
A basis for comparison: sensitive authentication of stem cell 
derived RPE using physiological responses of intact RPE 
monolayers

Kiyoharu J. Miyagishima1,*, Qin Wan1,*, Sheldon S. Miller1, and Kapil Bharti2

1Section on Epithelial and Retinal Physiology and Disease, National Eye Institute, National 
Institutes of Health, Bethesda, MD, 20892, USA

2Unit on Ocular and Stem Cell Translational Research, National Eye Institute, National Institutes 
of Health, Bethesda, MD, 20892, USA

Abstract

The retinal pigment epithelium (RPE) is a monolayer of highly specialized cells that help maintain 

the chemical composition of its surrounding subretinal and choroidal extracellular spaces. Retinal 

cells (photoreceptors in particular), RPE, and choroidal endothelial cells together help ensure a 

homeostatically stable metabolic environment with exquisitely sensitive functional responses to 

light. Aging and disease of the RPE impairs its supportive functions contributing to the progressive 

loss of photoreceptors and vision. The prevalence of RPE associated retinal degenerations has 

prompted researchers to develop new therapies aimed at replacing the affected RPE with induced 

pluripotent stem cell (iPSC) or embryonic stem cell (ESC) derived RPE. Despite recent attempts to 

characterize stem cell derived RPE and to truly authenticate RPE for clinical applications, there 

remains a significant unmet need to explore the heterogeneity resulting from donor to donor 

variation as well as the variations inherent in the current processes of cell manufacture. 

Additionally, it remains unknown whether the starting cell type influences the resulting RPE 

phenotype following reprogramming and differentiation. To address these questions, we performed 

a comprehensive evaluation (genomic, structural, and functional) of 15 iPSC derived RPE 

originating from different donors and tissues and compiled a reference data set for the 

authentication of iPSC-derived RPE and RPE derived from other stem cell sources.
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A worldwide trend towards increasing prevalence of blinding retinal degenerative diseases 

affecting the retinal pigment epithelium (RPE) imposes a substantial personal and economic 

burden on individuals and society [1, 2]. The RPE is a monolayer of pigmented cells located 

at the back of the eye and forms the outer blood retina barrier. It maintains the volume and 

chemical composition of the subretinal space (SRS), and regulates nutrient and metabolite 

flow to and from the light sensitive photoreceptors of the retina. Several degenerative eye 

diseases including age-related macular degeneration (AMD) result from a disruption of 

structural and functional integrity of the RPE monolayer that subsequently leads to retinal 

degeneration.

Currently no FDA-approved treatments exist for an advanced AMD stage called “dry” AMD 

where RPE cells atrophy leads to photoreceptor cell death. Multiple ongoing efforts utilize 

pluripotent or adult stem cells to generate healthy RPE cells as potential replacement for 

damaged/atrophied RPE monolayer with the goal to prevent photoreceptors loss [3–6]. These 

efforts are founded on successful earlier studies which demonstrated that autologous RPE-

choroid graft translocated from an unaffected peripheral area to the macula could lead to 

improved vision in AMD patients [7, 8]. However, there is currently no acknowledged gold 

standard for what constitutes the defining characteristics of an authentically derived RPE or 

agreement as to how those cells can best be evaluated and selected prior to transplantation.

Pioneering work in stem cell derived RPE replacement therapy was carried out by Schwartz 

and colleagues at Advanced Cell Technology (ACT) - now called Astellas Institute of 

Regenerative Medicine. ACT initiated a clinical trial to assess the safety of a bolus injection 

of human embryonic stem cell (ESC)-derived RPE cells into the subretinal space of patients 

with Stargardt’s macular dystrophy or dry age-related macular degeneration. A preliminary 

report in the journal The Lancet revealed limited functional validation of RPE cells prior to 

injection in patients [9]. The results in patients suggested that the injected cells were well 

tolerated with systemic immune suppression, but functional gains in vision remained unclear 

for this phase I/IIa trial [9, 10]. Two other groups are following a similar approach. Cell Cure 

Neurosciences Ltd., based in Jerusalem is injecting a bolus of ESC-RPE in AMD patients 

while the Neural Stem Cell Institute, in New York is planning to inject adult RPE stem cell 

derived RPE cells in AMD patients. Although the transplantation approach is similar across 

these three potential therapies, they are markedly different in starting cells and in their 

manufacturing processes.

With the continued evolution in technology, other groups have altered the manufacturing 

process and created RPE monolayer transplants instead of cell suspension. These include the 

London Project to Cure Blindness, the California Project to Cure Blindness, the RIKEN, 

Japan initiative, and the National Eye Institute project [3, 11–19]. The London and the 

California projects use ESC-derived RPE monolayers on plastic non-degradable scaffolds 

(polyester and parylene-c respectively) as the transplant support [11, 12, 20–22]. In 
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comparison, the RIKEN initiative (stopped after the first patient transplantation due to 

transplant manufacturing concerns) and the NEI ongoing phase I trial are planning to use 

autologous iPS cells. RIKEN used a collagen-based scaffold and NEI is using a 

biodegradable scaffold, both with the goal of having the RPE monolayer supported by their 

own extracellular matrix (ECM) [13, 23]. Going forward, RIKEN institute and other groups 

(CDI/FujiFilms, Madison WI and RheinCell, Germany) have announced HLA-matched iPS 

cell lines for RPE-based trials for AMD and other retinal degenerative diseases. [Human 

leukocyte antigen (HLA) gene locus encodes for cell-surface proteins of the major 

histocompatibility complex (MHC). MHC class I proteins present intracellular peptides to 

killer T-cells. In the case of foreign cells, if T-cells do not recognize self-MHC on these 

antigen-presenting cells, an immune response is mounted against that cell leading to 

transplant rejection [24–27]]. HLA-matched iPSC work is based on the hypothesis that iPSC-

RPE manufactured from individuals homozygous for class I MHC HLA alleles will have a 

higher probability of immune acceptance in patients [28, 29]. Some of the preliminary work 

published recently from transplantation of HLA-matched monkey iPSC-RPE showed 

promising results [30]. The transplants were able to integrate in the back of the eye and were 

accompanied by minimal adaptive immune response as compared to completely allogeneic 

transplants that resulted in a major immune response against iPSC-RPE transplants.

Several of these ongoing and planned clinical studies are based on acceptable 

characterization of RPE cells including gene expression profile, ability of cells to form tight 

junctions, polarized cytokine secretion, and ability to phagocytose photoreceptor outer 

segments. It is, however, worth noting that in many cases this work was done as part of a 

preclinical analysis to characterize cells grown under laboratory research-grade conditions. 

Most of these procedures have not been validated or benchmarked for use as “release 

criteria” and are not validated for comparative use across multiple different studies. Several 

groups have urged the need for standardize practices and assays to assess adult stem cell, 

ESC or iPSC-derived RPE for clinical applications [31–33]. Currently not known is the extent 

to which variability amongst donor tissues, starting stem cells, the manufacturing process, or 

the mode of transplantation would affect RPE cell characteristics [34]. Whether several of 

these variables affect epigenetics of the cells while they are differentiating into the RPE 

lineage, thus influencing RPE cell fate and ultimately cell function is also unclear [35]. 

Similarly it remains unknown whether the phenomenon of X-inactivation in cells of female 

origin [36], resulting in mosaic expression at the cellular level, would lead to variability 

among cells from a given female donor.

We addressed these questions by evaluating the structure, molecular, and physiological 

differences arising from 15 iPSC derived RPE generated from distinct tissues of several 

different donors. In addition to the well-established practice of verifying the typical RPE 

markers, gene expression profile, tight junction formation, and phagocytic ability, we 

employed several key functional assays (calcium imaging, electrophysiological 

measurements, and vectorial fluid transport) that utilize a purinergic signaling pathway with 

critical physiological implications to verify the structure, functional intactness and integrity 

of whole RPE monolayer rather than single RPE cells [37].
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Our data indicate that iPS cell derived RPE exhibit several key features of primary human 

RPE cells: demonstrating typical RPE morphology and structure, expressing RPE signature 

genes, microRNAs and protein markers [37]. However, we found that the functional analysis 

of the ATP-mediated purinergic signaling pathway provides the most sensitive readout of 

RPE authenticity highlighting variation among RPE derived from different tissues and 

donors [37] (Fig. 1). Most importantly, we were able to identify several iPSC derived RPE 

samples that possessed RPE-like qualities (similar RPE gene expression, key RPE protein 

markers and phagocytic ability) but failed to meet the more stringent functional 

requirements deemed critical for authentic RPE. These stringent functional assays are vital 

to ensure that any stem cell derived RPE are properly polarized and capable of performing 

the RPE’s complex diverse functions to provide therapeutic benefit upon transplantation into 

the subretinal space [37]. Our paper draws attention to the benefit of systematically assessing 

the function of the intact RPE monolayer as an improved release criterion for RPE derived 

from iPS cells or other stem cells for clinical application.

In our recent report we attempt to define the major sources of variability and establish the 

acceptable limits of variability (epigenetic, and technical/manufacturing). We demonstrate 

that the basis for functional variation stems from manufacturing/technical heterogeneity, 

which exceeds epigenetic influences of the starting tissue. Additionally, we found that clonal 

variability among iPSC-RPE derived from female donors is relatively low suggesting that X-

chromosome inactivation does not strongly influence RPE function [37].

In summary, we have compiled a reference data set that encompasses genomic, structural, 

and functional variation and can be used to compare and authenticate any stem cell derived-

RPE derived for therapeutic or research purposes. This data set will allow groups to select 

one release criterion that can be used to compare clinical RPE product across different trials. 

Our work provides a range of values expected for most RPE functions within which RPE 

cells can be deemed authentic. We believe that this data will have significant practical 

benefit and suggest helpful guidelines as a basis for further improvements to the scientific 

community and will help translate RPE into commercially successful clinical applications.
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Abbreviations

iPSCs induced pluripotent stem cells

RPE retinal pigment epithelium

ESC embryonic stem cell

SRS subretinal space

AMD age-related macular degeneration
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ACT Advanced Cell Technology

ECM extracellular matrix

HLA Human leukocyte antigen

MHC histocompatibility complex
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Figure 1. iPSC-RPE Authentication
The inherent variability in populations of iPSCs can influence the formation and 

organization of functional iPSC-derived RPE monolayers. (Top) Sources of variability 

include -predominantly genetic differences between donors, but also epigenetic and clonal 

heterogeneity (technical differences). (Middle) This variability makes it difficult to 

distinguish authentic RPE solely at the molecular or morphological level. (Bottom) This 

paper illustrates how an ATP-dependent signaling pathway that drives critical aspects of 

RPE function can be used to more globally assess the functional characteristics of the entire 

RPE monolayer and authenticate fully differentiated RPE cells.
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