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Abstract 

Background:  Sepsis, defined as life-threatening organ dysfunction caused by a dysregulated host response to infec-
tion, has become one of the major causes of death in Intensive Care Units (ICUs). The heterogeneity and complexity of 
this syndrome lead to the absence of golden standards for its diagnosis, treatment, and prognosis. The early predic-
tion of in-hospital mortality for sepsis patients is not only meaningful to medical decision making, but more impor-
tantly, relates to the well-being of patients.

Methods:  In this paper, a rule discovery and analysis (rule-based) method is used to predict the in-hospital death 
events of 2021 ICU patients diagnosed with sepsis using the MIMIC-III database. The method mainly includes two 
phases: rule discovery phase and rule analysis phase. In the rule discovery phase, the RuleFit method is employed to 
mine multiple hidden rules which are capable to predict individual in-hospital death events. In the rule analysis phase, 
survival analysis and decomposition analysis are carried out to test and justify the risk prediction ability of these rules. 
Then by leveraging a subset of these rules, we establish a prediction model that is both more accurate at the in-hospi-
tal death prediction task and more interpretable than most comparable methods.

Results:  In our experiment, RuleFit generates 77 risk prediction rules, and the average area under the curve (AUC) of 
the prediction model based on 62 of these rules reaches 0.781 ( ±0.018 ) which is comparable to or even better than 
the AUC of existing methods (i.e., commonly used medical scoring system and benchmark machine learning models). 
External validation of the prediction power of these 62 rules on another 1468 sepsis patients not included in MIMIC-III 
in ICU provides further supporting evidence for the superiority of the rule-based method. In addition, we discuss and 
explain in detail the rules with better risk prediction ability. Glasgow Coma Scale (GCS), serum potassium, and serum 
bilirubin are found to be the most important risk factors for predicting patient death.

Conclusion:  Our study demonstrates that, with the rule-based method, we could not only make accurate predic-
tion on in-hospital death events of sepsis patients, but also reveal the complex relationship between sepsis-related 
risk factors through the rules themselves, so as to improve our understanding of the complexity of sepsis as well as its 
population.
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Background
Introduction
Sepsis is defined as life-threatening organ dysfunc-
tion caused by a dysregulated host response to infec-
tion, according to the Sepsis-3 definitions [1], and is 
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one of the leading causes of death in ICUs in the U.S. 
Severe sepsis as well as septic shock can be viewed as 
the more severe stages of sepsis and are both associated 
with a dramatic increase in mortality. It is reported in 
2001 that each year in the U.S., nearly 750,000 patients 
are identified with sepsis or sepsis-related disease and 
over half of them are admitted to ICU. Among these 
ICU cases, 20-30% died in the hospital [2]. Moreover, 
sepsis and related disease have posed a great challenge 
to the already strained finances of hospitals: in 2011, 
about 5.2% ($20 billion) of total U.S. hospital costs 
were related to sepsis [3], which ranked top in the four 
most costly conditions in the hospital [4]. More impor-
tantly, the incidence of sepsis increased by 13% annu-
ally between 2004–2009, based on four national data 
sources [5].

Being a syndrome, rather than a specific illness, sepsis 
is still uncertain with respect to its pathology. It is rec-
ognized to be associated with many abnormalities in the 
body systems and functions like cardiovascular, neuronal, 
metabolic systems and coagulation, along with early acti-
vation of both pro- and anti-inflammatory responses 
[1]. In addition, the complexity of sepsis ascends as sep-
sis-affected individuals show diverse manifestations in 
aspects of age, source of infection, underlying comorbidi-
ties, and concurrent injuries. The heterogeneity and com-
plexity of sepsis lead to the absence of gold standards for 
its diagnosis, treatment, and prognosis [6].

Prediction of clinical outcomes of patients with sepsis 
in ICUs is a vital research task. Length of hospital stay or 
ICU stay [7, 8], in-hospital mortality [9, 10], and readmis-
sion [8, 11] are often considered as the outcomes of inter-
est. The early prediction of these outcomes are not only 
associated with improving the well-being of patients, 
but also relates to the evaluation of quality-of-care of 
health centers, the performance of healthcare practition-
ers, and the effectiveness of clinical decision making [12, 
13]. Improved predictions help to stratify ICU patients 
into different risk categories and contribute to personal-
ized care and treatment. Though many efforts have been 
made in this direction [14–17], improved mortality pre-
diction remains a challenge due to the complexity and 
heterogeneity of sepsis.

In this study, we apply a rule-based method on a sep-
sis data set to predict the in-hospital death events of the 
sepsis population. We use RuleFit [18] to generate a set 
of rules and based on part of these rules, we build our 
prediction model of in-hospital mortality risk. Both the 
internal validation and external validation demonstrate 
that the rules we discover are not only capable of mortal-
ity prediction for sepsis patients but are also informative 
in helping us understand the complexity of sepsis and 
its population. For better report of the entire study, we 

provide a TRIPOD Checklist with added text excerpts or 
relevant remarks in Additional file 2.

Related work
Roughly speaking, existing research on prediction of 
sepsis mortality could be categorized into two main 
approaches: regression-based scoring systems and 
machine-learning-based prediction models. A number 
of scoring systems have been developed to assist the 
assessment of disease severity as well as risk of mortal-
ity of critically ill patients, among which APACHE II [19], 
SAPS II [20], SOFA [21], and MODS [22] are the most 
frequently used.

Among the scores mentioned above, some are gen-
eral risk-prognosis systems aimed at assessing the over-
all health condition of patients, such as APACHE II and 
SAPS II, whereas others like SOFA, MODS, and several 
newly developed prediction models, say, The New York 
Sepsis Severity Score [23], are developed specifically for 
patients with sepsis or related diseases. In general, the 
ability of general scoring systems to predict sepsis patient 
prognostic outcomes is not always reliable, consistent, 
and sufficiently accurate compared with that of the spe-
cific systems, which has been acknowledged in many 
studies [14, 15, 24]. Moreover, a big concern with all these 
scoring systems is that they are mainly derived via regres-
sion models that rely on quite strong assumptions such as 
the linearity of model, additive effects (rather than inter-
actions) of the risk factors on the outcome and identical 
normal physiologic values at baseline for all patients [25]. 
Thus, these models are mainly used to stratify patients 
into different risk categories and make predictions on the 
average population [11, 26].

For the purpose of better prediction, many machine 
learning models have been applied on a large number 
of potential risk factors of sepsis mortality in determin-
ing the outcomes, such as decision tree [10], random for-
est [17], neural network [10], naïve Bayes [16], gradient 
boosting [27], and ensemble learning method [9]. These 
models are shown to outperform traditional scoring sys-
tems in terms of prediction accuracy and reliability. Nev-
ertheless, compared with the traditional scoring systems, 
machine learning models are usually black boxes the 
results of which are not easy to interpret [28]. As inter-
pretability has become a crucial concern for healthcare 
applications of machine learning [28, 29], it is impera-
tive to elevate our understanding of the disease while 
we strive for better prediction performance, in order to 
establish a prediction model more acceptable, feasible, 
and pragmatic to healthcare practitioners. Therefore, we 
aim to predict sepsis in-hospital mortality with compa-
rable accuracy to the above baseline models and at the 
same time, achieve better interpretation.
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Methods
Data
We use data from the Medical Information Mart for 
Intensive Care database (MIMIC-III), a freely accessible 
critical care database [30]. This database contains infor-
mation related to patients admitted to ICU at a large 
tertiary care hospital between 2001 and 2012 in the U.S. 
There are records of 46,520 patients and 58,976 admis-
sions in the database, including information like patient 
demographics, vital sign measurements, laboratory (lab) 
test results, procedures, medications, caregiver notes, 
imaging reports and others.

The MIMIC-III database has been used in a broad 
range of research topics such as the impact of certain 
factors on patients’ clinical outcomes [31], the develop-
ment and validation of ICU severity scoring systems and 
the comparison of different systems [13, 32]. Machine 
learning, deep learning, reinforcement learning as well 
as natural language processing applications on records 
of various forms [33–36]. As to sepsis, researchers have 
been making great efforts to improve the early detec-
tion, diagnosis, and treatment of this syndrome and there 
have been a number of relevant studies using MIMIC-III 
[13, 35, 37–39]. In order to find important risk factors 
and informative rules for the prediction of in-hospital 
death of sepsis patients, we extract the sepsis data set 
from MIMIC-III for the purpose of our study. The data 
set involves a subset of MIMIC-III patients who are diag-
nosed with sepsis, severe sepsis, or septic shock based on 
the ICD-9 [40] code suggested in [1]. The patient inclu-
sion criteria of our cohort are: (i) age ≥ 16 ; (ii) only has 
one hospital admission record and one ICU admission 
record; (iii) with ICD-9 code of 99591 for sepsis, 99592 
for severe sepsis, or 78552 for septic shock. We manu-
ally collate the data into 2021 observations (patients) 
with 19 predictors, 14 of which are physiological meas-
urements or lab test results shown in Table  1. Missing 
values are imputed with the k-nearest neighbors imputa-
tion method implemented with R package DmWR2 (the 
number of nearest neighbours is set to be 5). The worst 
value of each predictor within 24hr of ICU admission (for 
definition and computation, refer to [41] and Additional 
file 3) is computed and used to fit the RuleFit model. The 
outcome in our study is defined to be any death events of 
patients from the second day of ICU admission to hospi-
tal discharge. Table  1 shows the descriptive statistics of 
the measurements used in our sepsis data set. Note that 
the selection of predictors as well as the way we extract 
the features from the continuous records are for illus-
tration and example only. More informative predictors 
such as comorbid conditions, source of infection can be 
included if available. Apart from the worst values, other 
common feature extraction standards like initial values, 

quantiles of predictors, or a mix of these standards can 
be employed based on specific scenarios.

Overview of the rule‑based method
We use a rule-based method to predict the in-hospital 
death events of sepsis patients in our study. Figure  1 
shows the workflow of the method. In the rule discov-
ery phase, RuleFit [18] is used to discovery potential and 
possible rules from the data and a rule set A is produced. 
Then in the rule analysis phase, we analyze rules in the 
rule set A and obtain a more refined rule set B, the rules 
of which are more discriminative and informative than 
those of rule set A on the task of risk prediction. Further 
detailed analysis could be made on rule set B with expert 
knowledge. Now we give a detailed description of our 
workflow.

Table 1  Baseline statistics of the sepsis subjects

In-hospital death Survivors

N= 675 N= 1346

Mean (SD) Mean (SD)

Demographics
Age 66 (17.8) 69.7 (15.5)

Gender n(%)

Male 370 (54.8%) 716 (53.2%)

Female 305 (45.2%) 630 (46.8%)

Ethnicity n(%)

Asian 22 (3.2%) 51 (3.8%)

Black 46 (6.8%) 115 (8.5%)

Hispanic/Latino 13 (1.9%) 44 (3.3%)

White 473 (70.1%) 973 (72.3%)

Others 121 (17.9%) 163 (12.1%)

Admission info (day)
Length of hospital stay 8.0 (10.3) 11.9 (10.7)

Length of ICU stay 6.6 (8.3) 7.6 (9.4)

Measurements
Glasgow Coma scale 11 (3) 9(3)

Temperature 37 (1.6) 36.4 (1.8)

Mean arterial pressure 68.8 (46.8) 64.9 (56.8)

Arterial pH 7.3 (0.1) 7.2 (0.2)

Heart rate 98.4 (33.1) 101.7 (43.3)

Respiratory rate 20.3 (16) 17.5 (19.5)

Sodium 139.1 (6.6) 137.7 (7.3)

Serum potassium 4 (0.7) 4.4 (0.9)

Creatinine 1.7 (1.5) 2.3 (1.7)

Hematocrit 30.8 (5.8) 30.6 (6.7)

White blood cell count 15.6 (10.7) 17.2 (20.8)

Albumin 2.6 (0.4) 2.5 (0.5)

Bilirubin 1.8 (3) 3.5 (6)

Platelets 216.2 (139.8) 197 (152.8)
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As its name implies, the rule-based method builds on 
multiples rules. A rule is defined as a logic IF-THEN 
statement: IF condition THEN conclusion [42]. Take 
the computation of qSOFA (a quick scoring prompt 
used to identify patients with suspected infection who 
are at greater risk of clinical outcomes outside the ICU) 
[1] as an example: If the systolic blood pressure, respira-
tory rate, and GCS of a patient are not greater than 100 
mmHg, not less than 22 bpm, and less than 15 respec-
tively, then the qSOFA score of the patient is three points. 
Also, we can represent this statement with a tree form as 
illustrated in Fig. 2 where the path from the root to the 
leftmost leaf node is equivalent to the statement.

Rules are a natural way to represent information and 
knowledge. Rules are easily understood, repeated, and 
modified by human experts [42], which we suppose is of 
great significance for healthcare studies and practices, 
especially on complex disease like sepsis: Rules may help 
us understand the complexity of sepsis by revealing dif-
ferent risk patterns of patients (cut-off values of risk 
factors and unknown interactions between these risk fac-
tors). By making the prediction more interpretable, rules 
enhance our understanding of a patient’s adverse out-
come. In summary, rules help us understand sepsis and 
the population in a more interpretable way.

Rule discovery via RuleFit
In our study, we use the RuleFit method to mine the hid-
den rules which are indicative of patient’s in-hospital 
death. RuleFit has many advantages over other rule gen-
eration methods (e.g., decision tree): (i) RuleFit is able to 
discover a large number of rules from high-dimensional 
data and in a computationally efficient way; (ii) Rule-
Fit can automatically remove redundant and irrelevant 
rules from a pool of rules; (iii) RuleFit offers multiple 
methods to make its result more interpretable, such as 
rule importance, input variable importance, etc. These 
merits cater to our research expectation: we aim to dis-
cover high-quality risk-predictive rules from a quantity of 
potential rules revealing the complexity of sepsis mortal-
ity prediction.

In Rulefit, rule is formulated as a mapping: 
r(x) =

∏p
j=1 1xj∈sj , where x = (x1, . . . , xp)

T
∈ R

p denotes 
the p-dimensional feature (input variables) and xj denotes 
the j-th element of x . sj is a specified subset of all possi-
ble values of xj and 1 is the indicator function. Rule r(x) 
maps an input x into {0, 1} where 1 means the rule is sat-
isfied and 0 otherwise. Given an input case x (without 
missing elements), we are able to determine whether a 
given rule is satisfied or not. For instance, in the exam-
ple of Fig 2, we could define s1 = {x ∈ N |x ≤ 100} , 

Fig. 1  Workflow of the rule-based method

Fig. 2  Rule of qSOFA computation. The path from the root to the 
leftmost leaf node of the tree represents the rule of scoring three 
points of qSOFA
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s2 = {x ∈ N |x ≥ 22} , s3 = {x ∈ N |x ≤ 15} (N represents 
the natural numbers) to be the condition of the rule. Sup-
pose the systolic blood pressure, respiratory rate and 
GCS of a patient are 80 mmHg, 40 bpm, and 10 respec-
tively, i.e., x = (80, 40, 10)T , then we obtain r(x) = 1 , 
which means the rule is satisfied and the qSOFA of this 
patient is three points.

Building on random forest [43] and LASSO regression 
[44], the RuleFit method [18] first derives a large num-
ber of rule ensembles from random forest in the rule gen-
eration step and then selects a subset of rules from the 
rule ensembles to form a more refined rule set in the rule 
pruning step. We then show in detail how RuleFit works.

Rule generation
In the rule generation step, random forest is used to dis-
cover possible rules from the data set. Random forest is 
an ensemble learning method for prediction tasks which 
can deal with high-dimensional data: it first bootstraps 
the original data set and generates multiple new data 
sets, each of which represents a relatively homogeneous 
sub-population of the original data set. Then on each 
data set, a decision tree is established by a subset of ran-
domly selected risk factors and each tree could be viewed 
as a set of rules characterizing a sub-population, as 
shown in the example of Fig. 2. In this way, random for-
est is able to capture traits of the whole population and 
search for potential rules over all risk factors. As the gen-
eration mechanism for random forest trees is exhaustive, 
the number of rules generated goes exponentially with 
the number of risk factors. Besides, trees in random for-
est are constructed in a random way. For these reasons, 
many rules employed in the trees may be redundant and 
irrelevant and need to be removed in the subsequent rule 
pruning step.

Rule pruning
The rule pruning step could be viewed as a rule selec-
tion mechanism. Due to possible over-fitting of random 
forest that might derive a large number of unnecessary 
rules, LASSO regression is integrated in RuleFit as a 
way to select the minimum set of risk-predictive rules by 
using all rules generated in the previous step as predic-
tors. As LASSO regression is an effective sparse learning 
approach to select the most critical variables from a large 
number of candidate variables, it could also be used to 
select a subset of high-quality of rules from a pool of can-
didate rules.

Since the outcome in our study is in-hospital death 
events, a binary outcome ( y ∈ {−1, 1} ), we use sparse 
logistic regression (an extension of the original LASSO 
regression) [45] in our model. Suppose random forest 
generates a rule set with q rules which are denoted by 

r = [r1, r2, . . . , rq]
T
∈ R

q . Then the conditional probabil-
ity of y given the risk factors of a patient x ∈ R

p is:

where w ∈ R
q is the weight vector for the rules, and b is 

the intercept. Suppose we have N observations {xi, yi}N1=1 , 
then the average logistic loss (also called the negative log 
likelihood function) is defined as:

By adding ℓ1-norm penalty to w ( ℓ1-norm is defined as 
the sum of the absolute values of all elements in w ), we 
obtain the ℓ1-regularized logistic regression problem:

In problem (3), the first term is the loss term used to 
measure the model fit and the second term is the pen-
alty term used to measure the complexity of the model 
where � > 0 is the regularization parameter controlling 
the balance between model complexity and model fit: a 
larger � makes a more sparse w and thus fewer rules are 
selected. � needs tuning in order to avoid over-fitting as 
well as enhance sparsity. In this way, the most risk-pre-
dictive subset of rules would be selected. A number of 
efficient algorithms could be used to solve problem (3), 
such as subgradient-based algorithms like proximal gra-
dient algorithms [45], etc.

In conclusion, as an integration of random forest and 
LASSO, RuleFit is a computationally efficient method to 
generate a number of predictive rules from high-dimen-
sional data. It works by discovering rules with random 
forest and pruning rules with LASSO regression. More 
theoretical details on RuleFit can be found in [18]. Rule-
Fit could be easily implemented with R package pre [46] 
which also provides automated cross-validation proce-
dures to tune parameters in the model, such as the maxi-
mum depth of tree, average number of terminal nodes, 
and the penalty parameter �.

Rule analysis
The RuleFit method integrates random forest and LASSO 
regression [44] to generate a quite refined rule set which 
is predictive of the outcome of interest. However, due to 
the random tree generation algorithm and fake correla-
tions between variables, RuleFit does not guarantee all 
rules in the refined rule set are informative and discrimi-
native, even with the utility of LASSO. Therefore, the 
rules discovered by RuleFit are only possible rules that 

(1)p(y|x) =
1

1+ exp(−y(wT r(x)+ b))
,

(2)f (w, b) = −
1

N
log

N∏

i=1

p(yi|xi)

(3)

min
w,b

1

N
�N

i=1log(1+ exp(−yi(w
T
r(xi)+ b)))+ �||w||1.
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need to be further analyzed in terms of how well they 
perform in distinguishing patients of different death risk. 
In the rule analysis phase, we analyze the rule set discov-
ered by RuleFit in three aspects: firstly, survival analysis 
to see if each of the rules is able to significantly distin-
guish the higher risk group of patients from the lower 
risk group. Secondly, decomposition analysis to investi-
gate the role of each risk factor plays in each rule. Thirdly, 
prediction analysis to test the overall prediction power of 
the rules which are discriminative and informative.

Survival analysis
As each rule in the rule set discovered by RuleFit differ-
entiates two groups of population (the higher risk group 
and the lower risk group), we can use Kaplan-Meier 
(KM) survival analysis and log rank test [47] to evaluate 
the discriminative power of each rule in distinguishing 
the higher risk group from the lower risk group. In the 
medical area, KM survival analysis is often used to esti-
mate the survival function of certain patients and reflect 
their survival fraction over time. Log rank test is used to 
compare the survival distributions of two samples and 
test if the difference of the two samples is significant.

In our study, if the difference of in-hospital mortality 
of different risk groups identified by each rule is signifi-
cant enough, we may say the two groups identified by the 
rule are separated, thus the rule has the ability to identify 
different risk groups. The KM curves corresponding to a 
rule together with the p value given by the log rank test 
are able to tell how the two groups identified by the rule 
are separated and hence how discriminative the rule is. 
For illustration, the KM curves of a rule (e.g., rule 865) in 
Fig. 3 show that the group not endorsing the rule (yellow 
curve) generally has lower risk of mortality (higher sur-
vival fraction) than that of the group endorsing the rule 
(blue curve), and this gap of mortality significantly dif-
fers, which could be verified by a log rank test p value of 0 
( < 0.001 ) displayed in Table 2.

Decomposition analysis
A rule is usually composed of multiple risk factors, each 
of which may contribute to the predictive power of the 
complete rule. These risk factors in combination produce 
a synergistic effect where the whole is greater than the 
sum of the parts. Decomposition analysis can be done 
to evaluate the role of each risk factor in a given rule. In 
detail, we can decompose each rule into several parts 
where each part contains a risk factor (and the cut-off 
value with it), then we remove each risk factor in the rule 
respectively and obtain multiple revised rules. Survival 
analysis mentioned above could be applied to the revised 
rules, and by comparing the log rank test p value of each 
revised rule with that of the complete rule, we are able to 

know how important each risk factor is to the complete 
rule. If the complete rule shows better discriminative 
power than any revised rule (the p value for the complete 
rule is less than any p value for the revised rule), then it 
may suggest that each risk factor in the rule is necessary 
and that they together have a synergistic effect on defin-
ing different risk groups. Take rule 865 in Table  2 for 
instance: rule 865 could be decomposed into two parts, 
namely pH.art ≤ 7.2 and Age > 46. In both cases, the p 
value for the rule when a risk factor is removed (1.29E-09 
and 3.29E-14) is larger than the p value for the complete 

Table 2  Top 10 rules generated by RuleFit on the sepsis 
population and filtered by a simple mechanism

The first column shows the rule

The second column gives the p value of log rank test of each (revised) rule

Rules P value (log rank)

865(support=26%,direction=increasing) 0

pH.art ≤ 7.2 1.29E−09

Age > 46 3.29E−14

919 (support=13%, direction=increasing) 3.77E−15

Potassium.serum > 4.1 6.32E−07

Platelets ≤ 136.7 1.92E−11

1780(support=46%, direction=increasing) 0

Creatine > 1.2 0.000421

Potassium.serum > 3.3 7.66E−15

1798 (support=25%, direction=increasing) 0

Potassium.serum > 4.25 2.46E−10

MAP ≤ 59 2.10E−11

1231 (support=39%, direction=decreasing) 4.34E−11

GCS ≥ 9 3.58E−09

Heart rate ≤ 129 2.75E−08

Creatine ≤ 1.7 2.47E−10

1608 (support=39%, direction=decreasing) 1.11E−16

GCS > 5 1.57E−13

Bilirubin ≤ 1.15 8.80E−14

Age ≤ 81 2.19E−07

249 (support=39%, direction=decreasing) 0

pH.art > 7.2 7.66E−15

creatine ≤ 1.2 3.29E−14

1145(support=41%, direction=decreasing) 1.44E−09

GCS > 9 0.004001

Bilirubin ≤ 20 9.17E−09

heart rate ≤ 133 3.13E−07

777(support=48%, direction=decreasing) 8.22E−15

GCS ≥ 8 1.26E−13

Potassium.serum ≤ 4.1 4.10E−09

Albumin > 1.9 3.51E−13

655(support=89%, direction=decreasing) 1.12E−14

GCS > 5 1.92E−07

Bilirubin ≤ 7.5 6.71E−08
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rule (0), indicating that both pH.art and age play a role in 
the discriminative power of the complete rule. In other 
words, any removal of risk factors from the complete rule 
will reduce the ability of rule 865 to distinguish the high 
risk group from the low risk group.

Prediction analysis
In this phase, we can use rules that show significant dis-
criminative power in both the survival analysis and the 
decomposition analysis to build the in-hospital death 
prediction model for sepsis patients. In this way, the 
overall prediction power of these rules can be investi-
gated and compared. In our study, we simply check the 
endorsement of patients on each rule and train a logis-
tic regression model with multiple binary variables indi-
cating whether the rule is satisfied for each patient. We 
clarify that the use of logistic regression model here 
is only an easy example to show how we could use the 
rules to predict in-hospital mortality. More complex and 
accurate prediction methods could also be used for this 
end. As rules incorporated in the regression model are 
already tested for their significant discriminative power 
in the previous two analysis, we assume the details of the 
regression model are trivial and thus do not report them.

Actually, the prediction analysis enables us to compare 
the prediction performance of the rule-based method 
with other common baseline methods (e.g., random for-
est) on the sepsis data. To do this, we can first tune the 

parameters with a 10-fold cross validation and obtain the 
optimal parameters for each baseline model as well as the 
rule-based model. Next, we split the data randomly into 
a 70% training set and 30% test set. Each model is trained 
with the training data and the optimal parameters, while 
performance metric like AUC is calculated merely on the 
test set. To avoid the randomness of the experiment, we 
can repeat this 70/30 split procedure 100 times for each 
model and report the mean AUCs. Note that in this pro-
cess, the baseline models are fed with identical covariates. 
Furthermore, we could also examine the significance of 
difference in mean AUCs between these baseline meth-
ods and the rule-based method with the Delong test [48].

Results
Identification of risk‑predictive rules on the sepsis patients
We apply RuleFit on the sepsis data to derive a set of 
risk-predictive rules as well as to predict the in-hospital 
mortality of this sepsis population. The RuleFit method 
does not need an explicit standardization of data since 
it utilizes random forest, a method which is able to deal 
with data of different scales. We manually impute the 
missing data by K Nearest Neighbors [49] with the num-
ber of neighbors set to be five. The binary individual out-
come to be predicted is whether the patient will die in the 
hospital.

In our experiment, we set the maximum depth of tree 
to be three to avoid the occurrence of complex rule 

Fig. 3  Kaplan–Meier survival curves (with 95% confidence interval) of the two groups defined by each rule: one endorses the rule (blue curve) and 
one does not (yellow curve). For each subplot, the horizontal axis represents time (day) and the vertical axis survival probability
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ensembles. We then tune the parameters, i.e., the num-
ber of trees generated by random forest and the degree 
of penalty � , using the automated 10-fold cross validation 
procedure in RuleFit. The final optimal values of these 
parameters are determined by the corresponding mis-
classification rate. Our experiments show that the opti-
mal number of trees is 375 and we derived the final rule 
set including 77 rules, the � of which is within one stand-
ard error of the minimum cross-validated error.

Due to possible presence of rules that are not informa-
tive and discriminative, we further filter the 77 rules 
discovered by RuleFit with survival analysis and decom-
position analysis procedures to obtain the rules that are 
relatively more convincing and reliable. Details of the 
filter criteria can be found in Additional file 3. After the 
filter process, 62 rules are retained, based on which we 
train our mortality prediction model. For conciseness, we 
only show the top 10 rules in Table 2 and discuss them 
in detail in the discussion section. The components, sup-
port, and direction of each rule are also shown in Table 2 
where the support of a rule means the proportion of sub-
jects endorsing the rule, and the direction of a rule means 
the direction of change in death risk if a subject endorses 
the rule. We also list the remaining 52 rules as well as the 
15 discarded rules in Additional file 1.

Analysis of the identified rules
For each rule discovered by RuleFit, we perform the KM 
analysis on the whole population and test the difference 
of mortality between the group endorsing the rule and 
the group not endorsing the rule through log rank test. 
The KM curves of the top 10 rules shown in Fig. 3 and 
the result of log rank test (p values) listed in Table 2 dem-
onstrate that all the 10 rules have discriminative power 
to identify patients with different levels of mortality risk 
as the KM curves of each rule are quite separate and the 
mortality risk gaps are significant (p values < 0.001 ). 
Besides, the decomposition analysis of all 62 rules is also 
performed and the results for the top 10 are also listed 
in Table  2. It is apparent that each risk factor plays an 
important role in the complete rule since the p value of 
each rule with any risk factor being removed becomes 
not as significant (p value becomes larger).

Assessment of the prediction performance 
of the rule‑based method on sepsis population
The rule-based method used in our study is able to pre-
dict the prognostic outcome of the sepsis patients with 
the final rule set. See the calibration curves given in 
Fig.  4 which show that the rule-based calibration curve 
(blue curve) is close to the ideally calibrated curve (grey 
curve). We compare the rule-based model with a variety 
of baseline machine learning models on the performance 

of in-hospital death prediction, through the procedure 
illustrated in the prediction analysis section.

Apart from the above machine learning models, com-
parison is also made between the rule-based method 
and several scoring systems commonly used in clini-
cal practice. These scoring systems are SAPS-II, LODS, 
SOFA, qSOFA, and the SIRS criteria [50] . The computa-
tion of these scores for each patient is accomplished with 
the help of severity scores SQL scripts from the mimic-
code repository [51]. Note that the computation of these 
scores does not necessarily require exactly the same fea-
tures as the rule-based method. SIRS and qSOFA use 
only a small fraction of features incorporated in the sep-
sis data. SOFA and LODS incorporate similar variables as 
we do while SAPS-II requires much more features which 
are not limited to the range of variables in our sepsis data 
set.

Results of the performance comparison is shown in 
Table  3. As can be seen, SAPS-II, rule-based method, 
and LASSO are among the top three methods that 

Table 3  Performance of rule-based model vs. baseline models

The third column (p value) shows the significance of difference in AUCs 
(obtained via the Delong test) of each model against the rule-based model. The 
largest three AUC values are shown in bold

Method Mean AUC (SD) P value

SAPS-II 0.794 (0.017) < 0.01

LODS 0.757 (0.016) < 0.01

SOFA 0.743 (0.020) < 0.01

qSOFA 0.56 (0.018) < 0.01

SIRS 0.564 (0.018) < 0.01

SVM 0.675 (0.015) < 0.01

Random Forest 0.687 (0.017) < 0.01

LASSO 0.766 (0.018) < 0.01

Ridge regression 0.765 (0.017) < 0.01

Logistic regression 0.765 (0.018) < 0.01

Rule-based 0.781 (0.018) -

Fig. 4  Calibration curve (blue) of the rule-based method applied on 
the sepsis data. The ideally calibrated one is shown in grey
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best predict in-hospital death events of sepsis popu-
lation  (shown in bold). The mean AUC of rule-based 
method is higher than all other models except SAPS-II 
(p value ≤ 0.001 ), which demonstrates that rule-based 
method is able to yield a comparable or even better pre-
diction result on the sepsis population compared with 
most common scoring systems. Although the rule-based 
model is slightly inferior to SAPS-II with regard to pre-
diction power, the rule-based method outweighs SAPS-
II in terms of features incorporation and interpretability. 
By “interpretability” we mean it helps us understand the 
sepsis syndrome as well as its population via potential 
rules. These rules not only provide us with a handy tool 
for risk prediction, but may enlighten us on the complex 
relationship between the risk factors of sepsis which will 
be discussed in detail in the next section.

External validation with the PhysioNet computing 
in cardiology challenge 2012 data
The PhysioNet/CinC challenge 2012 data
As external validation has been given high priorities in 
many studies recently [52, 53], we implement comple-
mentary experiments to test whether the rule-based 
method as well as the rules identified with the MIMIC-III 
data make good predictions on another similar data: The 
PhysioNet Computing in Cardiology Challenge (PNCCC) 
2012 Data [54] which was collected and provided to its 
participants for the development of methods for predic-
tion of mortality rates in ICU populations.

The PNCCC 2012 data perfectly meets our require-
ments for external data in this study. The exact data 
consists of medical records ranging from general demo-
graphics to hourly vital sign measurements of 4,000 
patients from their first two days admitted to the ICU, 
covering all the routine risk factors we incorporate in our 
study. Common clinical outcomes (length of ICU stay, 
in-hospital death, etc) and acuity scores (SAPS-I, SOFA, 
etc) are also available. The criterion for subject inclu-
sion are the same as the MIMIC-III sepsis data except 
that we do not use the ICD-9 for sepsis diagnosis due 
to the absence of this code in the PNCCC data. Instead, 
we define the sepsis cohort with the following criteria: 
(i) meet two components of SIRS criteria (ii) SOFA≥ 2 
which, to the greatest degree, identifies the sepsis-related 
subjects. Since part of the patient inclusion criteria for 
sepsis diagnosis alters, this experiment can be viewed 
as a robustness check that investigates how the rule-
based model performs when variation of data for model 
development is introduced. The final validation data set 
involves records of 1468 sepsis patients. The predictors 
incorporated are handled (in terms of feature extraction 
and missing value imputation) exactly the same way as 
we handle the MIMIC-III sepsis data set.

Results on the PhysioNet/CinC challenge 2012 data
To show how well the rule-based method and rules we 
developed on the MIMIC-III sepsis data predicts mor-
tality on the external sepsis data, we simply check the 
endorsement of rules on the new samples and fit a rough 
logistic regression model, instead of identifying new 
rules with the new data. Other baseline machine learning 
models are fitted and common scores are evaluated, both 
for testing their performance on the complete records of 
1468 patients from the PNCCC data.

We list the results of each model’s AUC on in-hospital 
mortality prediction and the p value of the Delong test 
in Table  4. Obviously, the rule-based method outper-
forms other baseline methods and scoring systems with 
an AUC of 0.788, significantly higher than that of other 
models (all p values < 0.05 ).Therefore, we argue that the 
rules identified in our study can be reasonably applied to 
a group of patients in a similar setting.

Discussion
We apply RuleFit on a set of routinely collected meas-
urements with which we expect to identify a set of 
informative rules to determine the death risk of sep-
sis individuals. The factors involved in the final rule set 
include vital signs such as MAP (mean arterial pressure), 
heart rate and GCS, while others are lab values like serum 
potassium, serum sodium, serum creatinine, serum bili-
rubin, serum albumin, platelets, and arterial pH. Age, 
as demographic information, has also been identified as 
important. The existence of these variables in the final 
rules is able to determine the presence of situations like 
trauma, infection, organ dysfunction or failure, respira-
tory distress and many other diseases that are prevalent 
among sepsis patients.

Table 4  Performance of the rule-based model vs. baseline 
models applied on the PNCCC 2012 data

The third column (p value) shows the significance of difference in AUCs 
(obtained via the Delong test) of each model against the rule-based model

Method AUC​ p value

SAPS-I 0.612 < 0.01

SOFA 0.584 < 0.01

qSOFA 0.502 < 0.01

SIRS 0.505 < 0.01

SVM 0.716 0.014

Random Forest 0.532 < 0.01

LASSO 0.711 < 0.01

Ridge regression 0.709 0.021

Logistic regression 0.707 0.017

Rule-based 0.788 –
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We first give a brief description of these factors: GCS 
is used to evaluate the status of central nervous system, 
i.e., the degree of a person’s consciousness. Platelets help 
the body form clots to stop bleeding when the blood ves-
sels gets damaged. Potassium, sodium, creatinine, bili-
rubin and albumin are all components of blood serum 
whose main role is to carry blood cells, transport life-
sustaining substances and wastes produced in the body, 
and maintain the balance of blood. In detail, potassium 
and sodium maintain the electrolyte balance in the blood 
cell; creatinine is the byproduct of muscle metabolism 
which is carried by blood and removed by kidneys; bili-
rubin is one of the main metabolic wastes of the human 
body which is antioxidative yet toxic; and albumin helps 
keep fluid in the bloodstream to ensure that blood does 
not leak into other tissues. Levels of these components in 
the serum are often used to evaluate how well the main 
human body organs function, and significant changes 
in the level of these components may indicate organ 
dysfunction such as liver disease or kidney failure, res-
piratory distress and so on, which are commonly seen in 
patients with severe sepsis or septic shock [55].

The derived rules shown in Table 2 provide a good esti-
mation of in-hospital mortality risk for the sepsis cohort 
in our study, and the factors involved in the rules have 
demonstrated their significance in a number of studies on 
the prediction of clinical outcome for ICU patients. Most 
of the rules are able to identify meaningful or widely 
accepted cut-off values for the risk factors involved (note 
that the cut-off values of a risk factor mentioned in our 
study are limited to its worst observation within 24hr 
of ICU admission), although some rules reveal various 
thresholds for a given risk factor. For this kind of rule, we 
recommend further investigation on the relevant risk fac-
tors as well as their interactions with each other. We then 
give a detailed illustration of the top 10 rules generated 
by RuleFit as well as the factors that constitute the rules. 
The interpretation of each rule is based on a wide range 
of relevant previous studies and in order to be slim, we 
list the literature each rule refers to in Table 5.

As we can see from these rules, GCS, serum potas-
sium, and bilirubin are identified as the three factors 
most involved in predicting in-hospital mortality as they 
are the factors with the most frequent occurrence in the 

Table 5  References for the top 10 rules

Each column lists the reference for a rule (with a tick mark)

Literature Rule

865 919 1780 1798 1231 1609 249 1145 777 655

Adeletti et al. [55] � � � �

Goyal et al. [56] � � �

Kurowski et al. [57] � � � � �

Wang [58] � �

Solinger and Rothman [59] � � �

Fischbach and Dunning [60] �

Lippi et al. [61] �

Robson et al. [62] �

Patel [63] � � �

Zhai et al.[64] � � �

Sedlak and Snyder [65] � � �

Marconi et al. [66] � � �

Temme et al. [67] � �

Boland et al. [68] � �

Heitkemper et al. [69] � � �

Akhter et al. [70] � � �

Gogos et al. [71] � �

Suetrong and Walley [72] � �

Dellinger et al. [73] � �

Kraut and Madias [74] � �

Leibovic [75] � �

Baygin and Kararmaz [76] � �

Pisani [77] � �

Dünser [78] �
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whole rule set. In [79], it is demonstrated that GCS is 
one of the strongest predictors of outcome in their mul-
tivariate model for patient risk stratification in the ICU. 
Besides, compared with other commonly-measured 
values in scoring systems like APACHE II and SAPS II, 
both GCS and bilirubin have shown direct correlation to 
the outcome in their study [19, 20]. Studies like [56, 80] 
also manifest that the level of serum potassium is associ-
ated with mortality of many diseases prevalent in sepsis 
patients, such as Acute Myocardial Infarction, heart fail-
ure, etc.

GCS is used as part of many ICU scoring systems 
including SAPS II, SOFA, and APACHE II. This scale 
has contributed a great extent of predictive power to 
APACHE II and has demonstrated its prognostic impor-
tance on ICU and hospital mortality rates at admission 
levels [57]. Generally, a GCS score above twelve is clas-
sified as mild disturbance of consciousness, a nine to 
twelve as moderate, and a score below nine as severe dis-
turbance. Higher score generally associates with lower 
risk of mortality. The cut-off values in rule 777, 1231, and 
1145 are consistent with the thresholds of GCS, as GCS 
greater than eight in rule 777, nine in rule 1231 and rule 
1145 respectively is considered to be risk-decreasing. In 
rule 655 and rule 1608, the cut-off value for GCS is five 
and GCS is combined with different levels of bilirubin. 
[58] states that the level of serum bilirubin correlates 
with mortality in patients with traumatic brain injury. 
Although lower GCS and higher level of serum biliru-
bin were observed among non-survivors in their study, 
the general relationship between serum bilirubin and 
GCS, together with the influence of their relationship on 
patient mortality remains a mystery, due to the complex 
role bilirubin plays in the human body.

Rules 777, 919 and 1798 identify 4.2 mMol/L (or close 
to 4.2 mMol/L) as the threshold of serum potassium 
in determining higher risk versus lower risk group of 
patients. This may suggest a dramatic trend downward 
for patients with sepsis, which is to say, a safe range of 
serum potassium for patients with sepsis becomes 3.7-
4.2 mMol/L, instead of 3.7-5.1 mMol/L for a healthy 
adult [55]. Some studies may provide evidence for this 
new range: [59] found a mortality risk below the pop-
ulation average when potassium is between 3.4 and 
4.3 mMol/L and [56] observed the lowest mortality in 
Acute Myocardial Infarction (AMI) inpatients whose 
post-admission serum potassium level is between 3.5-
4.5 mMol/L, which may also be the case for sepsis, 
given the complexity of the disease. Note that rule 919 
might reflect an interesting finding on the relation-
ship between the level of serum potassium and plate-
lets demonstrated in relevant research. According to 
[60], hyperkalemia is defined as potassium exceeding 

5.5 and is associated with significant morbidity and 
mortality. In [61, 62], however, platelets would release 
extra potassium and hence cause peudo-hyperkalemia. 
Rule 919 suggests that when the level of platelets is 
lower than 137, a potassium level higher than 4.1 may 
indicate a real hyperkalemia since we can not attrib-
ute extra potassium to a high level of platelets. Due 
to a frequent observation of hyperkalemia in patients 
with renal failure, it is reasonable to say that rule 919 
may be able to recognize sepsis patients with peudo-
hyperkalemia. The slight difference between the cut-off 
values of potassium, (i.e., 4.1 and 4.25) may be due to 
their interactions with other risk factors. However, in 
rule 1780, the cut-off value of potassium turns to 3.3, 
and we suggest further investigation of this since there 
is currently little research on how serum potassium and 
creatinine interact.

Our rules recognize three levels for serum bilirubin, 
i.e., 1.15 in rule 1608, 7.5 in 655, and 20 in rule 1145. 
These rules may indicate a patient in risk-decreasing 
condition in different scenarios. The reference interval 
of bilirubin is 0.3–1.0 mg/dL for adults, and a higher 
level of bilirubin may be defined as hyperbilirubinaemia 
which occurs frequently in neonates and is a common 
complication of sepsis. As a biomarker of liver function, 
bilirubin is toxic and can make irreversible damage to the 
brain and neural system. Several studies have shown that 
elevated serum bilirubin levels may induce inflammation, 
apoptosis, and sepsis-related acute respiratory distress 
syndrome (ARDS) [63, 64] and in particular for patients 
with liver disease, extra bilirubin leads to worse clinical 
outcomes. Nevertheless, a high bilirubin level also con-
fers various health benefits [65, 66], instead of high risk, 
especially for patients without liver disease. For example, 
bilirubin has been shown to be protective against cardio-
vascular disease (CVD) and high serum bilirubin within 
normal ranges was associated with low cancer mortal-
ity in a Belgian population due to the antioxidant activ-
ity of bilirubin [67]. Thus, it is reasonable to consider the 
specific patient condition when determining the effect of 
bilirubin on clinical outcomes.

In our case, the threshold of 20 in rule 1145 might 
indicate that a high level of bilirubin might not do con-
siderable damage to the brain and in contrast, might 
bring much benefit to the heart and decrease the risk of 
death. Rule 1608 identifies a bilirubin level ≤ 1.15 as risk-
decreasing, provided that age ≤ 81 and GCS >5. In rule 
655, the age constraint no longer exists and the cut-off 
value ascends to 7.5. These two rules as a whole indicate 
the interaction between age and bilirubin shown in [68], 
illustrating that bilirubin levels gradually increase with 
age in older adults and elevated bilirubin in older indi-
viduals is not associated with improved survival.
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The most commonly used indicator of renal function 
is serum creatinine, the reference interval of which is 
0.4–1.3 mg/dL [69]. According to [70], an increase in 
serum creatinine by 0.5mg/dL has an independent 
adverse influence on clinical outcomes such as length 
of stay, rate of readmission as well as six-month mor-
tality. Rules 1780 and 249 find that, in accordance with 
the reference interval, serum creatinine ≤ 1.2 mg/dL 
indicates risk-decreasing and creatinine > 1.2 indi-
cates risk-increasing. The interaction between creati-
nine, potassium, and arterial pH is apparently natural 
since they both reflect the degree of blood cell balance 
in human body. Rule 1231 determines a patient in high 
or low risk by assessing how well the heart, kidney and 
brain function. The 1.7 for creatinine in rule 1231 is a 
high threshold with little supporting evidence at pre-
sent and more investigations are expected.

Arterial pH is also recognized as an important risk 
predictor in our rules. This is consistent with existing 
experience of [71]. When pH descends to a level below 
the normal range, i.e., 7.35–7.45, it may imply the 
potential presence of acidosis that leads to unfavorable 
outcomes in ICU patients. For example, [81] indicates 
that the admission value of arterial pH contributes to 
the severity of traumatized patients. [72] demonstrates 
that admission pH of lactic acidosis patients is associ-
ated with significant morbidity and mortality. While 
the Survival Sepsis Campaign (SSC) recommends treat-
ment of acute metabolic acidosis if pH < 7.1 in severe 
sepsis and septic shock patients [73], our rules identify 
the arterial pH threshold distinguishing the higher risk 
from the lower risk at 7.2. As the study of [74] suggests 
that metabolic acidosis might be beneficial for oxygen 
delivery and metabolism, a slight upward adjustment of 
pH cut-off value may not always be harmful. Besides, 
there may be interactions between pH, creatinine, and 
age as rule 249 and 865 indicate, which needs to be fur-
ther explored in the future.

In rule 1231 and rule 1145, heart rate below 129 bpm 
and 133 bpm respectively is considered to be risk-
decreasing. Even though these two levels of heart rate 
are far beyond the normal resting heart rate of 60–100, 
this is not unusual as sepsis has strong relationship 
with tachycardia, defined as heart rate that exceeds the 
normal resting rate. It has been shown that because 
of excessive inflammation and circulating stress hor-
mones, sepsis patients often experience tachycardia, 
the duration of which may be related with mortality 
[75, 76]. Rules 1231 and 1145 may indicate that under 
mild unconsciousness (GCS ≥ 9), the presence of slight 
tachycardia may not always put patients in fatal danger, 
which might partly associate with the cardiovascular 

benefits from a high level of bilirubin, or somehow 
relate to an acceptable high level of creatinine.

In addition to the above thresholds, the derived rules 
also identify meaningful or potential risk thresholds for 
other predictors: rule 777 identifies albumin > 1.9 g/
dL as risk-decreasing. In fact, the cut-off of 1.9 is much 
lower than the normal lower bound of serum albumin, 
i.e., 3.4g/dL. Though low albumin levels may be induced 
by liver or kidney disease, it is still not clear how low the 
level of serum albumin increases significantly the death 
risk of sepsis patients. Older age has been recognized as 
one of the most powerful clinical prognostic indices of 
death in many studies like [71, 77]. Specifically, age > 65 
(the general definition for being elderly) has been proven 
as an independent risk factor in mortality prediction. As 
to our population, rule 865 and rule 1608 suggest that 
more refined age classification is needed for estimating 
sepsis mortality. For MAP, rule 1798 identifies the cut-off 
value to be 59 mmHg, which is close to the value in the 
conclusion of [78] showing that MAP ≥ 60 mmHg may 
be as safe as higher levels during the first 24 h of ICU 
therapy in septic patients.

Conclusion
This study explores sepsis data from the MIMIC-III data-
base by utilizing a rule-based method which produces 
a refined rule ensemble for the purpose of in-hospital 
death prediction. The application of rule-based method 
in our study yields comparable prediction performance 
compared to many baseline medical scoring systems and 
machine learning classifiers and has an ability to improve 
our understanding of different risk patterns of sepsis 
population through the derived risk-predictive rules. The 
top 10 rules identified by the method have found that 
GCS, serum potassium and serum bilirubin are among 
the most important risk factors for mortality predic-
tion of the population in our study, and the interactions 
between these risk factors may change or influence what 
we have known about the effect of a risk factor on the 
patient outcome.

Our work may contribute to the community with 
regard to the following aspects: Firstly, our work high-
lights that existing studies, especially machine-learn-
ing-based research, fail to discuss how much insight 
and understanding their models could provide to 
the study of sepsis and its population. Hence, we dis-
cuss in detail the rules identified for the sepsis cohort. 
The cut-off values of risk factors and the interactions 
between these risk factors may suggest underlying dis-
ease patterns of sepsis patients. All of these implica-
tions may enlighten research on potential relationship 
between certain risk factors indicated in the rules, and 
thereby eventually improve our understanding of sepsis 
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prognosis. Secondly, despite the need for further vali-
dation, the rules found in our research may be of value 
in fast risk prediction in real clinical practice due to 
the implications hidden in the rules and the conveni-
ent form of rules. Thirdly, our study demonstrate the 
power of RuleFit to find clinically informative rules. 
RuleFit could enrich the toolkit of sepsis prognosis and 
many other common conditions in the ICU. Finally, 
it is worth mentioning that our work provides a good 
example of predicting sepsis mortality with only a small 
number of variables, a challenge mentioned in [71] as 
the data used in our work only require routinely col-
lected and easily acquired vital signs, a few lab tests 
and some demographic information of sepsis patients. 
Thus, our method could be easily applied on a regular 
basis.

There are limitations in our application of rule-based 
method with regard to the RuleFit method and the data 
we use. On the one hand, RuleFit is unable to find all 
but a subset of possible informative rules and interac-
tions of the variables given to the model, thus similar 
to other models, RuleFit should be applied in a comple-
mentary way together with other tools. Apart from this, 
RuleFit may yield too many rules when applied to high-
dimensional data that cannot be understood quickly by 
the human experts, even with the integrated method of 
LASSO to enhance sparsity. Our study simply reports 
the 10 top rules of the 77 rules identified by RuleFit. A 
large number of rules may require much efforts in inter-
pretation. On the other hand, the ICD-9 code, used in 
our study to identify sepsis patients, is designed primar-
ily for billing purposes, hence we could not ensure the 
subjects in our study are all accurately diagnosed with 
sepsis. Besides, the data we extracted from MIMIC-III 
suffers from a large quantity of missing data which could 
be partially attributed to the difficulty in determination 
of precise and well-acknowledged item ids for each vari-
able. Due to the above reasons, we expect extensive vali-
dation of the rules identified in our study on other sepsis 
populations.

Improvements could also be made to the application 
of RuleFit for sepsis. So far, our application only yields 
comparable prediction performance in comparison 
with the baseline scoring models and machine learn-
ing classifiers. More risk factors could be included since 
recently there exist several biomarkers which have 
proven to be predictive in sepsis prognosis [82, 83]. 
In addition, we only consider the worst value of each 
variable within the first day of ICU admission. Future 
work may incorporate longitudinal data that reflects 
the change of risk factors and progression of patient 
condition to make better predictions. Notably, before 
the rules are validated and used in reality, it is also 

necessary to set up a filtering mechanism when RuleFit 
produces a large number of rules, which calls for exper-
tise in both sepsis and the RuleFit method.
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