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Teasing apart trauma: neural oscillations
differentiate individual cases of mild traumatic
brain injury from post-traumatic stress disorder
even when symptoms overlap
Jing Zhang 1,2, Zahra Emami1,2, Kristina Safar1,2, Patrick McCunn1,2, J. Don Richardson 3,4, Shawn G. Rhind 5,
Leodante da Costa6,7, Rakesh Jetly8,9,10 and Benjamin T. Dunkley 1,2,11

Abstract
Post-traumatic stress disorder (PTSD) and mild traumatic brain injury (mTBI) are highly prevalent and closely related
disorders. Affected individuals often exhibit substantially overlapping symptomatology – a major challenge for
differential diagnosis in both military and civilian contexts. According to our symptom assessment, the PTSD group
exhibited comparable levels of concussion symptoms and severity to the mTBI group. An objective and reliable
system to uncover the key neural signatures differentiating these disorders would be an important step towards
translational and applied clinical use. Here we explore use of MEG (magnetoencephalography)-multivariate statistical
learning analysis in identifying the neural features for differential PTSD/mTBI characterisation. Resting state MEG-
derived regional neural activity and coherence (or functional connectivity) across seven canonical neural oscillation
frequencies (delta to high gamma) were used. The selected features were consistent and largely confirmatory with
previously established neurophysiological markers for the two disorders. For regional power from theta, alpha and
high gamma bands, the amygdala, hippocampus and temporal areas were identified. In line with regional activity,
additional connections within the occipital, parietal and temporal regions were selected across a number of
frequency bands. This study is the first to employ MEG-derived neural features to reliably and differentially stratify the
two disorders in a multi-group context. The features from alpha and beta bands exhibited the best classification
performance, even in cases where distinction by concussion symptom profiles alone were extremely difficult. We
demonstrate the potential of using ‘invisible’ neural indices of brain functioning to understand and differentiate these
debilitating conditions.

Introduction
Posttraumatic stress disorder (PTSD) and traumatic

brain injury (TBI) are prevalent and commonly comorbid
conditions in which clinical symptoms often overlap,
creating major challenges in their diagnosis and treatment1.

These complex disorders frequently co-occur in both
civilian and military populations and share similar aetiology
and symptomatology1,2 – both having their origins in
trauma, one from psychological stress and the other from
physical injury3–5. Indeed, the nexus between PTSD and
mild TBI (mTBI) has become a major focus of clinical
research interest in recent years6–8. Notably, PTSD and
mTBI occur at considerably high rates among combat-
exposed military members and Veterans returning from
wars in the Middle East and together have been referred to
as “signature injuries” of modern military conflicts9–11.
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Both disorders can cause serious functional impairments
and impart significant disruption to daily life, regardless of
economic development status3–5.
Given the lack of objective markers for PTSD and mTBI,

as well as the overlapping symptoms, the disentanglement
of these disorders can be challenging12. Even when these
injuries occur independently and in the absence of the
other, comparing across individuals can reveal self-reported
symptom profiles that substantially overlap1,13, making a
differential clinical diagnosis difficult. As with PTSD, per-
sistent post-concussive symptoms (PPCS) of an mTBI are
often non-specific and can mimic other psychiatric dis-
orders7. Patients with PTSD suffer intrusive memories,
hypervigilance and moral injury14. Heterogeneous mTBI
symptoms include headaches, light sensitivity, tinnitus
amongst others15. However, negative alterations in cogni-
tion and mood, behavioural impairment, sleep disturbances,
avoidance and emotional lability are common in both
conditions, as well as comorbid secondary anxiety and
depression that parallel the main diagnosis15. Moreover,
mTBI may also lead to emotional numbing, derealization,
depersonalisation and amnesia, which are some of the dis-
sociative symptoms more commonly identified with
PTSD16–18. Symptoms of PTSD can mirror a number of
other psychiatric disorders, including anxiety and depres-
sion19, and perhaps surprisingly, even without a history of
head injury, PTSD patients often report symptoms
mimicking an mTBI14. Other comorbid disorders alongside
PTSD and mTBI also add to the already challenging dif-
ferential diagnosis20,21. An accurate, fast, differential diag-
nosis carries important implications, as treatment regimens
are markedly diverse, and it takes time to establish an
effective routine; trajectories of remission and recovery
diverge and mismanagement can prolong oftentimes
debilitating functional impairment19. Therefore, the current
study focuses on differential PTSD and mTBI classification
versus several control groups. Further, this work also pre-
sents a functional brain imaging-informatics framework as a
“first step” towards solving the various multiclass problems,
and thus could be adopted in the future for scenarios
including co-occurrence.
Even though brain structural abnormalities for the two

disorders22,23 have been reported using magnetic reso-
nance imaging (MRI), these studies report group-level
effects, and such approaches do not provide enough
information for an individual diagnosis in a clinical set-
ting24. In addition, the lack of sensitive, validated assess-
ment tools for brain plasticity and recovery complicates
clinical trials studying potential treatments for persistent
PTSD and mTBI symptoms25. Despite the lack of apparent
anatomical indicators, ongoing symptomatology suggests
persistent underlying neurophysiological dysfunction.
Functional imaging technique such as fMRI, EEG, and
MEG have shown promising results in representing the

two disorder in binary case vs control settings26–30.
Functional indices of neural activity are potentially pow-
erful candidates for both understanding the pathophy-
siology of somatic, cognitive and behavioural complaints,
and in providing reliable markers for developing objective
diagnostic systems31, as well as effective treatment targets,
such as rTMS32 and neurofeedback33. Neural activity and
dynamics can be uniquely attributed and related to
symptoms in both disorders34, and group differences are
found when these conditions are compared35. However,
individual identification and reliable stratification with
neurophysiological features has not yet been achieved -
objective, measurable and easy-to-use biomarker system
would be a major advancement in supporting an accurate
differential diagnosis, particularly one that can be acquired
non-invasively, quickly, easily, is well-tolerated and does
not cause undue stress to the patient36.
Multivariate learning approaches have shown to be

effective in neuropsychiatric and neurodegenerative dis-
ease classification in a multiclass (i.e. multiple groups)
context. Support vector machine (SVM) classifiers using
EEG features can distinguish PTSD and major depressive
disorder, with promising performance37. Moreover, using
similar informatics approaches, fMRI has been shown to
be effective in differentiating comorbid PTSD and
mTBI38. A novel and yet unused approach would be
neuroimaging- and multivariate statistics learning-driven
feature selection and modelling of PTSD and mTBI. The
current study advances research in this field aligning with
the future research priorities and directions of military
healthcare and the important treatment implications of
accurately diagnosing these disorders19,39.
We applied our recently developed feature selection and

modelling pipeline29, with modifications, to MEG neuro-
physiological resting state data that captures multiple
macroscopic elements of neural functioning. MEG was used
to measure two specific types of neural activity – the first,
based on source-localised neural oscillatory power, provides
a measure of regional, or segregated neural function gen-
erated by meso-scale circuits operating in discrete brain
areas. The second type involves a type of functional con-
nectivity measure, as an index of macro-scale integrated
networks and circuits in the brain, based on amplitude
envelope correlations, a method of ‘communication-
through-coherence’40. These two rich and multifaceted
data types allow us to test which form of neural activity
offers the superior modelling configuration and classifica-
tion performance, and which features maximally differ-
entiate groups, while elucidating some of the distinct
neurophysiological correlates of these disorders. The data
were assessed across multiple frequency ranges, from the
delta through high gamma bands, each known to play
important roles in the dynamic repertoire of brain function.
Taken together, this study offers an exciting proof-of-
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principle approach and tests the optimal paradigm condi-
tions for disassociating PTSD and mTBI, using neural
markers in the presence of overlapping symptom profiles.

Materials and methods
Participants
Four groups were included: PTSD, TC (trauma-exposed

controls), mTBI and NTC (non-trauma controls). The
PTSD and TC participants were active military personnel
at the time of recruitment, all from the Canadian Armed
Forces (CAF). The mTBI and NTC participants were from
civilian settings.
For the PTSD and TC groups, we recruited 24 male

soldiers with PTSD (mean age ± SD= 33.05 ± 5.26), and
27 male peers exposed to similar operational stress,
deployment roles and traumatic conditions but who did
not developed PTSD (mean age ± SD= 37.4 ± 6.8). Fur-
ther details for the TC and PTSD groups can be found in
Dunkley et al.26. All PTSD and TC participants were
recruited through the Canadian Armed Forces and
Operational and Trauma Stress Support Centres
(OTSSC). The TC participants were matched with the
PTSD group on military rank & experience, education
level and handedness.
For the mTBI and NTC groups, 27 male civilian adults

with mTBI (mean age ± SD= 29.6 ± 6.7) and 23 typical
male civilian adults (mean age ± SD= 28.0 ± 5.6) were
recruited. The NTC group were matched with the mTBI
group on age, sex and handedness. All mTBI patients
were recruited through Sunnybrook Health Science
Centre (Toronto, Ontario, Canada), Canada’s largest head
injury trauma centre. Further details for the NTC and
mTBI groups can be found in Zhang et al.30. All experi-
mental procedures were approved by the Research Ethics
Board at the Hospital for Sick Children, Sunnybrook
Hospital and OTSSC in accordance with the Helsinki
Declaration on Research Ethics. All participants provided
written informed consent.

Diagnoses and inclusion criteria
This information can be viewed in Supplementary

Methods.

Magnetoencephalography
A detailed description of the MEG methods can be

found in the Supplementary Methods, including MEG
acquisition and signal processing. ‘Virtual sensor’ time
series were modelled at node locations and regional
power spectrum density (PSD, “regional power”) was
calculated using Welch’s method on each 10 s epoch of
time series data. The final regional power spectrum was
obtained by averaging over the 10 s epochs. For band-
limited analyses, time series were filtered into seven
frequency ranges: delta (1–3 Hz), theta (4–7 Hz), alpha

(8–14 Hz), beta (15–30 Hz), low gamma one (30–55 Hz),
low gamma two (65–80 Hz) and high gamma
(80–150 Hz). Functional connectivity was calculated
using the amplitude envelope correlation (AEC), a
robust, repeatable and reliable measure when compared
to other definitions of functional connectivity41; further,
it recapitulates spontaneous resting brain networks
derived from more commonly user fMRI BOLD resting
state network analysis42, facilitating comparison with
studies using those measures.

Multivariate statistics learning and feature selection
analysis
Based on Zhang et al.29, an overview of the informatics

workflow is displayed in Fig. 1A. The analysis was con-
ducted separately on the two MEG measurements.

Data resampling and univariate analysis
All participants and all features are considered the

“complete data”. For classification modelling, subset data
featuring 85% of participants was used as the “training
data”, with the rest (15%) used as the “holdout test data”.
The training data was used to derive multiclass classifi-
cation models, whose final performance was determined
by the holdout test data. The training and holdout test
data split was achieved by stratified random data resam-
pling. Details on the univariate analysis can be found in
Supplementary Methods.

Univariate analysis
The detailed description of the univariate analysis

method can be found in the Supplementary Methods.
Here we describe the implementation. As shown in
Fig. 1A, the present study utilised univariate analysis as
(i) a standalone analysis and (ii) as part of the ML pro-
cess. When used independently, the univariate analysis
was applied to the complete data, and in two ways: (a)
the analysis was carried out on the complete data,
evaluating whether group differences could be repre-
sented by univariate reduced features; and (b) the uni-
variate analysis was conducted to help determine the
optimal feature selection setting for ML. i.e. one step
(CV-SVM-rRF-FS, or support vector machine and
recursive random forest feature selection with cross
validation) vs two-step (univariate feature reduction +
CV-SVM-rRF-FS). The two-step process was designed
to reduce the computational burden during ML. In such
a case, the univariate statistics process was carried out
again but only on the training data. As such, the holdout
test set was not part of this univariate feature reduction,
or any subsequent feature selection/training steps,
thereby appropriately avoiding information leakage.
This means the final selected features were only reached
by the training data.
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Feature selection with support vector machine and cross
validation
The analysis was conducted through SVM modelling,

validation and performance assessment steps29. Nested
10-fold cross validation (CV) was used. For feature

selection, the core algorithm was a recursive random
forest feature selection (rRF-FS) procedure43. As descri-
bed in Zhang et al.29, the rRF-FS-driven features selection
was included in each CV iterations (i.e. “CV-SVM-rRF-
FS”). Upon feature selection, PLS-DA (partial least

Fig. 1 Overall downstream informatics workflow and symptom analysis. A A flowchart showing overall downstream informatics analysis
workflow. B Concussion, anxiety and depression symptom profiles overlap in PTSD and mTBI. Rain cloud plots showing mTBI symptom number, mTBI
severity, anxiety and depression score for the mTBI, PTSD, TC and NTC groups. Raw data (dots), boxplot and probability distribution are plotted. No
statistical difference was observed for PTSD and mTBI in mTBI symptoms. PTSD participants (without head injury) reported significantly higher mTBI
symptom severity than the mTBI participants. Although PTSD participants exhibited significantly higher anxiety and depression scores than the mTBI
participants, both PTSD and mTBI groups scored significantly higher than both controls groups in the two scales. *=statistically significant (pâ€‰<â€
‰0.05) differences based on the ANOVA with Tukey post-hoc test. FDR false discovery rate, CV-SVM-rRF-FS support vector machine and recursive
random forest feature selection with cross validation, PLS-DA partial least squares discriminate analysis, NTC non-trauma control, TC trauma-exposed
control, SCAT2 Sports Concussion Assessment Tool 2, GAD-7 Generalised Anxiety Disorder 7, PHQ-9 Patient Health Questionnaire.
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squares discriminant analysis) was carried out as an
independent classifier to verify the modelling gen-
eralisability of the selected features. Ultimately, a final
SVM model was trained on all the training data with the
consensus features and optimised kernel type.
For model evaluation, firstly, a sample label permutation

test was used44. A permutation p-value was also calcu-
lated44. Models with a permutation p-value < 0.05 were
considered significant. Next, the final SVM models were
assessed using the holdout test data. The holdout data was
excluded from any training steps. Per-participant per-
centage accuracy was used for both CV and final SVM
model evaluation. Moreover, ROC-AUC (receiver oper-
ating characteristic curve-area under the curve) was
determined for both models to assess sensitivity and
specificity across classification thresholds, i.e. versatility.
These tests assessed the models’ capability to accurately
classify data into either the participant group of interest or
the remaining three groups. Additional details can be
viewed in Supplementary Methods.

Additional statistical analysis
Statistical analysis for mTBI symptoms & severity

(Sports Concussion Assessment Tool 2; SCAT2)45, anxi-
ety (Generalised Anxiety Disorder 7; GAD-7)46 and
depression (Patient Health Questionnaire 9; PHQ-9)47, as
well as model performance comparisons can be found in
Supplementary Methods.

Results
The key results are described here, and additional

results can be found in Supplementary Results.

PTSD and mTBI overlap in their symptom profiles and
screeners fail to distinguish individuals
There was no significant difference between the PTSD

and mTBI groups for mTBI symptom number, with
substantial overlap in their distributions (Fig. 1B). Inter-
estingly, compared to the mTBI group, the PTSD group
reported a slightly higher (albeit non-significant) mean
number of symptoms consistent with mTBI, despite
having not experiencing a head injury. Even some of the
typical civilian control participants reported symptoms of
head injury – this emphasizes the limitation of relying
solely on symptom questionnaires and the clinical diffi-
culty in making a differential and categorical diagnosis48.
For mTBI severity, the PTSD group showed higher, but
comparable (non-significant) scores compared to the
mTBI group (Fig. 1B). Furthermore, mean anxiety and
depression scores were higher in PTSD compared to
mTBI (Fig. 1B), but their distributions still overlapped,
meaning that for any given individual, it would be virtually
impossible to determine if they belong to one group or
another based on these data alone. As expected, both the

PTSD and mTBI groups exhibited (mostly) significantly
higher mean anxiety and depression scores when com-
pared to the control groups (Fig. 1B).

Univariate statistics fails to tease apart group differences
in either power or connectivity
Clustering analyses on the complete MEG data space

does not cluster according to the four participant groups,
for either of the neural measures (full feature count:
regional power: 90 brain areas, functional connectivity: 4005
edges). The statistical significance was determined by
thresholding FDR-corrected p-values (alpha= 0.05). Only
the functional connectivity data was found to contain sta-
tistically significant results, i.e. a single connection between
the left postcentral gyrus-to-right postcentral gyrus (Fig. 2A,
B). The complete results can be viewed in Supplementary
Tables S1 and S2. Supplementary Figs. S1 and S2 contain
overall and univariate statistic-reduced power and con-
nectivity profile distribution heatmaps, respectively.

Feature selection identifies the most relevant neural
markers for modelling
Univariate analysis (with raw p-value thresholding) was

conducted on the complete data to test if the initial uni-
variate feature reduction was needed during feature
selection. Only the functional connectivity showed group
separation upon univariate reduction (Fig. 2C, D, Sup-
plementary Figs. S3 and S4), suggesting a tangible benefit
from the initial univariate reduction step during feature
selection for this data type.
Figure 3 and Supplementary Table S3 display the final

consensus features selected by CV-SVM-rRF-FS for both
neural feature sets, at each canonical frequency. For
example, regional power in the theta, alpha and high
gamma bands residing in the amygdala, hippocampus and
temporal areas were identified as key features (Supple-
mentary Table S3A and Fig. 3). Additionally, delta activity
in the left transverse temporal gyrus was also identified as
a distinguishing feature, as well as beta activity in the left
amygdala. Figure 3 and Supplementary Table S3B include
the selected feature lists found for functional connectivity.
Largely consistent with the regional data, connections
involving the thalamus, hippocampus, amygdala and
temporal areas were selected (Fig. 3). The detailed feature
selection and PLS-DA results are included in the Sup-
plementary Results and Supplementary Figs. S5 and S6.

Multiclass classification modelling of neural functioning
shows promising performance
PCA results were shown in Fig. 4A and Supplementary

Fig. S4. CV models were compared across frequencies
using ANOVA with Tukey post-hoc test (Fig. 4B). For CV
models derived from regional power data, the theta band
was outperformed by other frequency bands when it
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Fig. 2 Univariate statistical analysis and univariate feature reduction hierarchical clustering analysis. A, B Univariate analyses only reveal group
differences in connectivity, and no regional change. A Regional power did not show any significant effects (correct for multiple comparisons), whereas
B functional connectivity, for the beta band, shows only a single significant connection connecting the left postcentral gyrus-to-right postcentral gyrus.
C, D Unsupervised hierarchical clustering results show univariate reduced data led to better group separation with the functional connectivity data. The
figure shows the (C) alpha and (D) beta bands as examples, with the PTSD vs mTBI contrast. The dendrograms show the clustering for the participants
(horizontal) and the univariate reduced features (vertical) based on the Z scores for AEC. The colour bar below the horizontal indicates the major (top three
levels) participant clusters. The number of univariate reduced features are marked. Both C and D showed that, although with some exceptions, the
univariate feature reduction helped reduce the functional connectivity data into features that separated the participants into PTSD and mTBI groups.
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Fig. 3 Functional connectivity outperforms in feature selection count compared to regional functioning. Regional power and functional
connectivity maps with only the CV-SVM-rRF-FS selected features for all seven frequency bands, with the most biologically relevant features marked.
Thalamus, amygdala, hippocampus and superior temporal gyrus (i.e. transverse temporal gyrus) are marked for regional power figures; functional
edges containing these regions are also marked for the functional connectivity figures. As identified by both data types, the right precentral gyrus
was marked for the regional power and functional connectivity figures at the high gamma band. For the beta band, the statistically significant edge
left postcentral gyrus-to-right postcentral gyrus (marked) was also identified by feature selection. CV-SVM-rRF-FS support vector machine and
recursive random forest feature selection with cross validation.
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comes to PTSD classification accuracy, whereas all fre-
quency bands performed comparably for mTBI (Fig. 4B).
For functional connectivity, no statistically significant

differences were found in the classification accuracy for
both disorders (Fig. 4B). Table 1A and Supplementary
Table S4 contain the per group classification accuracy

Fig. 4 (See legend on next page.)
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(%, mean ± SD) and AUC results, respectively. Additional
ML results can be viewed in Supplementary Figs. S7–S9.
Using the consensus features, the final multiclass clas-

sification SVM models were generated for all frequency
bands and data types. These models were ultimately
evaluated with the holdout test data (Table 1B).
For the regional power models, Table 1B demonstrates that

all but the low gamma two (65–80Hz) band exhibited over
70% accuracy for PTSD classification, with the alpha model
showing the best performance (>85%). For mTBI classifica-
tion, the top performing frequency bands were delta, alpha
and beta bands (~85–90% accuracy), while the low gamma
one band exceeded 70% accuracy (Table 1B). More impor-
tantly, the alpha and beta bands performed well for both
disorders. In terms of ROC-AUC analysis (Fig. 4C and
Supplementary Fig. S10), the alpha and beta bands also
achieved good AUC values (~0.7–0.9).
All functional connectivity models exhibited over 70%

accuracy for classifying the PTSD group, whereas the
same level of performance was reached by the theta, alpha
and beta oscillatory models for mTBI (Table 1B). When
using the functional connectivity data, the alpha and beta
models were the best models for differential PTSD and
mTBI classification, even in the presence of overlapping
symptom profiles that mimic each other (Fig. 4D and
Supplementary Fig. S11).

Discussion
Summary
Differentiating a traumatic psychological stress injury

from a physical ‘mild’ traumatic brain carries important
clinical implications – their treatment regimens differ, as
do their long-term outcomes. However, dissociating them
is often difficult as their symptom profiles often overlap - as
shown here - where soldiers with traumatic stress injuries
report symptoms of a concussion (Fig. 1B), without having
suffered a head injury. These results attest to the potential
unreliability of basing a diagnosis on self-reported symp-
tom screeners. Additionally, both PTSD and mTBI groups
exhibited overall higher anxiety and depression scores than
the control groups, showing that both disorders carry

significant neuropsychiatric comorbidity, again high-
lighting the difficulty in making differential diagnoses from
each other, and commonly co-occurring disorders. An
accurate diagnosis of either disorder, amongst others,
requires a comprehensive decision-making process that
includes multiple types of information, including clinical
interview and medical history.
We applied a feature selection and modelling pipeline

(based on Zhang et al.29) to MEG regional neural oscillatory
power and functional connectivity/communication data for
differential classification of PTSD-mTBI in the presence of
symptom overlap. The major findings were: (a) univariate
statistics (e.g. conventional tests) alone are insufficient to
produce reliable features for accurate differential classifi-
cation; (b) the feature selection workflow identifies the most
relevant features for classification in a multiclass(e.g. mul-
tiple group) setting, which have known neurobiological
significance in the two disorders, including areas such as the
amygdalae, thalamus, and hippocampi, and/or functional
connections involving these regions, at frequencies of
neural dynamics that index neural dysregulation, and are
known to be pathophysiological in these disorders; (c)
through the holdout test set assessment (analogous to a
“real world” setting), models derived from both feature
types showed promising classification accuracy at the alpha
and beta frequencies, even when symptom profiles do not
differentiate (e.g. reporting symptoms of a concussion when
none has occurred, in the case of those with PTSD).

Univariate statistics of neural functioning are insufficient
for teasing apart traumatic injuries
The unsupervised clustering and univariate statistical

analyses assessed the data variance and distribution
properties, which are critical for confirming data con-
sistency and, in turn, reliable naïve subject classification
once the optimal classification models were generated.
First, the unsupervised hierarchical clustering and PCA

results showed no clear participant separation when using
the complete data space for both feature types. Next,
statistical analysis revealed feature type-specific results.
With no statistically significant regions identified in any

(see figure on previous page)
Fig. 4 Machine learning feature selection clustering and classification modelling results. A PCA on univariate reduced data starts to separate
the groups. PCA on the complete functional connectivity data with only univariate reduced features for the alpha band. Three principal components
(PC1-3) were plotted. The diagonal shows density distribution of the PCA scores for the four participant groups. The plot shows four participant
groups start to separate with univariate reduced data. B SVM CV model classification accuracy reached comparable values for both feature types. Bar
graphs showing per group classification accuracies for the CV models comparing all seven frequency bands, regional power and functional
connectivity. For each participant group, *=statistically significant (pâ€‰<â€‰0.05) differences based on the ANOVA with Tukey post-hoc test.
C Alpha and beta power show robust model versatility. ROC-AUC analysis results for the final regional power model at the alpha and beta frequency
bands with the holdout test data. The plot shows that models reached good versatility for both disorders (AUC: 0.7–0.9). D Alpha and beta
connectivities in the brain are also versatile in differentiating overlapping disorders. ROC-AUC analysis results for the final functional connectivity
models for alpha and beta frequency with the holdout test data. The plot shows that models reached good versatility for both disorders (AUC:
0.7~0.8). PCA principal component analysis, PC principal component, ROC receiver operating characteristic, AUC area under the curve, SD standard
deviation, NTC non-trauma control, TC trauma-exposed control.
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frequency bands, the univariate analysis results showed
that the variance of the region activity was insufficient to
differentiate the four participant groups. Although group
differences in MEG regional power were identified for
PTSD and mTBI in a binary setting (“case vs control”
studies)49–51, where mid-to-slow wave frequencies and
bilateral postcentral areas were implicated as differ-
entiating factors (from healthy controls), our analysis
showed that this feature type failed to produce reliable
separation in a multi-patient group context. This is likely
due to the added data variance in the presence of addi-
tional patient/control groups. Moreover, the elevated data
variance might also stem from heterogeneity of these
disorders. For example, a recent study subtyped PTSD
using multi-domain data52 and another study identified a
PTSD subtype with verbal memory impairment, with
unique ventral attention network connectivity established
via fMRI53. For mTBI, a recent study proposed a need for
a better subtype representation for the symptom-rating
scales54, which was backed by a proposal of at least six
sport-related concussion subtypes55.
For the functional connectome data, however, perhaps

unexpectedly, the bilateral postcentral gyrus connection
emerged as statistically significant across the four parti-
cipant groups. Nevertheless, previous reports have
implicated these areas in both disorders in binary “case vs
control” studies. For example, a task-based fMRI study
discovered dysregulated postcentral gyrus inhibition
functions for the PTSD group, potentially related to the
impaired execution of the stop response upon task for the
PTSD patients56. For the mTBI patients, the dysregulated
postcentral gyrus was linked to the cognitive functions, as
shown in an attentional task-based MEG study51. Lever-
aging the MEG functional connectivity data type, our
result demonstrated the effectiveness of our univariate
statistics in identifying well-established connectivity sig-
natures for the disorders, especially in a multiclass setting.

Table 1 A. SVM modelling CV per participant group
accuracy (%, mean ± SD); B. SVM modelling final model per
participant group accuracy (%) on holdout test data.

A. SVM modelling CV per participant group accuracy (%, mean ± SD)

Frequency TC PTSD NTC mTBI

Regional power

Delta 72.42 ±

5.54

71.89 ±

14.78

39.67 ±

26.23

66.75 ±

16.67

Theta 56.39 ±

24.35

48.33 ±

26.02

71.83 ±

16.58

73.78 ±

3.63

Alpha 57.53 ±

22.82

75.78 ±

2.92

73.03 ±

12.69

51.33 ±

25.19

Beta 41.33 ±

23.62

75.78 ±

3.64

71.89 ±

16.56

63.67 ±

20.82

Low gamma one 45.83 ±

24.88

75.83 ±

2.71

61.28 ±

25.75

67.61 ±

17.16

Low gamma two 40.03 ±

23.21

65.28 ±

22.23

76.94 ±

1.34

70.28 ±

13.67

High gamma 31.33 ±

15.94

75.78 ±

3.64

76.89 ±

1.76

68.67 ±

15.94

AEC

Delta 47.03 ±

23.02

64.39 ±

17.75

76.89 ±

1.75

73.53 ±

7.50

Theta 47.75 ±

25.72

56.19 ±

23.55

71.19 ±

10.87

67.81 ±

13.27

Alpha 63.53 ±

20.37

74.53 ±

5.57

63.67 ±

22.1

60.94 ±

17.97

Beta 45.39 ±

23.5

75.83 ±

2.71

48.11 ±

29.86

73.72 ±

7.93

Low gamma one 58.00 ±

24.03

55.06 ±

23.77

68.56 ±

15.17

71.33 ±

7.34

Low gamma two 51.96 ±

18.11

70.53 ±

15.05

69.53 ±

12.92

57.42 ±

26.29

High gamma 59.17 ±

19.28

60.14 ±

21.53

63.11 ±

20.38

68.81 ±

11.89

B. SVM modelling final model per participant group accuracy (%) on

holdout test data

Regional power

Delta 50.00 71.43 78.57 85.14

Theta 64.29 71.42 78.57 57.14

Alpha 50.00 85.71 50.00 85.71

Beta 64.29 71.43 71.43 92.86

Low gamma one 64.29 78.57 42.85 71.43

Table 1 continued

B. SVM modelling final model per participant group accuracy (%) on

holdout test data

Low gamma two 57.14 50.00 57.14 64.86

High gamma 42.86 71.43 57.14 57.14

AEC

Delta 71.43 57.14 64.29 50.00

Theta 78.57 85.71 71.43 78.57

Alpha 57.14 71.43 57.14 85.71

Beta 78.57 78.57 42.86 85.71

Low gamma one 28.57 78.57 64.29 57.14

Low gamma two 57.14 71.43 71.43 57.14
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However, with only two frequency bands showing sig-
nificant effects, it is possible that additional information
critical for differentiating traumatic injuries were yet to be
discovered in the data.
Overall, univariate statistics applied to regional and

global neural activity indices appears insufficient for
categorically differentiating individuals with PTSD (with
concomitant head injury symptoms) from mTBI. With
added data variance from both multiple patient groups and
potential presence of subtypes for both disorders, it is not
a surprise that conventional univariate statistics failed to
identify MEG-derived neural signatures, and that a more
powerful multivariate and multiclass machine learning
approach was warranted for differential classification.

Multivariate learning-based feature selection identifies the
most important neural features for teasing apart trauma
Due to the insufficient group separation based on uni-

variate statistics, we expanded on the multivariate
approach35, with a multivariate learning-based feature
selection framework for modelling that can begin to
reliably differentiate these insidious “invisible injuries”. It
is worth noting that our feature selection process identi-
fies the most important features based solely on the input
data without requiring a priori knowledge input of the
specific brain circuits that might be affected in these
disorders. As such, without needing to specify individual
areas and connections, our workflow presents a powerful
generalisable and intuitive solution for feature selection
and the subsequent classification modelling.
For regional activity, our feature selection procedure

identified the most relevant brain regions for classification
modelling. The selected brain regions align with previous
studies showing abnormalities in the disorders, including
the hippocampus, amygdala, and temporal gyri57. For the
functional connectome data, the final feature list included
connections linking the hippocampus, thalamus, amygdala,
and temporal areas, all of which are involved in the core
symptom profiles of PTSD and mTBI35,58–61. For example,
the hippocampus is particularly susceptible to physical
injury (e.g. brain trauma62), chronic stress63, and some of
the core symptoms of PTSD, including traumatic re-
experiencing and intrusive episodic memory, and the
subsequent “knock-on” cognitive sequalae such as memory
deficits and cognitive dysfunction64. Hippocampal circuits
exhibit dysregulated neural activity, in correlational and
casual studies, linked to TBI related memory deficits65–69.
The thalamus is a central “relay station” for coordinating
information between sensory, motor and myriad brain
regions, supporting various brain functions70, and reci-
procal thalamocortical connections are vulnerable to injury
and stress59,69. Thalamic dysfunction is linked to the
symptoms of both PTSD and mTBI. The amygdala serves
emotion processing, with hyperexcitability in this region

directly linked emotional dysfunction, maladaptive threat
response and hypervigilance in PTSD64. Additionally,
temporal areas are involved in the presentation and
pathogenesis of PTSD, due to its role in perceptual func-
tioning and emotional-memory linkages71,72 – likewise,
these areas are known to be to be associated with similar
pathology in mTBI73 – yet, crucially, neurophysiological
features in our data from these same areas, but at specific
frequency bands, as identified by this study, can separate
the two. Therefore, the important point here is that data-
driven neurophysiological modelling identifies the dys-
rhythmic neural features in key, overlapping brain areas
involved in the disorders, and ultimately, dysregulated
neural oscillations are able to differentiate the two. Our
study recapitulates these previous reports by demonstrat-
ing the important role these areas play in classifying these
disease states and extends them by revealing the frequency-
specific neural markers that can distinguish imitable but
distinct pathophysiology.
While effective in the context of SVM modelling, the

PLS-DA modelling and its permutation test suggested
that, for regional activity, the selected features were only
suited for SVM modelling, whereas in functional con-
nectivity we may see optimal model performance with
classifiers beyond SVM. Although similar results were
reported along with neurophysiological dysfunction in
mTBI in a binary study30, here we show that the same was
true for other frequency ranges, and in the presence of a
traumatic stress injury group with self-reported symp-
toms of an mTBI, as well as against two control groups
(importantly, including one with exposure to traumatic
stress, but having not developed PTSD).
Our multivariate learning method extracts crucial

information beyond simple univariate inferential statis-
tics for dissociating PTSD and mTBI in individual cases,
even when both report symptoms consistent with a head
injury. Importantly, most of the identified neural features
are known to be involved in the pathophysiology of
PTSD and mTBI – this is critical for building a frame-
work that can reliably separate the two and inform
treatment options with significant clinical implications,
especially when it comes to designing long-term recov-
ery programs. It is known that a minor but significant
portion (~20%) of people exposed to trauma go on to
develop PTSD74, and that roughly the same proportion
of mTBI patients would continue to experience persis-
tent post-concussive symptoms13. Our method could
reliably identify those neural features that may well be
utilised as part of symptom monitoring tool. In cases of
comorbid PTSD and mTBI, failure to accurately diag-
nose one disorder can prevent recovery from the other13.
As such, our findings may not only help such diagnosis,
but also direct the most appropriate intervention for the
PSTD+mTBI+ patients.

Zhang et al. Translational Psychiatry          (2021) 11:345 Page 11 of 14



Optimal classification performance is achieved separately
for regional activity and interregional functional
connectivity with selected features
Overall, the classification performance exhibited by

the SVM models showed comparable results. We used
the holdout test data to evaluate the final SVM models
built with all training data. Here we identified models
with optimal classification performance for both
disorders.
For regional activity, the alpha and beta activities

exhibited the best performance for differential classifi-
cation (PTSD accuracy: 71~85%, mTBI accuracy:
85~92%). For functional connectivity, the theta, alpha
and beta frequencies exhibited the best performances for
both disorders (PTSD accuracy: 71~85%, mTBI accu-
racy: 78~85%). We also assessed the classification ver-
satility using AUC, both the regional power and
functional connectivity models at the alpha and beta
models exhibited high AUC values (PTSD: ~0.8, mTBI:
0.7~0.9). With both the high classification accuracies
(71%~92%) and versatility (AUC: 0.8~0.9), these models
were considered the best overall models in differential
PTSD/mTBI classification.
While several studies have identified the importance of

“pathological” slower frequency neural oscillations (i.e.
delta to theta, 1–8 Hz range) in mTBI27,51,75, the current
results suggest faster neural oscillations (i.e. alpha to beta,
8–30 Hz) perform well in separating out one disorder
from the other, even with the presence of multiple control
groups, with one of those exposed to traumatic stress. In
fact, alpha and beta activity is to be atypical in PTSD76 and
mTBI77, as well as in individuals diagnosed with both
conditions78. Alpha oscillations are thought to reflect
regional ‘gating-through-inhibition’79 and beta oscilla-
tions are reliable markers of cortical inhibition80, sug-
gesting these disorders can be characterised oscillatory
dynamics that index pathological disinhibition and/or
dysregulated excitation (or a combination of both) – this
has certainly been reported in both mTBI81–83 and
PTSD84,85 in human and animal studies. Mechanistically,
the role of beta oscillations varies by region but is
important in somatosensory processing and cortical
coupling86, with a relevant feature bihemispheric post-
central gyrus features selected here (Fig. 3). Beta activity
in frontal cortices is implicated in memory and executive
functioning87, consistent with the most selected feature in
terms of regional power (Fig. 3).
These results demonstrate that the selected features

hold the promising potential of PTSD/mTBI diagnosis
and hold important significant clinical implications.
For example, these models can potentially be used to
detect the development of PTSD for patients recover-
ing from concussion, allowing appropriate treatment
planning13,88.

Limitations and conclusions
As a follow-up to our previous standalone PTSD and

mTBI reports29,30, the current study combines the cohorts
featured in those studies. Therefore, one major limitation is
the male only cohorts. Given the prevalence of both the
diseases in female (especially in the case of PTSD)89–91, it is
our major future direction to explore differential PTSD/
mTBI diagnosis in a sex-balanced or female-only fashion.
Indeed, the present study established a MEG- and multi-
variate feature selection-based framework for these upcom-
ing studies. Additionally, our models can be further refined
with the addition of more case data.
This study demonstrated the viability of combining

measures of neural activity with a feature selection system
for understanding the neurobiology of, and differentially
identifying, cases of PTSD and mTBI cases, even with
concurrent symptoms overlap. Overall, our multiclass
feature selection objectively identifies the most relevant
features and the best models for differential PTSD/mTBI
classification, without the need of any a priori knowledge
of the specific brain circuits involved. Therefore, differ-
ential diagnosis of PTSD from mTBI based on the selected
features appears highly realistic and beneficial; and being
able to accurately classify individuals who are PTSD
+mTBI+ from those who are either PTSD−mTBI+ or
mTBI−PTSD+ would be the critical next step. Addi-
tionally, multiclass classification with data integrated
across frequencies, rather just within (i.e. band-limited
oscillations), has now been shown to be a powerful
method in a binary classification context for mTBI92.
Moreover, the application of the multivariate statistical
learning algorithms promises to better classify hetero-
geneous patient populations presenting with unique
symptoms, as well as predict individual responses to
treatment, in order to facilitate a personalised therapeutic
approach to brain disorders93. Collectively, these findings
reveal the promising potential of combining ‘invisible’
neurophysiological indices of brain function with machine
learning to address the significant health challenges posed
by these debilitating conditions.
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