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A B S T R A C T   

Background: Epitope selection is the key to peptide vaccines development. Bioinformatics tools can efficiently 
improve the screening of antigenic epitopes and help to choose the right ones. 
Objective: To predict, synthesize and testify peptide epitopes at spike protein, assess the effect of mutations on 
epitope humoral immunity, thus provide clues for the design and development of epitope peptide vaccines 
against SARS-CoV-2. 
Methods: Bioinformatics servers and immunological tools were used to identify the helper T lymphocyte, cyto-
toxic T lymphocyte, and linear B lymphocyte epitopes on the S protein of SARS-CoV-2. Physicochemical prop-
erties of candidate epitopes were analyzed using IEDB, VaxiJen, and AllerTOP online software. Three candidate 
epitopes were synthesized and their antigenic responses were evaluated by binding antibody detection. 
Results: A total of 20 antigenic, non-toxic and non-allergenic candidate epitopes were identified from 1502 
epitopes, including 6 helper T-cell epitopes, 13 cytotoxic T-cell epitopes, and 1 linear B cell epitope. After im-
munization with antigen containing candidate epitopes S206-221, S403-425, and S1157-1170 in rabbits, the binding 
titers of serum antibody to the corresponding peptide, S protein, receptor-binding domain protein were (415044, 
2582, 209.3), (852819, 45238, 457767) and (357897, 10528, 13.79), respectively. The binding titers to Omicron 
S protein were 642, 12,878 and 7750, respectively, showing that N211L, DEL212 and K417N mutations cause the 
reduction of the antibody binding activity. 
Conclusions: Bioinformatic methods are effective in peptide epitopes design. Certain mutations of the Omicron 
would lead to the loss of antibody affinity to Omicron S protein.   

1. Introduction 

As the COVID-19 pandemic continues, the evolving mutation of 
SARS-CoV-2 is ongoing and has created great challenges in blocking the 
transmission of the virus and brought about a global public health crisis. 
Currently, the Omicron variant has quickly raised serious concerns 
globally, and the efficacy of current vaccines based on the original 
strains deserves further study. Coronavirus genome is composed of 
30,000 nucleotides and encodes four major structural proteins: spike 
protein (S), membrane protein (M), nucleocapsid protein (N), envelope 
protein (E) (Boopathi et al., 2021). The S protein is a type I trans-
membrane glycoprotein including 1273 amino acids and can be 

hydrolyzed by proteinase to form subunits S1 and S2. The receptor- 
binding domain (RBD) on the S1 fragment is responsible for interac-
tion with the cellular receptor angiotensin-converting enzyme-2 (ACE- 
2), and the S2 fragment is in charge of the fusion of virus and host cells. 
M protein, the most abundant structural protein of coronaviruses con-
sisting of 222 amino acids, is generally regarded as one of the most 
conserved candidate antigens. N protein is a structural protein with 419 
highly conserved amino acid sequence. It performs many functions, 
including nucleocapsid formation, signal transduction, RNA replication, 
and transcription of mRNAs (Mcbride et al., 2014). Coronavirus E pro-
teins, composed of 76–109 amino acids, have channel activity (Zhang 
et al., 2020). With limited immunogenicity, E proteins cannot be used as 
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immunogens. 
At present, the vaccine remains the most economical and effective 

method to prevent COVID-19 infection. There are different technical 
platforms for COVID-19 vaccine development. Inactivated virus vac-
cines (Sinopharm (Al Kaabi et al., 2021)); Sinovac (Zhang et al., 2021), 
mRNA-based vaccines (Pfizer (Sahin et al., 2020)); Moderna (Corbett 
et al., 2020), viral vector vaccines (Cansino (Zhu et al., 2020), Johnson 
(Juraszek et al., 2020), and recombinant protein subunit vaccines 
(Novavax (Keech et al., 2020)) against SARS-CoV-2 have been approved 
in succession for emergency clinical use and are being rolled out 
worldwide. S protein is the antigen of choice for all the vaccines 
approved and most of the vaccines under research by now. It could 
stimulate the immune response of both B and T lymphocytes and induce 
neutralizing antibodies. Even so, B and T cells usually recognize small 
epitope regions of antigens, which made peptide vaccine possible. 

Peptide vaccines are made up of small peptide segments originated 
from pathogen protein. The peptide segments can be fully chemically 
synthesized. Compared to vaccines from other technical platforms, 
peptide vaccines are more suitable for virus variation and can be pro-
duced more rapidly, efficiently and less costly. The immunization effect 
can be enhanced by a combination of multiple peptides from different 
epitopes and even different viral strains. 

It is crucial for individual antigens to effectively stimulate the pro-
tective immune response in the development of vaccines. A significant 
challenge in peptide vaccines development is to screen and design im-
munogens of high efficiency because short peptides have small molec-
ular weight and usually are weak in arousing immunogenic effect. 
Meanwhile, the harmful immune responses should be balanced. Thus, in 
this study, we have screened the B cell and T cell epitopes on the S 
protein of SARS-CoV-2 for further peptide vaccines development. The 
allergenicity and toxicity of the epitopes were assessed at the same time. 

Several studies have reported the prediction of the epitopes of SARS- 
CoV-2 (Grifoni et al., 2020; Kiyotani et al., 2020; Bhattacharya et al., 
2020; Safavi et al., 2020). The results of different predictions were not 
quite the same because different prediction tools employed different 

algorithms. In addition, since the predictions were based on only part of 
the epitope features, such as the amino acid structure, the surface area, 
spatial distribution and intermolecular contact, etc, each prediction has 
its own limitation. Besides, most predictions were not certificated by 
experimental data. In this study, we integrated the main bioinformatics 
servers and immunoinformatic tools popular used to improve the ac-
curacy of the calculation, and evaluate the antigenic responses of 
candidate epitopes against original and Omicron S protein. The sche-
matic procedure of this research was shown in Fig. 1. 

2. Method 

2.1. Protein sequence and alignment of mutant strains 

Upon discovery and isolation of the first strain of the novel corona-
virus, China shared the viral sequence with World Health Organization 
and registered the gene sequence of the original strain on the National 
Center for Biotechnology Information (NCBI) as GenBank-MN908947.3 
(https://www.ncbi.nlm.nih.gov/nuccore/MN908947.3). In pace with 
the prevalence of COVID-19, mutations continue to occur and new 
coronavirus variant strains have been detected consecutively. The main 
variants include B.1.1.7 (Alpha), B.1.351 (Beta), P.1 (Gamma), 
B.1.617.2 (Delta), B.1.429 (Epsilon) and B.1.1.529 (Omicron). 

Outbreak.info (https://outbreak.info/) is a standardized, searchable 
platform for investigating and analyzing SARS-CoV-2 and COVID-19 
data from Scripps Institute’s Center for viral Systems Biology. The 
website provides daily monitoring reports on pedigree and mutation of 
the virus, including data from state, county, and country, based on>2.6 
million genomes compiled by the GISAID Initiative. We compared 
sequence mutations via the Outbreak.info database, which was used to 
compare the S protein sequence mutation sites of six mutant strains, 
with the mutation rate being set at 10 %. 1,115,216 sequences of the 
B.1.1.7 strain, 34,787 sequences of the B.1.351 strain, 65,649 sequences 
of P.1 strain, 46,074 sequences of the B.1.429 strain,142021 sequences 
of the B.1.617.2 strain and 2134 sequences of the B.1.1. 529 strain were 

Fig. 1. Research Procedure.  
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analyzed. 

2.2. Prediction of T cell epitopes 

Twelve human leukocyte antigen (HLA) alleles, including 5 HLA-A 
alleles, 4 HLA-B alleles and 3 HLA-C alleles, each of which were re-
ported to be present in the Chinese population at a frequency of>12 %, 
were selected to predict HLA-class I epitopes (He et al., 2018). Similarly, 
8 HLA alleles with>12 % existing frequencies, containing 5 HLA-DRB1 
and 3 HLA-DQB1 haplotypes, were chosen for HLA-class II epitope 
prediction. The genotypic frequency of the HLA allele was shown in 
Fig. 2. 

2.2.1. Prediction and assessment of CTL epitopes 
Bioinformatics tools NetMHCPan 4.1 EL (http://tools.iedb.org/mh 

ci/) (Reynisson et al., 2020) and NetMHCPan 3.0 (https://tools.iedb. 
org/main/tcell/) (Nielsen and Andreatta, 2016) were used to assess 
the binding affinity of peptide segments with 8 to 14 amino acids in the S 
protein sequence to HLA-I molecules and thus to identify potential 
cytotoxic T lymphocyte (CTL) epitopes. Accordingly, based on the 
calculated affinity between the peptide and MHC in the “antigen pep-
tide-MHC“ complex, the top 1 % epitopes with IC50 values less than 500 
nM were picked up as potential epitope candidates for peptide vaccines. 

IEDB database were employed to assess the immunogenicity of the 
candidate epitopes by figuring out their MHC-I Immunogenicity score 
(http://tools.iedb.org/immunogenicity/) (Calis et al., 2013). It is 
generally believed that the higher the epitope score, the greater the 
likelihood of inducing antibody response to it. In order to reduce the 
false-positive rate, we set 0.2 as the standard threshold for screening 
(Calis et al., 2013). Therefore, in this study, only epitopes with 
scores>0.2 in the IEDB calculation were picked out and continued to the 
follow-up investigations. 

2.2.2. Prediction and assessment of HTL epitopes 
The binding capacity of the 12–18 amino acid epitopes, originated 

from the novel coronavirus S protein, to HLA-II molecules was calcu-
lated with the use of bioinformatics tool NetMHCIIPan 4.0 (http://tools. 
iedb.org/mhcii/) (Reynisson et al., 2020); and those epitopes with top 
0.2 % percentile (strong binders) were assessed the potential as candi-
date epitopes for peptide vaccines. 

Helper T lymphocyte (HTL) cells polarize into diverse T-cell pop-
ulations like Th1, Th2, Th17, or iTregs (Nielsen and Andreatta, 2016). 
Th1 cells release interferon-gamma (IFN-γ) which helps macrophages 
identify and eliminate viruses within cells. In Th2 cell subsets, 
interleukin-4 (IL-4) is the main cytokine secreted, which appears to 

promote the proliferation and differentiation of antigen-presenting cells. 
Therefore, we take advantage of servers IFNepitope (https://webs. 
iiitd.edu.in/raghava/ifnepitope/index.php) (Dhanda et al., 2013b) 
and IL4pred (https://webs.iiitd.edu.in/raghava/il4pred/index.php) 
(Dhanda et al., 2013a) to infer the latency of the epitopes to induce 
interferon-γ (IFN-γ) and interleukin-4 (IL-4) respectively, with default 
parameters. 

2.3. B cell epitope prediction 

B-cell epitopes can be classified into two types: linear epitopes and 
conformational epitopes (El-Manzalawy et al., 2008). Linear B 
lymphocyte (LBL) epitopes are composed of sequential amino acids that 
participate in antibody binding and their interaction is based on the 
primary structure of the epitope (Nevagi et al., 2018). Conformational 
epitopes are composed of amino acids that are far apart in primary 
sequence but are in close proximity in the folded structures. In this 
study, we primarily concentrated on the identification of LBL epitopes. 

ABCpred (https://webs.iiitd.edu.in/raghava/abcpred/ABC_submiss 
ion.html) (Saha and Raghava, 2006) is an artificial neural network 
tool that predicts LBL epitopes with the prediction accuracy being about 
66 %. In computing, the threshold for an active LBL epitope was set at 
0.85, resulting in the sensitivity of epitope predictions from 95.5 % to 
99.5 %. LBL epitopes usually consist of 5 ~ 30 amino acids, while in this 
study were set to 18 amino acids (Saha and Raghava, 2006).As to 
Bepipred server (http://tools.iedb.org/bcell/) (Jespersen et al., 2017), 
to predict LBL epitopes, the random forest regression algorithm was 
trained by a fivefold cross-validation method. In our prediction, the 
probability threshold is set at 0.35. Peptide series of probability>0.35 
were considered as candidate epitopes, except for those less than 5- 
amino acid-long (Xu et al., 2020). Epitope candidates reckoned by 
both of the two prediction methods were more likely the effective B cell 
epitopes. 

The overlapping peptide library tools (https://www.genscript.com. 
cn/overlapping_library.html) (Gershoni et al., 2007) aim to design 
short peptide sequences based on the target protein or long peptide. This 
library provides information on protein bioactivity, immune response 
specificity and antibody binding activity, turning out an ideal tool for 
screening linear epitopes. Peptide design in overlapping peptide library 
primarily depends on two parameters: the peptide chain length and 
offset number. Choosing the peptide length and appropriate step size 
would reduce experimental cost and increase data value. In our study, 
the peptide length was set to 14 and the number of amino acid offset was 
set to 5 to optimize the LBL candidate epitopes obtained above. The LBL 
epitopes obtained above were examined by IBCE-EL server (https://theg 
leelab.org/iBCE-EL/) (Manavalan et al., 2018), only active epitopes 
were selected for further analysis. 

2.4. Physiological and physicochemical properties analysis of candidate 
epitopes 

Epitope antigenicity can be estimated by VaxiJen sever (http:// 
www.ddg-pharmfac.net/vaxijen/VaxiJen/VaxiJen.html) (Doytchinova 
and Flower, 2007) according to auto cross covariance (ACC) trans-
formation of protein sequences into uniform vectors of principal amino 
acid properties. The prediction accuracy of VaxiJen sever ranged from 
70 % to 89 % according to different organisms. In our exploration, the 
antigenicity of the candidate epitopes were calculated on virus model 
with the default threshold being set at 0.4 (Doytchinova and Flower, 
2007; Doytchinova and Flower, 2007; Irini, 2008). Then AllerTOP 
(https://www.ddg-pharmfac.net/AllerTOP/) (Dimitrov et al., 2014) 
and ToxinPred (https://webs.iiitd.edu.in/raghava/toxinpred/index.ht 
ml) (Gupta et al., 2013) servers were utilized to define whether the 
candidate epitopes were allergenic or toxic. ProtParam tool in ExPASy 
sever (https://web.expasy.org/protparam/) was employed to analyze 
the molecular weight, theoretical electronic point(pI), aliphatic index Fig. 2. Common HLA-allele distribution frequencies in the Chinese population.  
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(AI), instability index (II), total hydrophilic average, and the stable 
epitopes were sketched based on their instability index and half-time 
(Wilkins et al., 1999). 

2.5. Prediction of population coverage 

A given epitope will elicit a response only in individuals that express 
an MHC molecule capable of binding that particular epitope (Jain et al., 
2021). The frequencies of specific HLA alleles vary dramatically be-
tween ethnic groups. A web based tool, IEDB population coverage 
(https://tools.iedb.org/tools/population/iedb_input) (Bui et al., 2006), 
has been used for population coverage analysis. COVID-19 has affected 
all over the world, in this study, Europe, East Asia, North America, 
China, United States, India and the whole world have been taken as 
target populations. By inputting the epitopes and the corresponding 
MHC I and II alleles, the coverage of our predicted T cell epitopes was 
analyzed. 

2.6. Evaluation of humoral immune response of the predicted epitopes 

2.6.1. Peptide synthesis and purification 
Epitope peptides were synthesized by using a three-channel peptide 

automatic synthesizer (CS360). The peptide was synthesized by solid- 
phase peptide synthesis (SPPS) as stepwise addition of amino acid 
from carboxyl end to amino end. After the desired amino acid chain was 
built, the peptide was cleaved from the resin by to get a crude product. 
Then the crude product was separated and purified using high- 
performance liquid chromatography (HPLC) with C18 reverse phase 
chromatographic column packing. This peptide epitope was then 
coupled with the carrier protein to obtain peptide-hemocyanin conju-
gate (immunogen). Peptide epitopes synthesized here include S206-221 
(KHTPINLVRDLPQGFS), S403-425 (RGDVRQIAPGQTGKIADYNYKL) and 
S1157-1170 (KNHTSPDVDLGDIS). 

2.6.2. Immunogenicity evaluation 
The immunization was carried out with New Zealand white rabbits at 

a four-dose immunization program. The rabbit was initially intrader-
mally injected with the epitope immunogen plus Freund’s complete 
adjuvant at multiple sites on the back. The boosters were performed 
with the immunogen plus Freund’s incomplete adjuvant at a 14-day 
interval. Serum was collected from immunized animals before immu-
nization and 10 days after each of the three boost injections. Peptide 
epitope-specific, spike-specific and RBD–specific antibody responses 
were evaluated by enzyme-linked immunosorbent assays(ELISA). 

Briefly, 96-well plates were coated with 2 μg/ml peptide epitope, and 
1 μg/ml recombinantoriginal SARS-CoV-2 S protein (Sino Biological, 
Cat:40589-V08H9), the variant Omicron S protein (Sino Biological, 
Cat:40589-V08H26) or RBD protein (Sino Biological, Cat:40592-V08H) 
in 0.01 M carbonate-bicarbonate buffer solution and incubated over-
night at 4 ◦C. Plates were then washed three times with PBS-0.05 % 
Tween 20 (PBST) and blocked for 2 h with block buffer at 37 ◦C. After 
block, serial 4-fold dilutions of inactivated serum, starting at 1:500 
(rabbit), were added to wells and the plates were incubated for 1 h at 
room temperature. After three washes with wash buffer, the plates were 
added with Horseradish peroxidase (HRP)conjugated goat anti-rabbit 
IgG (1:20,000, ZSGB-BIO) and incubated for 1 h at 37 ◦C. The plates 
were then washed three times with wash buffer and added with TMB 
Chromogen Solution A 50 μl and then TMB Chromogen Solution B 50 μl 
to each well followed by 15 min of incubation at 37 ◦C. The reaction was 
stopped with 100 μl/well 2 M sulfuric acid and the absorbance at 450 
nm (A450nm) was measured by the ELISA plate reader (Spectra Max 
M2). The absorbance values were plotted as a function of the reciprocal 
dilution of serum samples. Reciprocal plasma dilutions corresponding to 
50 % maximal binding (i.e EC50) were computed using the Prism soft-
ware (GraphPad Software v. 8.02). 

3. Results 

3.1. Variant strain alignments 

The Outbreak.info database was used to compare sequence mutation 
sites, we analyzed 1,115,216 sequences of the B.1.1.7 strain, 34,787 
sequences of the B.1.351 strain, 65,649 sequences of P.1 strain, 46,074 
sequences of the B.1.429 strain,142021 sequences of the B.1.617.2 
strain and 2134 sequences of the B.1.1. 529 strain. The result is shown in 
Fig. 3. 

Mutations such as L452R, E484K, N501Y, D614G, and P681R/H are 
widely considered to enhance the ability of the virus to enhance trans-
missibility, escape immune protection, and aggravate disease (Deng 
et al., 2021; Starr et al., 2020; Lopez Bernal et al., 2021). The D614G 
mutation in particular has attracted attention since it has quickly 
become the dominant strain of SARS-CoV-2 circulating worldwide 
(Korber et al., 2020). D614 is a surface residue in the vicinity of the furin 
cleavage site, like P681R/H mutation, may increase the cleavage effi-
ciency of the spike protein S1-S2, facilitate the fusion of the virus and 
host cells, and thus promote the virus entering into the host cells, which 
consequently makes the virus more infectious. In United Kingdom, 
Brazil, South Africa and Botswana, fast-spreading strains share a mu-
tation called N501Y at the RBD protein. Studies in cell and animal model 
systems have shown that the mutation of N501Y may enable novel 
coronaviruses to bind more tightly to the ACE2 receptor and thus 
enhance their infectious properties (Hongjing et al., 2020). Both L452R 
and E484K occur at the receptor-binding motif (RBM) on RBD. The latest 
variant Omicron (B.1.1.529) has 15 mutations on the RBD, much more 
than those on the other variants, and might have enhanced trans-
missibility and immune evasion. 

3.2. Prediction of T cell epitopes 

CTL could directly kill virus-infected cells and damage the infected 
cells via releasing cytotoxic proteins (Kalita et al., 2020). Calculation 
with NetMHCPan 4.1 EL and NetMHCPan3.0 resulted in 722 and 612 
peptides with the top 1 % of “antigen peptide-MHC” affinity score and 
with IC50 below 500 nM, respectively. After eliminating redundant and 
nested peptides, we got 337 peptide segments. After further immuno-
genicity test with MHC-I Immunogenicity server, 45 candidate epitopes 
left (Fig. 4). The length of these CTL epitopes ranged from 8 to 13 amino 
acids. 

Helper T cells are further divided into different subtypes, secreting 
different cytokines and chemokines via different transcription factors, 
thus enhancing humoral immunity as well as promoting cellular im-
munity. As a result of calculation by the NetMHCIIPan 4.0 EL tool, 127 
HTL predicted epitopes are located primarily at 11 regions on the S 
protein. The epitopes regions vary between 12 and 18 amino acids 
(Table 1). In those 127 predicted peptide epitopes, 77 epitopes could 
stimulate IFN-γ activity, among which 59 epitopes could simultaneously 
induce IL-4 release, according to IFNepitope and IL4pred computation. 
(Fig. 4). 

3.3. B cell epitope prediction and optimization 

Based on ABCPred, we got 15 linear B cell epitopes of the new 
coronavirus S protein, while Bepipred gave 26 epitopes (Fig. 4). Some of 
the epitopes from the two predictions shared common segments (5 
consensus segments in total, listed in Table S1). S1157-1176 epitope has 
the longest common segment (9 amino acids) in both predictions. It has 
been reported S1157-1173 could bind to the serum samples of SARS pa-
tients, (He et al., 2004) indicating its activity as an epitope. Therefore, 
we optimized the S1157-1176 segment by using overlapping peptide li-
brary design software. On peptide length being 14 and offset being 5, 
two peptide epitopes were redesigned as S1157-1170(KNHTSPDVDLGDIS) 
and S1166-1176(LGDISGINASV). Similarly, the other four consensus 
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segments were also optimized, and 10 peptide fragments in total were 
obtained. Only S1157-1170(KNHTSPDVDLGDIS) is a probable antigen 
without allergenicity and toxicity (Table S2). 

3.4. Assessment of epitope antigenicity, allergenicity and toxicity 

By VaxiJen, AllerTOP (Dimitrov et al., 2014) and ToxinPred (Gupta 
et al., 2013) server, a panel of 13 CTL epitopes, 6 HTL epitopes, and 1 
linear B cell epitopes were finally obtained with attributes of being 
relatively highly antigenic, non-allergic and non-toxic (Table 2). 

3.5. Physiological and physicochemical properties of candidate epitopes 

According to ExPASY ProtParam, the peptide S1157- 

1170(KNHTSPDVDLGDIS) has a molecular weight (MW) of 1497. Its 
theoretical isoelectric point value is 4.41 and was considered to be 
acidic. Its in vitro half-life was predicted to be 1.3 h in mammalian 

Fig. 3. Sequence alignment of variant strains.  

Fig. 4. Illustration of the epitope prediction and screening process.  

Table 1 
The HTL epitopes sequences, amino acid position of S protein by cluster analysis 
(NetMHCIIpanv4.0 EL).  

Cluster 
Number 

Epitope 
Number 

Alignment Amino-acid 
Position  

1.1 Consensus NDGVYFASTEKSN 87–99  
2.1 Consensus KHTPINLVRDLPQGFS 206–221  
3.1 Consensus FTVEKGIYQTSNFRVQPTES 306–325  
4.1 Consensus DDFTGCVIAWNSNNLDSKVG 427–446  
5.1 Consensus IPTNFTISVTTEILPV 714–729  
6.1 Consensus PLLTDEMIAQYTSALLAGTITS 863–884  
7.1 Consensus QTYVTQQLIRAAEIRASANLAATKM 1005–1029  
8.1 Consensus ISGINASVVNIQKEIDRLN 1169–1187  
9.1 Singleton DKVFRSSVLHSTQD 40–53  
10.1 Singleton SNVTWFHAIHVS 60–71  
11.1 Singleton ESIVRFPNITNL 324–335  
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Table 2 
Screening of candidate epitopes and their physicochemical properties.  

Category Peptide Sequence Start End Length VaxiJen 
Score 

AllerTOP ToxinPred Molecular 
weight 

Theoretical 
pI 

The estimated half-life The 
instability 
index (II) 

Aliphatic 
index 

Grand average of 
hydropathicity 
(GRAVY) 

CTL DLPIGINITR 228 237 10  1.8171 Non- 
Allergen 

Non-Toxin 1111.31 5.84 1.1 h (mammalian 
reticulocytes, in vitro)0.3 
min (yeast, in vivo). > 10 h 
(Escherichia coli, in vivo). 

63.71 
unstable 

156  0.31 

CTL VTWFHAIHV 62 70 9  0.5426 Non- 
Allergen 

Non-Toxin 1109.3 6.89 100 h (mammalian 
reticulocytes, in vitro). > 20 
h (yeast, in vivo). > 10 h 
(Escherichia coli, in vivo) 

− 3.53 stable 118.89  1.056 

CTL EQYIKWPWYI 1207 1216 10  1.1122 Non- 
Allergen 

Non-Toxin 1425.65 6.1 1 h (mammalian 
reticulocytes, in vitro)0.30 
min (yeast, in vivo). > 10 h 
(Escherichia coli, in vivo). 

9.35 stable 78  − 0.79 

CTL KVTLADAGFIK 825 835 11  0.8594 Non- 
Allergen 

Non-Toxin 1162.39 8.59 1.3 h (mammalian 
reticulocytes, in vitro)0.3 
min (yeast, in vivo)0.3 min 
(Escherichia coli, in vivo). 

− 21.78 stable 115.45  0.591 

CTL VTLADAGFIK 826 835 10  0.8702 Non- 
Allergen 

Non-Toxin 1034.22 5.81 100 h (mammalian 
reticulocytes, in vitro). > 20 
h (yeast, in vivo). > 10 h 
(Escherichia coli, in vivo) 

− 16.47 stable 127  1.04 

CTL IAGLIAIVM 1221 1229 9  0.4716 Non- 
Allergen 

Non-Toxin 900.19 5.52 20 h (mammalian 
reticulocytes, in vitro)0.30 
min (yeast, in vivo). > 10 h 
(Escherichia coli, in vivo). 

− 0.54 stable 227.78  2.956 

CTL TLADAGFIK 827 835 9  0.5781 Non- 
Allergen 

Non-Toxin 935.09 5.5 7.2 h (mammalian 
reticulocytes, in vitro). > 20 
h (yeast, in vivo). > 10 h 
(Escherichia coli, in vivo). 

− 9.98 stable 108.89  0.689 

CTL FYEPQIITTDNTF 1109 1121 13  0.4578 Non- 
Allergen 

Non-Toxin 1588.73 3.67 1.1 h (mammalian 
reticulocytes, in vitro)0.3 
min (yeast, in vivo)0.2 min 
(Escherichia coli, in vivo). 

61.1 unstable 60  − 0.338 

CTL FFSNVTWFH 58 66 9  0.5951 Non- 
Allergen 

Non-Toxin 1184.32 6.74 1.1 h (mammalian 
reticulocytes, in vitro)0.3 
min (yeast, in vivo)0.2 min 
(Escherichia coli, in vivo). 

− 17.24 stable 32.22  0.389 

CTL YEQYIKWPWYI 1206 1216 11  0.9881 Non- 
Allergen 

Non-Toxin 1588.83 6 2.8 h (mammalian 
reticulocytes, in vitro). 10 
min (yeast, in vivo). 2 min 
(Escherichia coli, in vivo). 

2.55 stable 70.91  − 0.836 

CTL ADQLTPTWRV 626 635 10  0.5883 Non- 
Allergen 

Non-Toxin 1186.33 5.88 4.4 h (mammalian 
reticulocytes, in vitro). > 20 
h (yeast, in vivo). > 10 h 
(Escherichia coli, in vivo). 

− 14.52 stable 78  − 0.56 

CTL KYEQYIKWPWYI 1205 1216 12  1.1033 Non- 
Allergen 

Non-Toxin 1717 8.38 1.3 h (mammalian 
reticulocytes, in vitro)0.3 
min (yeast, in vivo)0.3 min 
(Escherichia coli, in vivo) 

3.18 stable 65  − 1.092 

CTL FFSNVTWF 57 65 8  0.4403 Non- 
Allergen 

Non-Toxin 1047.18 5.52 1.1 h (mammalian 
reticulocytes, in vitro)0.3 
min (yeast, in vivo)0.2 min 
(Escherichia coli, in vivo). 

− 20.65 stable 36.25  0.838 

(continued on next page) 
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Table 2 (continued ) 

Category Peptide Sequence Start End Length VaxiJen 
Score 

AllerTOP ToxinPred Molecular 
weight 

Theoretical 
pI 

The estimated half-life The 
instability 
index (II) 

Aliphatic 
index 

Grand average of 
hydropathicity 
(GRAVY) 

HTL PTNFTISVTTEILPV 715 729 15  1.1349 Non- 
Allergen 

Non-Toxin 1631.89 4 >20 h (mammalian 
reticulocytes, in vitro). > 20 
h (yeast, in vivo). 

47.83 
unstable 

116.67  0.68 

HTL IPTNFTISVTTEILPV 714 729 16  0.9295 Non- 
Allergen 

Non-Toxin 1745.05 4 20 h (mammalian 
reticulocytes, in vitro)0.30 
min (yeast, in vivo). > 10 h 
(Escherichia coli, in vivo) 

43.67 
unstable 

133.75  0.919 

HTL EKGIYQTSNFRVQPTE 309 324 16  0.8559 Non- 
Allergen 

Non-Toxin 1897.07 6.24 1 h (mammalian 
reticulocytes, in vitro)0.30 
min (yeast, in vivo). > 10 h 
(Escherichia coli, in vivo). 

13.44 stable 42.5  − 1.244 

HTL VEKGIYQTSNFRVQPTE 308 324 17  0.8296 Non- 
Allergen 

Non-Toxin 1996.21 6.11 100 h (mammalian 
reticulocytes, in vitro). > 20 
h (yeast, in vivo). > 10 h 
(Escherichia coli, in vivo) 

13.24 stable 57.06  − 0.924 

HTL VEKGIYQTSNFRVQPTES 308 325 18  0.7311 Non- 
Allergen 

Non-Toxin 2083.29 6.11 100 h (mammalian 
reticulocytes, in vitro). > 20 
h (yeast, in vivo). > 10 h 
(Escherichia coli, in vivo) 

23.76 stable 53.89  − 0.917 

HTL RAAEIRASANLAATK 1013 1028 16  0.5709 Non- 
Allergen 

Non-Toxin 1542.76 10.84 1 h (mammalian 
reticulocytes, in vitro). 2 
min (yeast, in vivo). 2 min 
(Escherichia coli, in vivo) 

22.17 stable 92  − 0.153 

LBL KNHTSPDVDLGDIS 1157 1170 14  1.5175 NON- 
ALLERGEN 

Non-Toxin 1497.58 4.41 1.3 h (mammalian 
reticulocytes, in vitro)0.3 
min (yeast, in vivo)0.3 min 
(Escherichia coli, in vivo). 

19.16 stable 76.43  − 0.921  
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reticulocytes, whereas only about 3 min in yeast and escherichia coli. 
The instability index (II) of this S1157-1170 peptide is 19.16, and since a 
value>40 implies instability, it is considered as stable. Its aliphatic index 
was estimated 76.63, confirming its thermal stability (Ikai, a., 1980). 
The average hydrophilicity score of S1157-1170 is − 0.921, meaning that it 
is soluble in water and can interact with water easily (Ali et al., 2017). 
Since in vivo hydrophilic residues of a protein are typically located on its 
surface, whereas hydrophobic residues typically lie within the macro-
molecule, protein hydrophilic sites are closely related to protein antigen 
epitopes. The physicochemical properties of the 20 bioinformatics- 
predicted epitopes were listed in Table 2. 

3.6. Worldwide population coverage 

Evaluation of the population coverage was conducted in the selected 
CTL and HTL epitopes and their associated HLA alleles. The calculated 
CTL and HTL epitopes provide a 94.78 % population coverage in the 
Chinese population and an 87.02 % population coverage worldwide. 
The selected epitopes appear to be able to interact with several HLA 
alleles from different countries, including the United States (87.59 %), 
India (74.42 %), East Asia (94.99 %), North America (87.54 %) and 
Europe (86.06 %), which suggest that vaccines based on these epitopes 
could be effective for most people in the world. 

3.7. Evaluation of humoral immune response 

S206-221 (KHTPINLVRDLPQGFS) is a peptide segment containing 9 
helper T cell epitopes predicted by NetMHCIIPanv4.0 EL (Table 1). S206- 

221 peptide segment belongs to the non-RBD domain of the S1 segment of 
the S protein. A notable D215G mutation and N211L, DEL212 mutations 
are present in B.1.351 and B.1.1.529 among the major mutant strains. 
S403-425 (RGDVRQIAPGQTGKIADYNYKL) peptide segment in RBD con-
tains both CTL epitopes S408-425 and LBL epitopes S407-420. A mutation of 
interest K417N was typical in B.1.351 and B.1.1.529 and mutation of 
interest K417T was typical in the P.1 virus. S1157-1170 
(NHTSPDVDLGDIS) is a B cell epitope located in the S2 segment and is 
conservative for different mutant strains. With good antigenicity and 
physicochemical properties, it is reckoned to be active in producing 
antibodies, thus has the potential to become candidate epitopes for 
vaccines. 

The seropositivity of all the three epitope-based immunogens could 
be detected after the second immunization and reached a relatively high 
level after the third immunization. Elisa detection turned out that S206- 

221, S403-425, and S1157-1170 reached the binding titers of serum antibody 
to the corresponding peptide, S protein, RBD protein were (415044, 
2582, 209.3), (852819, 45238, 457767) and (357897, 10528, 13.79), 
respectively. The binding titers to Omicron S protein were 642, 12,878 

Fig. 5. Identification of serum antibody against peptide, S protein and RBD in rabbits.  

Q. Sun et al.                                                                                                                                                                                                                                     



Immunobiology 227 (2022) 152287

9

and 7750, respectively, showing decreased affinity of S206-221 and S403- 

425 compared to the original S protein. The results were shown in Fig. 5. 

4. Discussion 

Epitopes are structures composed of special chemical groups in an-
tigen molecules which can bind to B cell receptor(BCR) or T cell receptor 
(TCR), accordingly being called B cell epitopes or T cell epitopes. B cell 
epitopes identification depends on the structure analyzing of antigen- 
monoclonal antibody(MAb) complex which based on the purification 
of MAb and antigen-MAb, a very complicated and difficult manipula-
tion. T cell epitopes are linear epitopes and present great combinatorial 
structure diversity. It is laborious and time-consuming to find the right 
epitopes by experiments. Therefore, immunoinformatics methods has 
become an indispensable tool for epitope localization and is playing an 
increasingly important role in epitope finding. It is reported that 
immunoinformatics methods could improve epitopes finding by 10–20 
times while reduce the experimental workload by 95 % (De Groot et al., 
2002). 

In this paper, we adopted multiple software and calculation tools to 
improve the accuracy of our prediction. Similar results from different 
methods were admitted so that the false positive rate were inhibited to 
relatively low level. For example, in CTL epitope prediction, MHC-I af-
finity prediction is first performed using the IEDB database that aggre-
gates experimental data on antibody and T cell epitopes. At the same 
time, the NetMHCpan algorithm was used to evaluate the ability of 
antigen processing and transport process, and the comprehensive anal-
ysis obtained better prediction results than using single data training. 

Bioinformatics method was applied to design HTL, CTL, and LBL 
epitopes against SARS-CoV-2. CTL represents one of several types of cells 
in the immune system that can kill infected cells directly (Xu et al., 
2020). CTL execute cell-killing effect only after certain peptides on the 
major histocompatibility complex (MHC) molecules are presented to 
and recognized by them. HTL is also called CD4+T lymphocyte. After 
proteolytic cleavage of viral antigens, antigen-presenting cells such as B 
cells, macrophages, and dendritic cells present epitopes to HTLs in the 
epitope-MHC II complex (Couture et al., 2019). B cells are considered as 
the core component of the adaptive immune system and have the ability 
to secrete specific antibodies to neutralize invading viruses (Quast and 
Tarlinton, 2021). By differentiating long-lived plasma cells and memory 
B lymphocytes, B cells play a crucial role in long-term immunity. 
Investigation on B cell epitopes would be helpful to understand the 
pathogenic mechanism of the virus and develop vaccines against SARS- 
CoV-2. 

In this study, we selected two peptides with high MHC-I binding rank 
(rank＞1%) in the NetMHCPan 4.1 EL and high MHC-I processing IC50 
(IC50＞500 nM) in the NetMHCPan 3.0 predicted process as negative 
controls: S179-191 (LEGKQGNFKNLRE) in the S1 region and S436-449 
(WNSNNLDSKVGGNY) in the RBD protein. Their MHC-I binding rank 
were 100 % and 48 %, while their MHC-I processing IC50 were 38245.2 
nM and 29639.7 nM, respectively. The experimental results showed that 
the binding antibody levels to S protein (500 and 〈500) and RBD protein 
(0 and 700) were relatively low, which in turn proved the validity of our 
prediction. Meanwhile, immunization with S206-221 (contains CTL 
epitope and HTL epitope) on the S1 segment, S403-425 (contains CTL 
epitope and LBL epitope) on the RBD segment, and LBL epitope S1157- 

1170 on the S2 segment were able to produce antibodies against the 
respective peptide antigen. Moreover, antibodies produced by S403-425 in 
the RBD have a high affinity to RBD, while antibodies produced by the 
other two non-RBD domain epitopes (S206-221, S1157-1170) does not have 
affinity to RBD. These results verify the specificity of the immune 
response. The immunization results of S403-425 and S1157-1170 proved that 
the predictions are valid, and these two epitopes are worthy of further 
investigation. Since S1157-1170 is the conservative sequence of different 
mutant strains of coronavirus, it is potential to be a component in vac-
cines against a variety of coronavirus variants. However, this work is 

limited. Without a virus neutralization assay or a T cell activation assay, 
the neutralization capability or cellular immunity of the proposed vac-
cines was not further verified. 

Omicron strain has over 50 mutations, of which over 30 mutations 
were in spike protein. There are mutations N211L and DEL212 in S206- 

221, K417N in S403-425, but no mutations in S1157-1170. The results show 
obvious decrease in binding activity to Omicron S protein with S206-221 
and S403-425, indicating that N211L, DEL212 and K417N mutations cause 
the reduction of the antibody binding activity. Although the binding 
antibody do not directly neutralize the virus, it is a prerequisite for 
neutralizing activity and can be employed to evaluate the immunoge-
nicity of the peptide antigen. 

5. Conclusion 

Antigen epitopes can be predicted and screened effectively by bio-
informatic methods. The predicted epitopes have good antigenicity, 
exhibit active binding with HLA-Alleles, and have broad population 
coverage for different geographical regions. Three candidate epitopes 
S206-221, S403-425, and S1157-1170 predicted in this paper turned out to be 
good immunogen in vivo, and were competent for the development of 
SARS-CoV-2 peptide vaccines. N211L, DEL212 and K417N mutations at 
the Omicron S protein lead to the loss of antibody affinity to Omicron S 
protein and might help the variant strain evade from the original- 
vaccination-based immunity. 
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