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Abstract

Terrestrial nanoplastics (NPs) pose a serious threat to agricultural food production systems

due to the potential harm of soil-born micro- and macroorganisms that promote soil fertility

and ability of NPs to adsorb onto and penetrate into vegetables and other crops. Very little is

known about the dispersion, fate and transport of NPs in soils. This is because of the chal-

lenges of analyzing terrestrial NPs by conventional microscopic techniques due to the low

concentrations of NPs and absence of optical transparency in these systems. Herein, we

investigate the potential utility of small-angle neutron scattering (SANS) and Ultra SANS

(USANS) to probe the agglomeration behavior of NPs prepared from polybutyrate adipate

terephthalate, a prominent biodegradable plastic used in agricultural mulching, in the pres-

ence of vermiculite, an artificial soil. SANS with the contrast matching technique was used

to study the aggregation of NPs co-dispersed with vermiculite in aqueous media. We deter-

mined the contrast match point for vermiculite was 66% D2O / 33% H2O. At this condition,

the signal for vermiculite was ~50–100%-fold lower that obtained using neat H2O or D2O as

solvent. According to SANS and USANS, smaller-sized NPs (50 nm) remained dispersed in

water and did not undergo size reduction or self-agglomeration, nor formed agglomerates

with vermiculite. Larger-sized NPs (300–1000 nm) formed self-agglomerates and agglomer-

ates with vermiculite, demonstrating their significant adhesion with soil. However, employ-

ment of convective transport (simulated by ex situ stirring of the slurries prior to SANS and

USANS analyses) reduced the self-agglomeration, demonstrating weak NP-NP interac-

tions. Convective transport also led to size reduction of the larger-sized NPs. Therefore, this

study demonstrates the potential utility of SANS and USANS with contrast matching tech-

nique for investigating behavior of terrestrial NPs in complex soil systems.
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Introduction

Increasing global plastic pollution is an emerging threat to marine and terrestrial ecosystems

worldwide [1, 2]. In 2015, global plastic production exceeded 400 million metric tons (MMT),

from which 300 MMT of plastic waste were formed [3]. Approximately 79% of plastic waste

generated has been dispersed into the environment through improper disposal or landfilled

[3]. Macro- and mesoplastics (average particle size, or dp of> 25 mm and 5–25 mm, respec-

tively) undergo further size reduction, resulting in microplastics (MPs) and nanoplastics

(NPs), possessing dp of 1–5000 μm and 1–1000 nm, respectively [1, 4, 5]. A primary environ-

mental concern is that MPs and NPs, due to their hydrophobicity, are likely to carry adsorbed

contaminants such as pesticides, plasticizers, or other potentially harmful agents that can

directly impact the marine and terrestrial organisms through uptake and digestion [6, 7].

Recent studies reported potential harm to marine biota such as microorganisms [8–12], fish

and other organisms [6, 13–16]. MP contamination has been reported in foods, including fish,

bivalves, crustaceans and beverages [17]. However, the effects of MPs and NPs on terrestrial

environments has been rarely studied [1, 18]. Due to their smaller size than average soil parti-

cles, NPs are likely to be mobile and propagate up to higher ranks in food chains via adsorption

through plant roots and subsequent uptake by livestock [19]. NPs are sufficiently small to be

able to enter organs and cross the brain-blood and placental barriers [17]. However, plastic-

soil interactions are not fully understood [11].

A significant secondary source of MPs and NPs in agricultural soils are plastic mulch

films, which are used for the production of vegetables and other specialty crops. They serve

as a barrier applied to the soil surface to prevent weeds and evaporative loss of water, sustain

soil temperature, reduce diseases, and pests [20–22]. The most frequently used plastic mulch

material is polyethylene (PE); however, there are no desirable end-of-life. Recycling pro-

grams are mostly unavailable [20]. Furthermore, PE fragments commonly form as a result

of their embrittlement via environmental weathering, particularly by solar radiation, and

persist in the environment for many years since PE is poorly biodegradable. As an alterna-

tive to PE mulches, biodegradable plastic mulches (BDMs) are designed to be tilled into soil

after the crop harvest, where they are expected to ultimately be decomposed by microorgan-

isms [20–22]. The most prominent polymers used for BDMs are poly(butylene succinate)

(PBS), poly(butylene succinate-co-adipate) (PBSA), and poly(butylene-adipate-co-tere-

phthalate) (PBAT), thermoplastic starch, cellulose, polylactic acid and polyhydroxyalkano-

ates [20, 22].

Although BDMs should be completely catabolized into CO2 and water by soil microorgan-

isms [23, 24], in practice, inconsistencies in their breakdown and biodegradation have been

observed [25–27]. Moreover, biodegradation in soil is typically slow: 90% biodegradation in

two years via standardized lab testing is a criterion recently issued by the European Union for

BDMs [28]. MPs have been detected at levels of 10–20 kg/ha in fields where BDMs were used

continuously for vegetable production [29].

Also, MPs formed from BDMs may be a source of terrestrial NPs [30]. NPs They have not

been detected in soils to date, mainly due to the absence of a robust analytical approach,

although they are likely to occur [11]. NPs derived from BDMs in soil may negatively impact

soil health, fertility, and crop production and would be more likely than MPs to enter the food

production system due to their small size. NPs are expected to behave differently than MPs

due to their anticipated colloidal behavior, e.g., the ability to undergo Brownian motion, and

differently than soil micro- and nanoparticles (which particularly occur in clays) due to their

more hydrophobic nature than most soils. (But, it is noted that adsorption of hydrophobic

molecules onto soils can induce hydrophobicity into soils [31].) In addition, the density of NPs
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for agricultural plastics would significantly lower than soils: 0.5–1 g cm-3 for plastics used in

mulch films versus particle densities of 2–3 g cm-3 for many soils [26, 32].

For risk assessments and remediation, information about the impacts, distribution, behav-

ior, and fate of terrestrial NPs is essential. However, their detection is difficult due to their

nanoscale dimensions and their relatively small concentration compared to soil particulates.

Microscopic detection is possible in soils for fluorescently-derivatized NPs, for instance. How-

ever, the introduction of a fluorophore into an NP may change its properties and introduce

artifacts into the sample analysis. In this paper, we introduce analysis by small-angle neutron

scattering (SANS) and ultra-SANS (USANS) as a potentially valuable approach to measure the

aggregation behavior of NPs in solution and in the presence of soil particulates. Unlike micros-

copy, SANS allows for in situ measurements of size, shape, and agglomeration of NPs and soil,

and neutrons are non-destructive to samples. Another advantage offered by SANS and

USANS methods is the use of neutron contrast matching to isolate the behavior of one nano-

scale component from that of the other components in the neutron beam.

Specifically, this investigation tests the proof-of-concept that SANS and USANS can be

used in conjunction with neutron contrast matching to isolate the signal of NPs from that

attributable to soil. The contrast match point (CMP) of vermiculite microparticles, an artificial

soil similar in particle size to silt [33], was determined via SANS analysis of aqueous suspen-

sions at various H2O/D2O ratios. The CMP refers to the level of deuteration in solvent (water)

that minimizes vermiculite’s signal. Then, suspensions of NPs formed from PBAT-based

BDMs and vermiculite in water at the CMP were examined to investigate their agglomeration

behavior in situ. The effect of ex situ stirring before SANS and USANS analysis was investi-

gated to determine the effect of convective transport on agglomeration. The SANS and

USANS measurements test the hypothesis that the NPs are more likely to agglomerate with

soil than to self-agglomerate. The agglomeration behavior may play a key role in the long-term

fate, transport and biodegradability of terrestrial NPs, especially at the water-soil interface. Par-

ticle agglomeration of NPs would also impact NPs’ migration in surface waters and may

explain the inability to detect NPs by flotation or leaching of soil samples.

Materials and methods

Materials

BioAgri, a black-colored BDM film prepared from Mater-Bi1 (Grade EF04P), a starch-copo-

lyester blend containing PBAT as its principal constituent, was kindly provided by BioBag

Americas (Dunevin, FL, USA). The film referred to as “PBAT” in this paper, possesses an

apparent density of 22.81±0.411 g m-2, a thickness of 29±1.2 μm (i.e., a specific gravity of

0.787), a peak load of 12.05± 0.586 N, an elongation of 295±30% at maximum tensile stress in

the machine direction and a contact angle of 82.5±1.1 [26]. Other physicochemical properties

are given in the cited reference. The original film was provided as a 1.22 m-wide roll and stored

at 20.6 ± 2.1˚C and 61.8 ± 10.6% relative humidity. Deuterium oxide (D2O) was purchased

from Acros (Geel, Belgium). Deionized water was used throughout all experiments. Vermicu-

lite (Mg1.8Fe2+
0.9Al4.3SiO10(OH)2

�4H2O), Grade 4, mesh size 7.9 mm, was purchased from

Uline (Pleasant Prairie, WI, USA). Raw vermiculite particles possessed an average particle size

of 4.65 ± 2.39 mm (L/W ratio 1.39, measured with ImageJ software [34]) and were commi-

nuted with a pestle grinder and sieved through a cascade of four sieves (W.S. Tyler, Cleveland,

OH, USA) with mesh sizes of #20 (840 μm), #60 (250 μm), #140 (106 μm), and #325 (45 μm).

The 45 μm sieving particle fraction was collected, and an average particle size of 38±12 μm was

measured using a model SZ 61 stereomicroscope from Olympus (Shinjuku, Tokyo, Japan)

with a Digital Sight DS-Fi1 integrated with a camera head from Nikon (Shinagawa, Tokyo,

PLOS ONE Analysis of terrestrial nanoplastics via small-angle neutron scattering

PLOS ONE | https://doi.org/10.1371/journal.pone.0235893 July 21, 2020 3 / 14

https://doi.org/10.1371/journal.pone.0235893


Japan). Soil particles of this size were selected because of their effective dispersion in water,

and their high monodispersity was anticipated to simplify interpretation of the SANS data.

Vermiculite particles within the given size range mimic silt [33]. Image analysis was performed

using ImageJ software [34] by converting micrographs into 8-bit images (representing 28 gray

levels) using a proper threshold setting (dividing the image into two or more classes of pixels).

The subsequent analysis included the binary file conversion of the adjusted image. The average

diameter, dp, was estimated using the Image J’s “analyze particles” algorithm. A representative

image of the entire sample was collected and processed though Image J using one replicate.

For each particle size fraction, 250 particles were counted and averaged.

Production of NPs

NPs were prepared from PBAT film according to the optimized procedure [30]. PBAT speci-

men (~1.0 g), cut from BDMs films to dimensions of ~120 mm (machine direction) x 20 mm

(cross direction), were presoaked in water (800 mL) for 5 min, recovered and transferred to a

cryogenic container filled with liquid nitrogen (200 mL) and soaked for 5 min. The frozen

PBAT film fragments (1.0 g) were transferred into an Osterizer type blender (Oster Accurate

Blend 200, Boca Raton, FL, USA), and dry-comminuted for 10 s. Water (400 mL) was added to

the PBAT fragments to form a slurry, and then the blender was operated for 10 min at 10x10-3

min-1. After blending, the slurries were filtered under vacuum through a paper membrane fil-

ter (1 μm mesh) using a Büchner funnel apparatus and then air-dried for 48 h to reduce mois-

ture to< 1%. The resulting MP fragments were possessed dp of 1.47 ± 0.45 mm (ImageJ

analysis of stereomicrographs) [30]. The cryogenically embrittled PBAT MPs were fed to a

rotary mill (Model 3383-L10 Wiley Mini Mill, fitted with screen, Arthur H. Thomas Co., Phila-

delphia, PA, USA) by using sieve sizes of 20 mesh (840 μm) for the first pass and 60 mesh

(250 μm) for the second pass through the mill. The residence time for milling was 20 min per

pass. MPs recovered from milling were fractionated via a cascade of four sieves (W.S. Tyler,

Cleveland, OH, USA) with mesh sizes of #20 (840 μm), #60 (250 μm), #140 (106 μm), and #325

(45 μm). Uniform particle size distributions were achieved by mounting the sieves on an

Eppendorf thermomixer 5350 (Hamburg, Germany) and shaking for 30 min at 300 rpm.

The 106 mm sieve fraction was suspended in an aqueous slurry (4.0 L) via magnetic stirring

at 400 rpm for 24 h, thereby providing a 1% solution of MPs. After stirring, slurries were sub-

jected to the wet-grinding process using a “supermass colloider” (MKCA6-2, Masuko Sangyo,

Tokyo, Japan) at a speed of 1500 rpm and 27 subsequent passes (collection of particles and

reintroduction into the colloider) to provide a uniform particle size reduction. The slurry

recovered from wet-grinding was transferred to a 1000 mL beaker and magnetically stirred for

4 h (300 rpm at 25ºC). The final concentration of the slurry aliquot was 0.37 (wt)%. The resul-

tant particles were vacuum dried at 40˚C for 48 h and stored in an air-sealed container. The

dried NPs possessed an average dp of 366.0±0.65 nm according to dynamic light scattering

(DLS) analysis (bimodal distribution: dp values of 536.8±151.8 nm and 63.8±13.7 nm, with

each subpopulation’s distribution described by a two-parameter Weibull distribution) [30],

and were used for SANS/USANS sample preparation. The NPs’ zeta potential (in H2O) was

determined to be -22±3.6 mV through employment of a Zetasizer Nano instrument (Malvern

Instruments, Malvern, UK) using a Smoluchowski model. According to Atomic Force Micro-

scopic (AFM) analysis, performed using a model Multimode 8 instrument from Bruker (Santa

Barbara, CA, USA), NPs were irregularly shaped and possessed an average roughness of 12.22

±1.55 nm (S1 Fig). The pH (electrical conductivity) value for the 0.5% vermiculite slurry in

water was determined to be 10.14±0.02 (89.57±0.28 μS cm-1) and after the addition of 1% NP

to the 0.5% vermiculite slurry to be 9.54±0.13 (80.03±0.29 μS cm-1).
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Sample preparation for SANS and USANS experiments

SANS samples consisted of slurries containing 1.0 wt% PBAT NPs and/or 0.5% vermiculite in

different ratios of H2O/D2O solvent. Ex situ stirring was employed for several samples by mix-

ing slurries (1.0 mL) in 7 mL borosilicate glass scintillation vials at 400 rpm (radius = 1.5 cm)

for 24 h at 20 ± 1˚C using a 4-sample stirrer (Isotemp 60 Fisher Scientific, Pittsburgh, PA,

USA). Upon completion of stirring, samples were recovered and kept refrigerated prior to

SANS/USANS analysis. Changes in dp due to refrigeration were within 5% (DLS analysis).

SANS and USANS analysis

SANS and USANS experiments were conducted at 22 ± 1˚C using the Bio-SANS and USANS

instruments at Oak Ridge National Laboratory (ORNL), Oak Ridge, TN USA. Further details

on the instrumentation and their settings are provided elsewhere [35–37]. The NP/vermiculite

slurries were loaded into 1.0 mm pathlength titanium cells. To obtain an even distribution of

NPs and vermiculite, the cells were gently rotated in situ in the radial direction using a tum-

bling sample changer at 10 rpm and 5 rpm for SANS and USANS, respectively, to enable uni-

form dispersion in the path of the neutron beam [37]. Moreover, the tumbling speed was set to

match the settling velocity of particles to ensure that the particles remain mostly in the path of

the beam, rather than settle out. The incident wavelengths were at 6.09 Å for SANS and 3.6 Å
for the primary USANS beam. The higher order neutron energies from the Bragg reflections

for USANS were separated from the primary beam (3.6 Å) by time-of-flight, allowing for the

elimination of a major source of background in this class of instrument. The scattering from

these samples was not sufficiently strong for the data to benefit from the additional informa-

tion potentially provided by scattering from these reflections at extremely low Q. SANS experi-

ments employed a single configuration with the main detector at 15.5 m and the wing detector

at 1.4˚ rotation to allow for an effective range for the momentum transfer, Q (= 4 π λ-1 sin[θ/

2], where θ is the scattering angle and λ is the wavelength of incident neutrons, 6.09 Å), of

0.003–0.50 Å-1. USANS employed a 30 m detector distance to produce a Q range of 5 x 10−5–2

x 10−3 Å-1. Typical acquisition times were 0.5–1.0 h and 8–12 h for SANS and USANS, respec-

tively. We did not observe the settling out of particles at any instance during the SANS or

USANS experiments. Although we cannot fully rule out that particle aggregation was induced

by low in situ tumbling, the absence of settling gives us confidence that the impact of this event

was small. Error bars given in the figures for I(Q) are based on counting statistics. The square

root of the counts and subsequently, error propagation, were applied for any downstream cor-

rections to the data.

SANS data (scattered intensity I(Q) vs. Q) were reduced using Mantid software and ana-

lyzed by fitting the data with a nonlinear general scattering law based on form and structure

factors [P(Q) and S(Q), respectively] through an Igor Pro macro written by NIST staff scien-

tists [38]. USANS data was de-smeared using a slit height of 0.042 Å-1 (in units of momentum

transfer) using NIST USANS package (Igor Pro) prior to merging SANS and USANS data.

The merge process was performed via determination of the best power law line that fit both

sets of data [36, 38]. A power law fit was applied to the linear portions of the combined SANS

and USANS data (Porod region, 1/2 Q dp>> 1).

IðQÞ ¼ aQ� b ð1Þ

For 0� β� 3, β is the power-law exponent and represents the mass fractal dimension (Df).

When the power-law exponent varies as 3� β� 4, then surface fractal (Ds) varies as 3� Ds�

2 (Ds = 6– β). β = 3 (or Ds = 3) represents a rough surface, while β = 4 (or Ds = 2) represents a

smooth surface [39].
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After subtraction of Eq 1, the resultant “excess” data (I(Q)−αQ−β) was fitted using form fac-

tor-structure factor modeling [40].

The structure factor, simulating particle-particle interactions, was assumed to be 1.0 due to

the small volume fraction of NPs. A polydisperse sphere form factor was employed, providing

the average particle radius, R, the polydispersity of the radius (based on a Schulz distribution)

pd, and the volume fraction of dispersed phase ϕ as outputs and the scattering length densities

of PBAT and water at different levels of deuteration as inputs [41]. Bincoher was set equal to 0.0

since incoherent contribution was subtracted during reduction of data. The average particle

diameter of the NPs, dp, is therefore equal to 2R.

Results and discussion

Determination of the contrast match point (CMP) for vermiculite

Slurries of vermiculite (0.5%) in water consisting of various proportions of D2O were analyzed

by SANS to determine the contrast match point. As shown in Fig 1, the scattered intensity, I
(Q), decreased as the D2O fraction was increased up to 60% v/v; then, further increases in D2O

concentration increased I(Q). The data reflects a power law relationship (per Eq 1), with β
decreasing from 3.4 to 2.9 as the D2O content was decreased from 100% to 60% and increased

from 0% to 60%, approaching a minimum at 60% D2O (Fig 1A). The values of β are compara-

ble to the values reported for small-angle x-ray scattering analysis of vermiculite [42] and rep-

resent a rough surface.

We determined the CMP for vermiculite by plotting the square root of I(Q) in the low-Q
region (0.004 Å-1) vs. volume fraction of D2O in the solvent. According to this plot (Fig 1B),

the CMP is ~67% D2O/33% H2O, corresponding to a neutron contrast of 4.08 x 10−6 Å-2. Fig

1A contains the SANS data at the CMP. Although I(Q) for vermiculite is decreased nearly

100-fold at the CMP relative to 100% H2O and over 10-fold compared to 100% D2O, the signal

is not entirely removed. The inability to completely suppress the scattering is likely a result of

the spatial heterogeneity of vermiculite’s scattering length density, due to heterogeneity in the

particle density and chemical composition.

Effect of ex situ stirring and vermiculite on NP structure and

agglomeration

SANS and USANS analyses at the CMP determined the impact of ex situ stirring (24 h) on the

agglomeration of NPs in the presence of vermiculite. The addition of vermiculite led to a slight

decrease of I(Q), confirming that contrast matching minimized the scattering attributable to

vermiculite and that NPs were removed from the neutron beam through agglomeration with

vermiculite (Fig 2A, inset). The power-law exponent β (Eq 1) did not change appreciably with

stirring: 3.5±0.1, a value that suggests the surface characteristics of the NPs are rough (Fig 2B).

Ex situ stirring increased the intensity of the SANS signal of PBAT NPs, a result suggesting

that convection improved the dispersion of the NPs by disrupting the formation of large

agglomerates. An alternate explanation would be that convection increased the extent of sol-

vent penetration into NPs and their agglomerates. The addition of vermiculite reduced the

extent of the increase for I(Q).
The subtraction of the power law relationship (Eq 1) from I(Q), referred to herein as

“excess” scattering, reveals the presence of scattering intensity oscillations of NPs and their

agglomerates for both USANS and SANS data (Fig 3A and 3B). The “excess” oscillations were

fitted with spherical form factor models (Schultz distribution to account for polydispersity in

the radius) as a first approximation. Values of the volume fraction of dispersed phase (i.e., of
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NPs; ϕ), dp, and polydispersity (pd) are given in Table 1. The “excess” curves at high-Q from

SANS likely correspond to individual NPs, with dp being ~51.7 nm (Table 1). According to

DLS analysis, NPs (in the absence of vermiculite) possessed a bimodal size distribution, with

the smaller size subpopulation possessing dp of ~50–65 nm, comparable to the SANS-derived

Fig 1. Determination of the neutron contrast match point for vermiculite (0.5 wt % dispersed in H2O/D2O

mixtures). (A) I(Q) vs Q data, (B) square root of I(Q) at Q = 0.004 Å-1 vs D2O volume % in water. Error bars for Fig A

are provided in S2 Fig.

https://doi.org/10.1371/journal.pone.0235893.g001
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value [30]. The absence of variance for the “excess” oscillations with ex situ stirring and the

addition of vermiculite suggests the smaller-sized subpopulation of NPs are well dispersed in

water and are unlikely to form agglomerates (Fig 3A and Table 1).

The “excess” USANS data reflects the presence of dispersions of dp> 300 nm (Fig 3A and

Table 1), which likely correspond to the larger, dp = 537 nm, sub-population of the bimodal dis-

tribution observed by dynamic light scattering [30]. A shoulder at low-Q (0.5–1.0 x 10−4 Å -1) is

Fig 2. Effect of ex situ stirring and the presence vs. absence of vermiculite (V) on SANS data for NPs at the

contrast match point for vermiculite (67% D2O in water; cf. Fig 1). NPs and V were present in the suspension at 1.0

wt% and 0.5 wt%, respectively. (A) SANS and USANS data (inset: an expansion of the data at low Q) and (B) power

law fitting (Eq 1) of data in Fig A [I(Q) = αQ-β, where β = 3.4–3.6]. For Fig B, I(Q) was multiplied by a constant (as

given in the legend) to improve visualization. Error bars are smaller than the size of the symbols.

https://doi.org/10.1371/journal.pone.0235893.g002
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believed to represent NP self-agglomerates of the larger sized NP subpopulation (8.5 μm = dp).
Moreover, vermiculite particles possess a dp of ~38 μm, which would produce a USANS signal

for its agglomerates at a lower Q value than available through the USANS instrument. Ex situ
stirring diminished the low-Q “excess” shoulder, a result suggesting that convection will break

apart the NP-NP attractions that lead to agglomeration (Fig 3A).

The oscillations within the Q range of 0.2–1.4x10-3 Å-1, likely reflecting NPs of the larger

subpopulation, undergo a decrease in size and an increase of pd upon ex situ stirring (Fig 3A

Fig 3. Schulz polydisperse sphere form factor model fitting of (A) USANS and (B) SANS “excess” scattering data (I(Q)
from Fig 2A minus power law fit from Fig 2B). Model parameters are given in Table 1. V and NP refers to vermiculite

and nanoplastics, respectively. Experimental conditions are given in Fig 2.

https://doi.org/10.1371/journal.pone.0235893.g003
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and Table 1), suggesting the NPs undergo size reduction. It is unclear if this trend may be attrib-

utable to the breakup of agglomerates composed of smaller-sized NPs by convection. The slight

increase of ϕ for the smaller-sized (dp = 51 nm) NP subpopulation with ex situ stirring (Table 1)

suggests the latter event may occur to a small extent. Although NPs of this subpopulation

decreased in size, the USANS scattering peak increased in the low-Q range (0.2–0.4 x10-3 Å-1),

suggesting that ex situ stirring increased the effective dispersion of larger-sized NPs. The

increase of ϕ (Table 1) for the main USANS oscillation peaks supports this hypothesis. The

USANS “excess” oscillations for NPs in the presence of vermiculite after ex situ stirring are

lower than in the latter’s absence (e.g., ϕ decreased 2-fold), suggesting that NPs of the larger sub-

population form agglomerates with vermiculite (particularly larger NPs thereof, noted by the

decrease of dp) (Fig 3A and Table 1). Therefore, the data demonstrate the direct interaction

between NPs and soil particulates, the extent of which is modulated by convection and increases

for large-sized NPs.

Conclusions

This paper describes a preliminary study to demonstrate the potential utility to employ SANS

and USANS with neutron contrast matching to investigate the behavior of NPs in terrestrial

systems. We determined the CMP of vermiculite, an artificial soil, providing conditions where

the scattering contribution of vermiculite would be minimized and investigated the impact of

soil and convective transport on NPs derived from a biodegradable plastic mulch film, com-

posed of PBAT. Results suggest that NPs of larger size self-associate and also aggregate with

soil, with convection minimizing the agglomeration. The larger-sized NPs (which may par-

tially consist of NP aggregates) undergo size reduction under convection, while smaller-sized

NPs (51 nm) remained intact.

NPs are an emerging threat to soil, particularly agricultural soils, due to their involvement

with producing the world’s food supply and the prominence of plastic in vegetable and fruit

production systems, particularly as mulch film. Their hydrophobicity is known to drive NPs’

adsorption of toxicants such as pesticides and phthalate-based plasticizers, which can enter

food supplies. Even biodegradable plastics, known to form MPs, will likely form NPs that will

reside in the soil for at least several months. There exists a critical gap in fundamental

Table 1. Results from model fitting of SANS+USANS “excess” data plotted in Fig 3a,b.

Composition c Q range, Å-1 ϕ x 104 dp, nm pd
NP, 0 hr 0.5–1.0x10-4 9.7±1.2 8710±20 0.01±0.01

NP+V, 0 hr 0.5–1.0x10-4 9.3±1.2 8330±20 0.08±0.01

NP, 0 hr 0.4–2.4x10-3 12.0±1.0 1060±40 0.11±0.03

NP, 24 hr 0.2–1.4x10-3 14.0±1.0 792±40 0.32±0.03

NP+V, 24 hr 0.2–1.4x10-3 7.98±1.0 287±30 0.84±0.05

NP, 24 hr 0.5–1.7x10-2 0.30±0.05 51.0±3.0 0.00±0.01

NP+V, 0 hr 0.5–1.7x10-2 0.39±0.05 51.0±3.0 0.00±0.01

NP+V, 24 hr 0.5–1.7x10-2 0.40±0.05 51.0±3.0 0.00±0.01

a Obtained from fitting “excess” data with a form factor based on polydisperse spheres with radii possessing a Schulz

distribution. The structure factor was assumed to be�1.0. The scattering length density of the spheres (vermiculite)

and solvent (D2O/H2O 67/33 v/v) were held constant at 1.60 and 4.08 x 10−6 Å-2; the incoherent background was

assumed to equal zero because all incoherent background was subtracted during data reduction
b column headings: ϕ and dp are the volume fraction and average diameter of dispersed NPs, respectively; pd =

polydispersity index (for radii); c NPs and V represent PBAT NPs (1 wt%) and vermiculite (0.5 wt%), respectively.

https://doi.org/10.1371/journal.pone.0235893.t001
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understanding of terrestrial NPs and their potential impact on soil fertility, terrestrial organ-

isms such as earthworms, and microbial communities, as well as their long-term fate and

transport (including to groundwater). Such information is necessary to design strategies for

mitigation. NPs are challenging to investigate in soils due to their low concentration and the

solid-phase nature of the system. SANS and USANS, with contrast matching, may serve as a

robust approach, that will allow for direct measurements of size and agglomeration behavior

of NPs under environmentally relevant conditions. We are currently evaluating the effect of

NP concentration and ex situ stirring time on the agglomeration of NPs and soil by SANS and

USANS using the approach described herein.
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