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Abstract
Here we present a novel application of cortical bone trajectory (CBT) fixation utilizing robotic guidance in a
previously instrumented spine with a traditional pedicle screw (PS), obviating the need for a larger posterior
incision, reducing the risk of infection, muscular dissection, and likely decreasing hospital length of stay.

A 60-year-old woman with prior left L3-L4 extreme lateral interbody fusion and unilateral percutaneous PS
placed at L3 to L5 presented with progressive bilateral lower-extremity pain and diminished sensation in the
S1 dermatome secondary to adjacent segment disease (ASD). The patient underwent an L5-S1 anterior
lumbar interbody fusion for indirect decompression and restoration of segmental lordosis. After the first
stage was completed, she was turned prone for posterior percutaneous instrumentation. Given prior
instrumentation at L3-L5 on the left side, a robot planning software was used to plan a cortical bone screw
on the left L5 pedicle. A left S1 PS was then planned with the screw head aligning with the left L5 cortical
bone screw. Instrumentation was then placed percutaneously using the robot bilaterally without issue.
Intraoperative fluoroscopic imaging demonstrated accurate placement of PS, and postoperative computed
tomography demonstrated the excellent positioning of all PSs.

This report is the first documented case of a robotically placed CBT screw placed in the same pedicle as a
prior traditional PS for ASD. This method expands the surgical options for ASD to include robotic
percutaneous placement of posterior instrumentation at the same level as previous instrumentation.
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Introduction
Background and importance
Adjacent segment disease (ASD) is defined as a new degenerative change at a spinal level adjacent to a
surgically treated level or levels in the spine with related symptoms, including radiculopathy, myelopathy, or
instability [1]. The incidence of lumbar ASD ranges from 2% to 14% of patients, representing a tangible
threat to the post-surgery spine patient population [1]. The precise etiology of ASD is unclear, but it has
been attributed to changes in intradiscal pressure, misalignment in the sagittal plane, and increased
biomechanical stress [2]. Surgical treatment options for ASD include revision posterior procedures;
minimally invasive approaches; or indirect decompression with interbody fusions at the anterior face,
posterior face, or both [3].

As Mullin et al. demonstrated, cortical bone trajectory (CBT) screws present an alternative form of
instrumentation of the posterior spine [4]. CBT screws are medially placed and angled slightly outward in
the axial plane, whereas the traditional pedicle screws (PSs) are placed laterally and project inward toward
the midline. In the sagittal plane, CBT screws follow a caudocephalad trajectory. These features grant CBT
screws greater access to cortical bone, which is dense and strong [5]. Proposed advantages to this approach
include reduced likelihood of trauma to the local neurovasculature; increased contact between the screws
and the bone, therefore providing a more robust connection; and a less invasive procedure overall given less
required muscular dissection [6].

The assistance of imaging technology is required for accurate navigation in placing CBT screws with a
minimally invasive approach. Techniques that have been used to successfully guide screw placement include
endoscopy, three-dimensional computed tomography (CT), and fluoroscopy [7,8]. All three have shown good
accuracy with minimal complications [9,10].

Rodriguez et al. demonstrated good clinical results in a cohort of patients who underwent a novel fusion
technique that uses CBT fixation in a previously instrumented pedicle with intraoperative O-arm guided
navigation [11]. To the best of the authors' knowledge, no cases of robot-assisted CBT screw placement have
been attempted in the dual trajectory fashion. Here we present a novel application of CBT fixation utilizing

1 1 2 1 1

 
Open Access Case
Report  DOI: 10.7759/cureus.16822

How to cite this article
Rho K, Oconnor T E, Lucas J, et al. (August 02, 2021) Minimally Invasive Robot-Guided Dual Cortical Bone Trajectory for Adjacent Segment
Disease. Cureus 13(8): e16822. DOI 10.7759/cureus.16822

https://www.cureus.com/users/212469-kyungduk-rho
https://www.cureus.com/users/196566-timothy-e-oconnor
https://www.cureus.com/users/213231-jean-marc-lucas
https://www.cureus.com/users/196644-john-pollina
https://www.cureus.com/users/196643-jeffrey-mullin


robotic guidance in a previously instrumented spine with a traditional PS.

Case Presentation
History
The patient is a 60-year-old woman with a history of prior left L3-L4 extreme lateral interbody fusion
secondary to underlying spondylolisthesis and instability. Unilateral percutaneous PSs were placed on the
left side at L3 to L5. Her symptoms resolved postoperatively.

The following year the patient returned to the clinic with progressive bilateral S1 radiculopathy and
intolerable mechanical back pain. She completed six months of physical therapy in the past without relief.
She denied any focal weakness, sensory changes, or bowel/bladder incontinence.

Physical examination
Motor examination demonstrated 5/5 strength globally. The patient experienced diminished sensation in
the S1 dermatome. Otherwise, the sensation was intact to pinprick and light touch in all extremities. Great
toe proprioception was intact bilaterally. Reflexes were 2+ throughout.

Neuroimaging
Lumbar magnetic resonance imaging (MRI) demonstrated L5-S1 disc bulge with disc collapse and modic
changes at L5 and S1 with foraminal stenosis at L5-S1 and loss of segmental lordosis secondary to ASD
(Figure 1). There were prior unilateral PS from L3-L5 on the left with lateral interbodies placed from L3-L4
and L4-L5. Imaging demonstrated bony fusion from L3-L5.
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FIGURE 1: Preoperative lumbar MRI demonstrating L5-S1 disc bulge
with disc collapse and modic changes at L5 and S1 loss of segmental
lordosis secondary to ASD.
MRI, magnetic resonance imaging; ASD, adjacent segment disease.

Operation
The patient underwent an L5-S1 anterior lumbar interbody fusion for indirect decompression and restoration
of segmental lordosis (Figure 2, Figure 3). After the first stage was completed, she was turned prone for
posterior percutaneous instrumentation. As there was no prior instrumentation on the right side, she
underwent a percutaneous L4-S1 PS placement using the TP trajectory on the right side. Given the prior
instrumentation at L3-L5 on the left side, the Mazor X Stealth Edition (Medtronic, Denver, CO, USA)
software was used to plan CBT on the left L5 pedicle. A left S1 PS was then planned with the screw head
aligning with the left L5 cortical bone screw.
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FIGURE 2: Intraoperative imaging following placement of the anterior
interbody with the restoration of segmental lordosis and indirect
foraminal decompression
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FIGURE 3: Anterior-posterior X-ray following placement of the L5-S1
anterior interbody demonstrating unilateral posterior instrumentation
from L3-L5 on the left side

Percutaneous screws were placed bilaterally using the robotic platform without complications.
Intraoperative fluoroscopic imaging and postoperative CT demonstrated accurate placement of PS (Figure 4,
Figure 5).
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FIGURE 4: Postoperative anterior-posterior X-ray demonstrating right-
sided traditional pedicle posterior instrumentation from L4-S1 on the
right side. On the left side is an additional posterior construct at L5-S1
with a cortical bone trajectory screw at the same level as a traditional
pedicle crew in the left L5 pedicle
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FIGURE 5: Postoperative axial computed tomography demonstrating the
presence of a cortical bone trajectory screw in the same pedicle as a
traditionally oriented screw

Postoperative course
The patient had an uneventful three-day hospital stay, and her symptoms improved significantly. She was
discharged home without physical therapy.

Discussion
CBT screws are emerging as an alternative for instrumenting the lumbar spine. Khan et al. noted that when
comparing CBT between robot technology and CT-navigation-guided cohorts, there were no significant
differences in operative time, fluoroscopy time, and radiation dose. Another study found robot-assisted
screw placement to be more accurate and safer compared with fluoroscopy-assisted placement for lumbar
spinal CBT instrumentation [9].

Overall, the use of robotics in spine surgery has become more commonplace since it was approved by the US
Food and Drug Administration in 2004 [12]. Robotic spine surgery can potentially enhance minimally
invasive procedures by increasing accuracy and reducing radiation exposure compared to its standard
counterpart procedure [13,14]. While current use is largely restricted to spinal fusion and instrumentation
procedures, the feasibility of using robot technology to place a CBT screw at the same level as a traditional
screw has not been well studied.

While there are various interventions to address ASD, surgical treatment to expose and remove previous
instruments can result in significant postoperative pain, muscular fibrosis, and poor wound healing and
infection. CBT fixation can mitigate some of these disadvantages and possibly obviate the need for hardware
removal [3]. Prior studies have emphasized the importance of CT navigation for accurate CBT screw

placement at levels where previous traditional PSs were already placed for symptomatic ASD [3]. This
technique is gaining popularity, as Chen et al. noted the minimal complications associated with this
procedure [5].

The decision to utilize a robotic approach, in this case, was multifaceted: proven consistency, ease of
operative planning, and rigidity of the Mazor system. Since Pechlivanis et al. published the first paper
describing the robotic placement of percutaneous PSs, subsequent studies have demonstrated the high level
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of accuracy of spinal surgical robotics [15]. In one such study, O’Connor et al. report placing their first 90
PSs with 100% grade A accuracy on the Gertzbein-Robbins scale without any complications [14]. The Mazor
software is able to segment each level of interest, allowing the operator to plan instrumentation along the
optimal trajectory by viewing the screw placement in all three dimensions [14]. By doing so, Hyun et al. note
the decrease in the tendency to violate the suprajacent facet with the robotic technique, reducing the
likelihood of developing ASD [16]. Lieberman et al. illustrate the rigidity of the Mazor system, which
attaches to the patient’s skeletal anatomy, providing an additional layer of security through a solid platform
[17]. This allows the surgeon to register and reference images with a higher degree of accuracy compared to
other robotic systems that do not have this anchoring capability.

Using the method described in this paper, a minimally invasive percutaneous approach was used to place
posterior instrumentation following an anterior interbody. This technique obviated the need for a larger
posterior incision, reducing the risk of infection, muscular dissection, and likely decreasing her hospital
length of stay.

Conclusions
This report is the first documented case of a robotically placed CBT screw placed in the same pedicle as a
prior traditional PS for ASD. This method expands the surgical options for ASD to include percutaneous
placement of PSs at the same level as previous instrumentation.
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