 parathyroid tumors.  A 
microarray-based supervised cluster analysis for 10 differentially expressed miRNAs in sporadic and hereditary 
parathyroid tumors versus normal parathyroid tissues is shown (FDR < 0.05) (Fig. 1). Four miRNAs, including 
miR-365, miR-125a-3p, miR-574-5p, and miR-1246, were significantly downregulated in sporadic parathyroid 
tumors, whereas miR-142-3p, let-7i, miR-125a-5p, miR-199b-5p, and miR-1274b_v16.0 were significantly upreg-
ulated; miR-193b was downregulated in MEN1 parathyroid tumors.

Next, seven commercially available miRNAs were used to validate the results in sporadic and MEN1 para-
thyroid tumors compared with normal parathyroid tissues using quantitative real-time PCR (qRT-PCR) (Fig. 2). 
The expression levels of miR-193b and miR-365 were lower in sporadic parathyroid tumors than in normal par-
athyroid tissues, and miR-193b expression was higher in MEN1 parathyroid tumors than in sporadic tumors. 

Normal 
parathyroid tissues

Sporadic parathyroid 
tumors

Hereditary 
parathyroid tumors

Patient No. 24 25 12

Age 51.2 ± 10.1 54.8 ± 12.4 48.1 ± 12.1

Sex (M:F) 6:18 10:15 4:8

PTH (pg/mL) 31.5 ± 11.0 238.3 ± 178.9*† 131.3 ± 73.1

Ca (mg/dL) 9.2 ± 0.5 11.6 ± 0.9*† 10.7 ± 1.0*

P (mg/dL) 3.7 ± 0.6 2.6 ± 0.3* 2.7 ± 0.4*

Cr (mg/dL) 0.7 ± 0.2 0.8 ± 0.2 0.8 ± 0.1

Tumor size (cm) — 2.0 ± 1.0 1.7 ± 1.0

Table 1.  Clinical and biochemical characteristics. The data are presented as the means ± SD. One-way between-
groups ANOVA with Tukey’s post hoc test. *P < 0.05 vs. normal; †P < 0.05 sporadic vs. hereditary parathyroid 
tumors.

Figure 1.  Supervised cluster analysis of miRNA levels in parathyroid tumors. N, normal parathyroid 
tissue; S, sporadic parathyroid tumor; H, hereditary parathyroid tumor. The data normalized to RNU6 were 
hierarchically clustered. Red indicates an increase relative to all data in this set, and green indicates a decrease 
relative to all data in this set.



www.nature.com/scientificreports/

3SCIEntIfIC Reports |  (2018) 8:12016  | DOI:10.1038/s41598-018-30484-9

Interestingly, only miR-199b-5p had significantly different expression between the two parathyroid tumor types; 
compared with that in normal parathyroid tissue, miR-199b-5p was downregulated in the sporadic form (median 
fold change of 0.2) and upregulated in the hereditary form (median fold change of 3.9).

Discriminating value of miR-199b-5p in parathyroid tumors.  The diagnostic relevance of 
miR-199b-5p was analyzed using a ROC curve analysis (Fig. 3). miR-199b-5p had a large area under the 
concentration-time curve (AUC = 0.863, P < 0.001) with a sensitivity of 67% and a specificity of 100% for dis-
criminating sporadic and hereditary parathyroid tumors.

Clinical implication of miR-199b-5p in parathyroid tumors.  Given that miR-199b-5p was dif-
ferentially expressed according to the parathyroid tumor type, we further analyzed the correlation between 
miR-199b-5p and PTH levels. Interestingly, different correlations between miR-199b-5p and PTH levels in spo-
radic and hereditary parathyroid tumors were identified: there was a negative association in the sporadic form 
(γ = −0.579, P = 0.002) and no significant correlation in the hereditary form (Fig. 4).

Figure 2.  Validation of most relevant miRNAs by qRT-PCR in parathyroid tumors. Scatterplots show relative 
expression levels of let-7i, miR-365, miR-125a-3p, miR-125a-5p, miR-142-3p, miR-193b, and miR-199b-5p in 
24 normal parathyroid tissues, 25 sporadic, and 12 MEN1 parathyroid tumor samples. Horizontal bars represent 
the median and interquartile range. P values were calculated using the Mann-Whitney U-test.

Figure 3.  Receiver operator characteristic (ROC) curves of miR-199b-5p showing the discrimination between 
sporadic and hereditary parathyroid tumors.
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miRNA target genes and biological function analysis.  To inspect the function of miR-199b-5p in 
parathyroid tumorigenesis, we collected 113 validated miR-199b-5p targets based on miRWalk and miRTarBase 
(data not shown). Gene ontology (GO) analysis of the candidate target genes showed that DNA-templated regu-
lation of transcription, regulation of cell growth, angiogenesis, regulation of transcription from RNA polymerase 
II promoter, regulation of cell proliferation, and response to drug are the most significantly enriched GO terms 
(Table 2). Moreover, KEGG pathway enrichment analysis revealed that the miRNA-targets were significantly 
associated with pathways in cancer, focal adhesion, and central carbon metabolism in cancer (Table 3).

Discussion
The differential diagnosis of sporadic and hereditary parathyroid tumors remains uncertain. To establish a pre-
cise differential diagnosis method for these parathyroid tumors, numerous parameters have been investigated 
from different clinicopathological conditions23–25, but the discrimination remains difficult. Even gene array data 
showed that hereditary parathyroid tumors are clustered with the sporadic form, indicating that these tumors 
may share a similar genetic pathway of tumorigenesis26. Consequently, new biomarkers are needed for the effec-
tive discrimination of these tumor types.

In the present study, miR-199b-5p showed good accuracy for distinguishing sporadic and hereditary par-
athyroid tumors. The differentiation of these tumor types is associated with improved therapeutic outcomes 
and decreased recurrence rates of hyperparathyroidism, which requires the reevaluation of uncertain prog-
noses. These results indicate the need for a more in-depth evaluation of miRNAs in parathyroid tumors. We 
also observed significantly lower expression of miR-199b-5p in sporadic parathyroid tumors, and miR-199b-5p 
expression was negatively associated with PTH levels, indicating a specific role for this miRNA in parathyroid 
tumorigenesis.

Little is known about the different molecular mechanisms between sporadic and hereditary parathyroid 
tumors that could explain the different disease progression profiles and phenotypes. Several responsible genetic 
germline changes associated with parathyroid tumors in familial syndromes, such as MEN1 in MEN 1, RET in 
MEN 2 A, and CDC73/HRPT2 in HPT-JS (hyperparathyroidism-jaw tumor syndrome), have been identified27,28. 
However, these genetic alterations have also been implicated in a subset of sporadic parathyroid tumors. Genetic 
alterations in the MEN1 gene have been reported in 20 to 30% of sporadic parathyroid tumors29. Therefore, the 
presence of constitutively mutated MEN1 alleles is not sufficient to explain the different tumor profiles between 
sporadic and hereditary parathyroid tumors.

Substantial advances in the study of miRNA involvement in parathyroid tumorigenesis have been achieved 
in recent years. Differentially expressed miRNAs between parathyroid carcinoma and adenoma were identified, 
including miR-139, miR-296, miR-222, miR-503 miR-26b, miR-30b, miR-126*, miR-517c, and miR-37217–19. This 
subset of miRNAs was further verified by Hu et al.20. Emerging evidence has shown that even the partial inacti-
vation of tumor suppressors can importantly contribute to tumorigenesis11. In this context, miRNAs can be good 
candidates for the subtle regulation of gene expression based on a continuum model of tumor suppressor gene 
function. Interestingly, this presumption was confirmed, in part, by Luzi et al., showing that miR-24-1 could bind 
to the MEN1 mRNA and inhibit menin expression, closing a feedback loop30. Grolmusz et al. also reported miR-
24 and miR-28 were differentially expressed between sporadic and MEN1 parathyroid tumors31. Subsequently, 
miR-4258, miR-664, and miR-1301 were demonstrated to involve in the MEN1 associated parathyroid tumors32. 
Unfortunately, however, miR-199b-5p was not identified in previous studies. This inconsistent result might be due 
to small sample size because of rarity of MEN1 related samples and genetic heterogenesis of parathyroid tumors20.

Several studies related to miRNAs have shown that miR-199b-5p is a putative tumor suppressor that targets 
several signaling pathways: Hes1 involved in both Notch and Hedgehog pathways in medulloblastoma33 and 
osteosarcoma34, PODXL and DDR1 in acute myeloid leukemia35, HIF-1α in hepatocellular carcinoma36, and 
HER2 and its downstream signaling ERK1/2 and AKT pathway in breast cancer37. Taken together, the overex-
pression of miR-199b-5p could significantly inhibit cell proliferation, migration, and clonogenicity. Interestingly, 
miR-199b-5p could be a fine tuner of target gene expression, suggesting its epigenetic control function during 
tumor development33. Although its exact functions in parathyroid tumors are unknown, miR-199b-5p was found 
to be negatively correlated with serum PTH which associated with tumor size in sporadic parathyroid tumors 
in our study. Moreover, GO analysis suggested that miR-199b-5p targeted genes may play roles in transcription 

Figure 4.  Different correlations between the relative expression of miR-199b-5p and serum PTH levels in 
parathyroid tumors. A negative association of miR-199b-5p and PTH levels was found in sporadic parathyroid 
tumors (γ = −0.579, P = 0.002), but there was no significant correlation for the hereditary parathyroid tumors.
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regulation, regulation of cell growth and proliferation, and angiogenesis. The most significant pathway in KEGG 
analysis was pathways in cancer. Altogether suggests that miR-199b-5p could play a possible role in parathyroid 
tumorigenesis.

A significant direct association between miR-199b-5p and PTH levels in MEN1 parathyroid tumors was not 
observed in the present study, which may be due to the complex interactions between genetic backgrounds and 
other susceptibility factors affected by the MEN1 gene. To investigate the potential effects of miR-199b-5p on 
parathyroid tumorigenesis in different genetic backgrounds, we used bioinformatics to predict a network between 
miR-199b-5p and the MEN1 gene with Ingenuity Pathway Analysis (IPA) software (Ingenuity® Systems version 
8.0, www.ingenuity.com) (Fig. 5). Interestingly, one pathway was identified: gene expression, cellular develop-
ment, cellular growth and proliferation. According to the IPA results, miR-199b-5p directly targets the tran-
scription regulators HIF-1α and SIRT1, which play a key role in promoting cell proliferation38,39 and have known 
interactions with MEN140. However, it is unclear how altered miR-199b-5p expression occurs within the context 
of dysregulated MEN1 in parathyroid tumors. The ability of miR-199b-5p to mediate the expression of these two 
genes may also explain the relationship between miR-199b-5p and MEN1. These complex relations must be con-
firmed in further investigations. There are some limitations to this study. First, the sample size of MEN1-related 
parathyroid tumors is small due to the rarity of this condition. Second, the lack of experimental validation for 
functional studies of miR-199b-5p and its predicted target genes is a further limitation.

In conclusion, we identified that miR-199b-5p is differentially expressed between sporadic and MEN1 par-
athyroid tumors and could be a potential diagnostic marker for distinguishing these tumors in different genetic 
backgrounds. Considering these data on the association between PTH and miR-199b-5p in parathyroid tumors, 
it will be important to focus future studies on the role of miR-199b-5p in parathyroid tumorigenesis.

Materials and Methods
Parathyroid tissue samples.  We obtained a total of 61 parathyroid tissue samples and the associated clin-
ical and histopathological data. Thirty-seven parathyroid tumor tissues were obtained from parathyroidectomy 
procedures. Twelve samples were obtained from MEN1 patients and confirmed to have germline mutations in 
the MEN1 gene. Twenty-four normal parathyroid tissues were used as controls; these tissues were incidentally 
removed during thyroidectomy in hyperthyroidism patients who had no evidence of PHPT. The present study 
was approved by the Institutional Review Board of Severance Hospital (4-2011-0613), and written informed con-
sent was obtained from all patients. All experiments were performed in accordance with the relevant guidelines 
and regulations.

RNA isolation.  Total RNA was extracted from the formalin-fixed and paraffin-embedded (FFPE) sam-
ples using TRIzol reagent (GIBCO, BRL, Gaithersburg, MD, USA) according to the manufacturer’s protocol. 
Following extraction, total RNA was quantified by an ND-1000 spectrophotometer (NanoDrop Technologies, 
Rockland, DE, USA).

MicroRNA microarray.  For the miRNA microarray study, 3 sporadic and 3 MEN1-related parathyroid tum-
ors and 2 normal parathyroid tissue samples were used. The quantitation of mature miRNA expression levels  
in parathyroid tissues was performed using a human miRNA Microarray Release 14.0, 8 × 15 K (Agilent, 
Waldbronn, Germany), which contains 887 human miRNAs with four duplicate probes per miRNA. The hybrid-
ization signals were detected by an Agilent SureScan microarray scanner. The scanner images were analyzed 
by Agilent feature extraction software. Data normalization was performed with Genowiz 4.0.5.6. An adjusted 
P-value controlling for a false discovery rate (FDR) of < 0.05 was used to identify miRNAs that were differentially 
expressed between parathyroid tumors and normal parathyroid tissues.

GO Term Count % P-value Genes

GO:0006351 Transcription, DNA-
templated 35 31.2 3.0E-8

DDX3X, E2F3, NAA15, NAB2, POLR2F, ZFP1, CSNK2A1, CCNL1, 
ERBB2, HES1, HIF1A, MAP3K9, NLK, PAX8, SIRT1, TFDP2, 
ZBTB37, ZNF117, ZNF195, ZNF215, ZNF286B, ZNF394, ZNF415, 
ZNF440, ZNF468, ZNF525, ZNF544, ZNF584, ZNF611, ZNF625, 
ZNF669, ZNF772, ZNF791, ZNF844, ZNF846

GO:0006355 Regulation of 
transcription, DNA-templated 29 25.9 1.8E-7

AKAP17A, SETD2, TSC22D1, ZFP1, HES1, HIF1A, MAP3K9, NLK 
PAX8, ZBTB37, ZNF117, ZNF195, ZNF215, ZNF286B, ZNF394, 
ZNF415, ZNF440, ZNF468, ZNF525, ZNF544, ZNF584, ZNF611, 
ZNF625, ZNF669, ZNF772, ZNF791, ZNF844, ZNF846

GO:0030307 Positive regulation of cell 
growth 5 4.5 2.1E-3 DDX3X TAF9B, CSNK2A1, ERBB2, EXTL3

GO:0001525 Angiogenesis 7 6.2 3.2E-3 NAA15, SETD2, HIF1A, JAG1, PLXND1, SIRT1, VAV3

GO:0045944 Positive regulation of 
transcription from RNA polymerase II 
promoter

14 12.5 1.0E-2 DDX3X, GATA6, JUNB, TAF9B, CCNL1, CDK9, HES1, HIF1A, JAG1, 
LIF, PAX8, PIN1, SIRT1, TFDP2

GO:0008284 Positive regulation of cell 
proliferation 9 8.0 1.0E-2 CHRFAM7A, E2F3, KIT, CSNK2A1, DYNAP, HES1, KAMC2, LIF, 

SIRT1

GO:0042493 Response to drug 7 6.2 1.4E-2 ABCC1, GATA6, JUNB, CDK9, ITGA3, SLC8A1, VAV3

Table 2.  GO functional annotation for validated targets of miR-199b-5p according to biological process.

http://www.ingenuity.com
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Quantitative real-time PCR.  miRNAs were validated in 25 sporadic and 12 hereditary parathyroid tum-
ors and 24 normal parathyroid tissues by qRT-PCR. The levels of mature hsa-let 7i, miR-125a-3p, miR-125a-5p, 
miR-142-3p, miR-193b, miR-199b-5p, and miR-365 were measured using individual TaqMan microRNA assays 
(Applied Biosystems) according to the manufacturer’s instructions. Total RNA (15 ng/15 µL of reaction) was con-
verted into complementary DNA (cDNA) using a TaqMan miRNA reverse-transcription kit (Applied Biosystems, 
Carlsbad, CA, USA); then, the cDNA was subjected to amplification with TaqMan Universal PCR Master Mix and 
an ABI 7500 quantitative PCR machine (Applied Biosystems, Carlsbad, CA, USA). The following commercially 
available and prevalidated TaqMan® primers/probes for stem-loop miRNA were used: let-7i (002172), hsa-miR-
125a-3p (002199), hsa-miR-125a-5p (002198), hsa- miR-142-3p (000464), hsa-miR-193b (002367), 199b-5p 
(000500), and hsa-miR-365 (001020). The expression miRNA levels in the samples were normalized to RNU6. 
miRNA expression levels were analyzed for relative fold-changes from the threshold cycle (Ct) values using the 
2−ΔΔCt method38.

In silico miRNA target prediction and functional analysis.  The validated target genes of miRNA were 
predicted via miRWalk41 and miRTarBase42. GO term and KEGG pathway analysis were performed for the can-
didate genes using the DAVID gene annotation tool (http://david.abcc.ncifcrf.gov). The enrichment P values of 
both GO and KEGG pathway enrichment analysis were set as significant when P < 0.05.

KEGG pathway Count % P-value Genes

Pathways in cancer 7 6.5 0.019 E2F3, KIT, ERBB2, HIF1A, ITGA3, KAMC2, PAX8

Focal adhesion 5 4.5 0.026 ERBB2, ITGA3, LAMC2, VASP, VAV3

Central carbon 
metabolism in cancer 3 2.7 0.048 KIT, ERBB2, HIF1A

Table 3.  KEGG pathway for most significantly associated targets of miR-199b-5p.

Figure 5.  A network predicted to be regulated by miRNA-199b-5p and the MEN1 gene. One predicted network 
regulated by miRNA-199b-5p and the MEN1 gene was “Gene expression, cellular development, cellular growth 
and proliferation”.

http://david.abcc.ncifcrf.gov
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Statistical analysis.  Statistical analyses were performed using SPSS 18.0 software (SPSS, Inc. Chicago, IL, 
USA). Differences in continuous variables between the three groups were tested by one-way ANOVA with Tukey’s 
post hoc test, and the differences between two groups were determined by the independent sample t-test or 
Mann-Whitney U-test. Spearman’s rank correlation coefficients were used to assess the associations between the 
relative miRNA expression and PTH levels. Receiver operating characteristic curve (ROC) analysis was applied to 
obtain the utility of the miRNA for distinguishing between sporadic and hereditary parathyroid tumors. A value 
of P < 0.05 was considered statistically significant.
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