
Int J Intell Syst. 2021;36:5085–5115. wileyonlinelibrary.com/journal/int © 2021 Wiley Periodicals LLC | 5085

Received: 18 February 2021 | Revised: 15 April 2021 | Accepted: 11 May 2021

DOI: 10.1002/int.22504

RE S EARCH ART I C L E

Machine learning for medical imaging‐based
COVID‐19 detection and diagnosis

Rokaya Rehouma1 | Michael Buchert1,2 | Yi‐Ping Phoebe Chen3

1School of Cancer Medicine, La Trobe
University, Melbourne, Victoria,
Australia
2Tumour Microenvironment and Cancer
Signaling Group, Olivia Newton‐John
Cancer Research Institute, Melbourne,
Victoria, Australia
3Department of Computer Science and
Information Technology, La Trobe
University, Melbourne, Victoria,
Australia

Correspondence
Yi‐Ping Phoebe Chen, Department of
Computer Science and Information
Technology, La Trobe University,
Melbourne, VIC 3086, Australia.
Email: phoebe.chen@latrobe.edu.au

Abstract

The novel coronavirus disease 2019 (COVID‐19) is

considered to be a significant health challenge world-

wide because of its rapid human‐to‐human transmis-

sion, leading to a rise in the number of infected people

and deaths. The detection of COVID‐19 at the earliest

stage is therefore of paramount importance for

controlling the pandemic spread and reducing the

mortality rate. The real‐time reverse transcription‐
polymerase chain reaction, the primary method of

diagnosis for coronavirus infection, has a relatively

high false negative rate while detecting early stage

disease. Meanwhile, the manifestations of COVID‐19,
as seen through medical imaging methods such as

computed tomography (CT), radiograph (X‐ray), and
ultrasound imaging, show individual characteristics

that differ from those of healthy cases or other types of

pneumonia. Machine learning (ML) applications for

COVID‐19 diagnosis, detection, and the assessment of

disease severity based on medical imaging have gained

considerable attention. Herein, we review the recent

progress of ML in COVID‐19 detection with a parti-

cular focus on ML models using CT and X‐ray images

published in high‐ranking journals, including a dis-

cussion of the predominant features of medical ima-

ging in patients with COVID‐19. Deep Learning

algorithms, particularly convolutional neural net-

works, have been utilized widely for image
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segmentation and classification to identify patients

with COVID‐19 and many ML modules have achieved

remarkable predictive results using datasets with lim-

ited sample sizes.
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1 | INTRODUCTION

Since the end of 2019, the world is experiencing a pandemic caused by the novel highly trans-
missible coronavirus called severe acute respiratory syndrome coronavirus 2 (SARS‐CoV‐2).1,2

The newly discovered viral‐induced lung disease was termed COVID‐19, which has rapidly
spread to 222 countries and territories, causing over 102 million confirmed cases, and 2.2 million
deaths by January 31, 2021.3

COVID‐19 patients present with cough, fever, dyspnoea, fatigue, and myalgia. However,
hemoptysis, chest pain, sputum production, rhinorrhea, headache, sore throat, and gastro-
intestinal manifestations are uncommon symptoms in COVID‐19.4–6 Although infected people
predominantly suffer mild symptoms or are asymptomatic, a significant number of patients
rapidly progress to severe acute respiratory failure with a higher risk of death, specifically in
elderly, as well as in people who have underlying comorbidities, for instance, chronic re-
spiratory or cardiovascular disease, diabetes, and cancer.7,8

The early and accurate COVID‐19 diagnosis has the potential to control the epidemic
spread and reduce mortality. The reverse‐transcription polymerase chain reaction
(RT‐PCR) of the nose and nasopharyngeal swabs is considered an essential method for the
clinical detection of SARS‐CoV‐2 infection.9 Nevertheless, there are some shortcomings,
including relative low sensitivity in the early stage of the disease, a time‐consuming pro-
cedure, and a shortage of RT‐PCR kits.10–13 Meanwhile, medical imaging showed a high
positive rate in the detection of the disease, in particular by computed tomography (CT)
that may be considered as a primary and a reliable diagnostic tool for COVID‐19 detection
and follow‐up.13,14

In recent years, numerous approaches of machine learning (ML) have been successfully
applied in the healthcare and medical fields to cope with challenges such as the accurate
diagnosis and prediction of disease outcomes. Therefore, researchers have undertaken
efforts to apply ML techniques to assist in mitigating the COVID‐19 pandemic. This review
aims to discuss various ML algorithms developed to construct automated COVID‐19
diagnostic and prognostic systems based on medical imaging. Our contributions in this
review include:

• This review provides a list of publicly available data sets for training and testing of ML
models. The data sets encompass collections of medical chest images of COVID‐19, other
common pneumonia, and healthy controls.

• We explore CT manifestations at different stages of the disease, and report on the main
findings for COVID‐19 using X‐ray images.
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• We focus on analysing developed ML models for COVID‐19 diagnosis using image modalities
(CT scan, X‐ray, and ultrasound imaging), and we briefly describe the general workflow of an
image‐based COVID‐19 diagnostic system.

• We illustrate the current ML techniques that are applied in COVID‐19 research for image
segmentation and classification tasks, and we discuss the common limitations of ML
methods in detecting COVID‐19 infections.

The rest of our review manuscript is organized as follows: In Section 2, we list the popular
and current open‐source data sets of medical imaging data from healthy samples, COVID‐19,
and other pneumonia patients. We then present the predominant features of medical imaging
during SARS‐CoV‐2 infection, and highlight recent research which employed ML algorithms
for classification and diagnosis of COVID‐19. Areas that used CT‐based, X‐ray‐based, and
ultrasound‐based diagnosis are emphasized in Section 3 while the subsequent Section 4 in-
troduces studies for the assessment of COVID‐19 severity and the prediction of mortality using
medical imaging. In Section 5, the manuscript provides a brief discussion that summarizes the
limitations of ML methods for COVID‐19 imaging‐based diagnosis. Finally, we draw conclusion
in Section 6.

2 | THE MEDICAL IMAGING DATA SETS

In the event of a novel disease, one of the challenges facing scientists is data insufficiency and
its variation over different geographic regions. As data is an essential component of ML
techniques,15 the quality of data representation plays a critical role in the performance of ML
models; thus the availability of large quantities of data with balanced representation provides
opportunities to achieve high performing detection and prediction models.16 Although various
datasets of CT scan and radiologic (X‐ray) images are publicly available, the data sizes, spe-
cifically of early‐stage COVID‐19, are limited. Therefore, collaboration and exchange of re-
sources among researchers are required to develop diagnostic ML systems and to better combat
the COVID‐19 pandemic.

Table 1 lists publicly accessible data sets of CT, X‐ray, and ultrasound images of healthy,
COVID‐19, and other common forms of pneumonia.

It is worth noting that the majority of published papers reviewed here developed ML models
for COVID‐19 diagnosis and detection using privatly‐sourced data sets.

3 | ML FOR IMAGE ‐BASED COVID ‐19 DIAGNOSIS AND
CLASSIFICATION

Several studies have recently appeared in the area of chest imaging segmentation and classi-
fication using ML to identify patients with COVID‐19.28 The general workflow to build an
image‐based COVID‐19 diagnostic system using ML algorithms is described in Figure 1. In
brief, it requires:

(1) Medical imaging data set and corresponding accurate output labels; (2) data preparation
and preprocessing: a curation process for medical imaging data is required for optimal training,
validation, and testing of ML models; (3) a suitable segmentation technique. The U‐net29 is the
most popular convolutional network used in COVID‐19 applications to extract both lung region
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TABLE 1 Chest medical imaging datasets of COVID‐19, pulmonary diseases, and healthy samples

Data set Modality Description

Zhang et al.17 Chest CT The data set encompasses collections of CT images of
COVID‐19, other common PNA patients, and normal
from the China Consortium of Chest CT Image
Investigation (CC‐CCII). It also includes lesion
segmentation data set of 750 slices from 150 patients
with COVID‐19. The images of lesion segmentation
data set were manually segmented into the background,
lung field, GGO, and CL.

The data set is publicly available at http://ncov‐ai.big.ac.
cn/download?lang=en

Cohen et al.18 Chest CT and X‐ray The data set is composed of 20 COVID‐19 CT scans, and
761 X‐ray (679 frontal and 82 lateral views) images from
COVID‐19 and other common PNA patients, includes
metadata. The authors extracted the images from
websites and online publications.

The data set is publicly available at https://github.com/
ieee8023/covid‐chestxray‐data_set

COVID19‐CT19 Chest CT The data set is comprised of 349 images from 216 patients
with COVID‐19 and 397 non COVID‐19 images. The
images extracted from online publications.

The data set is publicly available at https://github.com/
UCSD‐AI4H/COVID‐CT

COVID‐19 and
common PNA
chest CT data set20

Chest CT The COVID‐19 and common PNA chest CT data set is
comprised of 416 confirmed COVID‐19 scans, and 412
other common PNA scans.

The data set is publicly available at https://data.mendeley.
com/datasets/3y55vgckg6/1

COVID‐19
Radiography
Database21

Chest X‐ray The database is composed of 219 images of COVID‐19,
1345 images of viral PNA, and 1341 normal images. The
data set was created from different articles and public
datasets.

The data set is publicly available at https://drive.google.
com/file/d/1xt7g5LkZuX09e1a8rK9sRXIrGFN6rjzl/
view?usp=sharing

SIRM COVID‐19 data
set22

Chest CT and X‐ray Italian Society of Medical and Interventional Radiology
(SIRM) COVID‐19 data set contains 94 COVID‐19 X‐
rays and 290 COVID‐19 CTs.

The data set is publicly available at https://www.sirm.org/
category/senza‐categoria/covid‐19/

Feng et al.23 Laboratory data and
CT
characteristics

The data set contains CT features, clinical characteristics,
and laboratory data from 141 COVID‐19 patients. CT
characteristics include GGO, CL, crazy‐paving, and air
bronchogram. The data is available in Excel worksheet
within the supplementary information of the paper.
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TABLE 1 (Continued)

Data set Modality Description

POCUS data set24 ultrasound The data set contains 654 COVID‐19 images, 172 normal,
and 277 bacterial PNA images. The images are sampled
from ultrasound videos from different online sources.
The data set is publicly available at GitHub‐jannisborn/
covid19_pocus_ultrasound: Open source ultrasound
(POCUS) data collection initiative for COVID‐19

ICLUS‐DB25 ultrasound The Italian COVID‐19 Lung Ultrasound DataBase (ICLUS‐
DB) comprises 277 lung ultrasound videos from 35
COVID‐19 patients. Data could be requested through
https://iclus‐web.bluetensor.ai/login/?next=/

ChestX‐Ray826 Chest X‐ray The database was constructed from 108,948 labeled frontal
images from 32,717 other common patients and normal
cases collected between 1992 and 2015. The images have
one or multi labels, including PNA, pneumothorax,
atelectasis, nodule, mass, cardiomegaly, infiltration,
effusion, and normal. The data set is publicly available
at https://nihcc.app.box.com/v/ChestXray‐NIHCC

CheXpert27 Chest X‐ray The data set encompasses 224,316 labeled chest
radiographs from 65,240 normal and other common
patients collected from studies between the 2002 and
2017 at the Stanford Hospital. The images have one or
multi labels, including PNA, pneumothorax, CL, lung
lesion, lung opacity, atelectasis, nodule, fracture,
enlarged cardiom, cardiomegaly, infiltration, edema,
effusion, and no finding. The data set is publicly
available at https://stanfordmlgroup.github.io/
competitions/chexpert/

Abbreviations: CL, consolidation; CT, computed tomography; GGO, ground‐glass opacity; PNA, pneumonia.

FIGURE 1 Illustration of the general workflow of using machine learning techniques and medical imaging
for COVID‐19 diagnosis. This pipeline presents the various steps for building an image‐based COVID‐19
diagnostic system and commonly used machine learning techniques [Color figure can be viewed at
wileyonlinelibrary.com]
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and lesions (region of interest [ROI]) from the background of medical images. Of note, this step
was performed more often in the studies based on CT scans than in those based on X‐ray
images, making CT segmentation an essential process of the COVID‐19 diagnostic model; (4)
an appropriate ML technique for elaboration of the diagnostic model. The studies discussed
below have been almost entirely based on deep learning (DL) network architectures, mainly
convolutional neural networks (CNN). A few establish their ML models from scratch, while the
majority used a variety of pre‐trained CNN networks in COVID‐19 research. The CNN archi-
tectures are constructed of a stack of convolutional and pooling layers performing feature
extraction, followed by fully connected layers as a classifier. The following are some
well‐known pretrained CNN architectures:

• AlexNet is a basic CNN network introduced in the ImageNet Large Scale Visual Recognition
Challenge (ILSVRC‐2012).30 Its architecture has a depth of eight and its architecture com-
prises five convolutional layers, a limited number of max‐pooling layers, and three fully
connected layers. This model uses large filters in the first and second convolutional layers.

• VGG31 contains 16 or more convolutional and fully connected layers. Raising the depth to 16
in VGG‐16 and 19 in VGG‐19 improves the general performance of the model. Each
convolutional layer utilizes a small filter (3 × 3).

• ResNet32 is a novel convolutional network because of its architecture (depth and the residual
blocks). This model was evaluated with a depth of 152 layers on the ImageNet data set.33

• GoogleNet34 has devised a new module termed inception. This network is 27 layers deep
including pooling layers.

• Xception35 consists of 36 convolutional layers.

Besides the network's architecture, its receptive field and activation function are important
concepts in the design of a successful ML model. The receptive field, a small portion of the
input that generates a feature in a convolutional layer, has increased as the above networks
evolved from AlexNet to other models. Accordingly, the growth of the receptive field may be
related to improvements in the model's accuracy. The following equation can be used to
calculate the maximum receptive field:

S S s

k S

= ×

RF = RF + ( –1) ×
n n n

n n n n

‐1

‐1

(1)

where sn is stride size of layer n, kn is kernel size of layer n, Sn is cumulative stride from layer n,
and RFn is the receptive field of a unit from layer n.

From this Equation (1), the receptive field is affected by several factors, including the filter
size, and the stride of all the previous layers. Therefore, the receptive field could be modified by
changing the filter size and adding more max‐pooling layers to increase Sn. Besides, an increase
in the dilation rate leads to an increase in the receptive field.

However, the importance of the receptive field in CNNs has not been described in the
studies reported here. Nevertheless, a limited receptive field impedes a convolutional layer to
capture larger patchy‐like lung lesions, whereas the high‐level layers with large receptive fields
were able to detect the diffuse and patchy‐like lung lesions, such as consolidations.36

There are various activation functions available but rectified linear unit (ReLU) is the one
commonly utilized for DL. The function returns zero for all negative inputs, but it returns
the raw value for any positive input. Due to the simplicity of the ReLU function, the model can
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be trained in a short time, and the function is relatively cheap to compute. Also, the function is
an optimal solution to avoid the vanishing gradient problem. Consequently, the ReLU function
is preferred when the deeper network and the computational load is a major concern. More-
over, the Leaky Rectified Linear unit (Leaky ReLu) can be used as an activation function to deal
with the vanishing gradient problem, but this requires more computation than using ReLU.
Sigmoid and softmax are other activation functions that are similar in structure and have
common problems, including the slow convergence rate and gradient diffusion. The sigmoid
function is used mostly for binary classification such as the two‐class logistic regression,
whereas softmax is used for multiclass classification.

While most studies analysed in this review used ReLU as an activation function for their
network, Yan et al.37 used a sigmoid function for a fully connected layer with one output to
generate the probability for COVID‐19, and Wang et al.38 used the softmax function for a
progressive classifier consisting of three convolutional layers within a fully connected layer.

Ozturk et al.39 used two different activation functions, the Leaky ReLU activation function
used for their model which ends with softmax layers to produce outputs which achieved a high
performance of 98.08%. On the other hand, Toğaçar et al.32 proposed a diagnostic system based
on MobileNet‐V240 which utilizes uses ReLU function between layers, and support vector
machines (SVM) using sigmoid activation function for the classification task and achieved
99.27% accuracy. Therfore, different activation functions used in different models can achieve
high performance.

The main power of convolutional networks compared to traditional ML methods lies in its
depth and compositionally.41,42 This allows the extraction of complex and discriminating fea-
tures from the input medical image at multiple abstraction levels. Therefore, an architecture of
sufficient depth can produce a compact representation which is beneficial for the prediction
accuracy.31 However, a CNN network with fewer convolutional and fully connected layers
might perform similarly to deeper networks.43 Therefore, not only the network depth but also
the structure of the cohort data, balanced representation of samples in a data set, and the data
quality have a significant impact on the model's performance. Data representation is one of the
keys to successful ML algorithms. Table 2 illustrates the representation of imaging data from
different ML algorithms used by the studies discussed in this review. (5) validation and eva-
luation of the model's performance. Validation strategies include internal, temporal, and ex-
ternal validation. Holdout, cross‐validation, and bootstrapping are the most common types of
internal validation. In addition, the accuracy, specificity, sensitivity, curves and area under the
curve (AUC), receiver operating characteristic (ROC), and F‐score are standard evaluation
measures used to assess the performance of a developed model.

3.1 | Using chest CT

CT scans have become one of the reliable and practical tools for rapid diagnosis of COVID‐19
patients56 because of its speed, high sensitivity, and ability to detect typical imaging features in
COVID‐19 patients.13,57,58 Some studies11,14,59 investigated the diagnostic value of CT as
compared with RT‐PCR for COVID‐19 disease and concluded that CT scanned images had high
sensitivity (97%–98%) to correctly diagnose COVID‐19; by comparison, RT‐PCR achieved a
sensitivity in the range of 71%–83%.

Predominant features of COVID‐19 CT images involve ground‐glass opacity (GGO), con-
solidation, crazy‐paving pattern, and interlobular septal thickening.49,60,61 However, it has been
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observed that the frequency of these common features in severe COVID‐19 patients are sig-
nificantly higher than in early‐stage or moderate COVID‐19.61 Additionally, air bronchogram,
pleural effusion, pericardial, nodules, lymphadenopathy, round cystic changes, and bronchial
wall thickening are more frequently observed in CT images of severe COVID‐19 patients.49,60–62

Figure 2 illustrates manifestations in CT scans at the different COVID‐19 stages using follow‐up
CT scans from three COVID‐19 patients.

The lung abnormalities in the COVID‐19 CT scans vary in patients depending on immune
status, age group, and disease stage. Wang et al.64 concluded that ground‐glass opacity was the
most common feature in COVID‐19 CT scans, followed by consolidation during the first 11
days following onset of symptoms. While these two patterns constituted approximately
83%–85% of CT manifestations among all COVID‐19 patients in the early stages, pleural ef-
fusion was absent. Twelve days from symptom onset, a mixed pattern becomes the pre-
dominant CT finding which is consistent with another report.65 Furthermore, bilateral multiple
lobular and subsegmental areas of consolidation were the main findings in intensive care unit
(ICU) patients.4

On the other hand, Li et al.66 summarized CT findings which were significantly associated
with COVID‐19 in comparison to other common viral forms of pneumonia. These included
absent of pleural effusion, a lesion range more than 10 cm, multiple affected lobes and per-
ipheral distribution. Moreover, 43.51% of COVID‐19 patients showed mediastinal and hilar
lymph node enlargement in CT scans compared to 20.0% in other common viral pneumonia.
Figure 3 shows CT images from healthy cases, COVID‐19 and other respiratory diseases.

The CT image scans show significant potential for detecting COVID‐19; nevertheless,
manual classification of CT features, involving peripheral GGO and consolidation often
achieves relatively low sensitivity in distinguishing COVID‐19 patients from other types of
pneumonia, especially other viral forms of pneumonia. According to a recent study,70 seven

TABLE 2 The representation of COVID‐19 imaging data from different ML method

COVID‐19 imaging data
representation Modalities ML model Study

3D feature maps CT Attention‐based deep 3D multiple instance
learning

44

Latent high‐level representation CT CPM‐Nets45 multiview representation learning
technique

46

Adaptive feature selection guided deep forest
(AFS‐DF)

47

Image pyramid representation CT The multiscale spatial pyramid (MSSP)
decomposition48

49

Bag representation CT Attention based deep 3D multi‐instance
learning (AD3D‐MIL)

44

One‐hot representation CT Adapted 3D ResNet‐18 17

64‐dimensional DL features CT DenseNet‐like structure50 51

Activation maps X‐ray MobileNetV2,40 SqueezeNet,52 Deep CNN
architecture

21,53–55

Abbreviations: CNN, convolutional neural network; CT, computed tomography.
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radiologists were able to differentiate between COVID‐19 and other viral pneumonias with a
sensitivity ranging from 70% to 93% using CT images.

Artificial intelligence (AI) could assist radiologists in improving their performance and
better cope with such challenges. In this regard, Table 3 summaries selective information from
studies employing ML algorithms for COVID‐19 detection using CT images.

To discriminate COVID‐19 from other forms of pneumonia,37,73,80 Wu et al.80 constructed a
multiview fusion model using ResNet50 architecture32 to assist radiologists in accurately identifying
patients with suspected COVID‐19. They trained the model utilizing coronal, axial, and sagittal
views of the maximum lung regions from CT scans. The multi‐view module obtained an area under
the curve (AUC) of 0.819, and 76% accuracy in the test set which consisted of 50 patients (37
COVID‐19 and 13 other pneumonias). The performance of the multiview fusion model was higher
than the single‐view model that used only the axial view and obtained an accuracy of 62% in the
testing sets. Yan et al.37 designed an AI model relying on a multiscale convolutional neural network
(MSCNN) using limited training data (164 COVID‐19 patients and 330 patients with other forms of
common pneumonias). The authors applied data augmentation, a multiscale spatial pyramid
(MSSP) decomposition,48 and transfer learning for better performance. The AUC values of the
proposed system were 0.962 at the 2D slice level, and 0.934 at the 3D scan level.

FIGURE 2 The CT scan findings of COVID‐19 progression from three patients. Patient (A) was a 61‐year‐
old male with a history of chronic pleurisy. CT also shows calcified fibrothorax in the left lob due to chronic
pleurisy.63 Patient (B) was a 35‐year‐old female.64 Patient (C) was a 77‐year‐old male with cerebrovascular
disease, cardiovascular disease, and hypertension.49 CL, consolidation; CT, computed tomography; GGO,
ground‐glass opacity; PNA, pneumonia [Color figure can be viewed at wileyonlinelibrary.com]
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Also, Ardakani et al.81 evaluated 10 pretrained CNNs, including ResNet‐101,32 Xception,35

AlexNet,30 MobileNet‐V2,40 ResNet‐50,32 SqueezeNet,52 ResNet‐18,32 VGG‐16,31 VGG‐19,31 and
GoogleNet34 to develop an adjuvant tool that could assist radiologists in differentiating between
COVID‐19 infections and other atypical and viral pneumonias. ResNet‐10132 and Xception35

appeared with the best diagnostic performance of 0.994 (AUC).

FIGURE 3 (A) CT image of normal sample.19 CT images from pneumonia patients (Adapted from Reference
[66]. (B) GGO and consolidation are shown in a 23‐year‐old female with influenza infection. (C) a mixed pattern of
consolidation and GGO is shown in a 64‐year‐old male with Epstein‐Barr virus infection. CT images from
confirmed COVID‐19 patients. (D) Pulmonary fibrosis is shown in both lungs in a CT image of a 56‐year‐old
female with moderate COVID‐19 (Adapted from Reference [62]). (E) Pulmonary nodule in a 23‐year‐old female
(Adapted from Reference [67]). (F) Confluent pure GGO is presented in COVID‐19 patient (Adapted from
Reference [68]). (G) GGO and consolidation with air bronchogram are presented in a CT image of 59‐year‐old
female with sever COVID‐19 (adapted from62). (H) Multifocal crazy‐paving pattern and consolidation is shown in
a 59‐year‐old female (Adapted from Reference [66]). (I) the right lung with peripheral predominant GGO, and a
reversed halo sign in the left in a 45‐year‐old female (Adapted from Reference [69]). CL, consolidation; CT,
computed tomography; GGO, ground‐glass opacity [Color figure can be viewed at wileyonlinelibrary.com]
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DL models were developed for multi‐class classification tasks to distinguish COVID‐19
infections from other pneumonia and against features irrelevant to infection.44,74,79 Xu et al.
published the first ML system to screen COVID‐19 patients using CT images79 and proposed a
3D segmentation CNN model to extract a ROI. They then evaluated two classification models,
the traditional residual network (ResNet‐18)‐based32 model, and the location‐attention model
based on ResNet‐1832 as the backbone, to discriminate COVID‐19 from normal and influenza‐A
viral pneumonia (IAVP). The second model obtained better performance with an accuracy of
86.7%.79 Ko et al. proposed a 2D CNN framework, called the fast‐track COVID‐19 classification
network (FCONet), for identifying COVID‐19 in a single CT image.74 Four pretrained CNN
models (ResNet‐50,32 VGG‐16,31 Xception,35 and Inception‐v382) were evaluated to develop
FCONet by transfer learning. ResNet‐50 appeared with the highest diagnostic performance
with an accuracy of 99.87% on the testing set of 239 COVID‐19 images, and 96.97% on the
external testing set of 264 COVID‐19 low‐quality images, respectively.

COVID‐19 diagnostic systems which outperformed experienced radiologists in distin-
guishing COVID‐19 patients from other types of pneumonia were also recently proposed.
Zhang et al.17 adopted DeepLacv383 as the backbone for lung‐lesion segmentation due to its
efficient performance compared to other segmentation tools tested in this study, including
SegNet,84 DRUNET,85 U‐net,29 and FCN,86 and built a 3D classification framework using 3D
ResNet‐18. The 2,879 CT slices of COVID‐19 patients and 1816 CT slices of patients with other
common pneumonia were manually annotated into seven categories: GGO, consolidation,
pleural effusion, and interstitial thickening, lung field, and background for training and eva-
luation procedures. Their diagnostic classification model obtained 92.49% accuracy in identi-
fying the COVID‐19 group from the No‐COVID‐19 group (normal and other common
pneumonia). It also obtained 92.49% accuracy for multiclass classification (COVID‐19 from
normal and other common pneumonia). This system yielded a weighted error of 9.29% in a
testing set of 18,392 CT slices from 150 subjects compared to an average mean of weighted error
of 13.55% when the slices were assessed by eight radiologists. The proposed system by Bai
et al.77 obtained an accuracy of 96% and sensitivity of 89% compared to an average accuracy of
85% and sensitivity of 79% by experts. With the model's assistance, the performance of the
radiologists improved to 90% accuracy and 88% sensitivity.

Although significant advancement has been demonstrated by recent studies for COVID‐19
diagnosis using ML techniques on CT images, many of them require manual radiologist‐
assisted annotations of the lung lesion. Wang et al.51 aimed to establish a fully automated
diagnostic system, referred to as COVID‐19Net, using deep learning. They used feature pyramid
networks (FPN)87 with a DenseNet12150 as the backbone for the segmentation model, which
pretrained on the ImageNet data set,33 and fine‐tuned using the VESSEL12 data set,88 whilst
diagnostic and predictive analysis used a DenseNet‐like structure.50 First, the COVID‐19Net
model was trained on CT‐epidermal growth factor receptor (EGFR) data set,89 consisting of
4106 patients with lung cancer, to predict EGFR mutation status. This allowed the model to
learn distinguishing features from CT. Afterwards, the authors transferred the pretrained
model to COVID‐19 data set, achieving an accuracy of 85% in identifying COVID‐19 from other
pneumonia.

Three‐dimensional deep learning frameworks were developed to distinguish COVID‐19
from community‐acquired pneumonia (CAP).71,75,76 Li et al. developed a framework, referred
to as COVNet, using CNN models.71 The COVNet model consisted of U‐Net29 to extract the
lung region as the ROI, RestNet5032 as the backbone to extract and combine features from all
slices, and a fully connected layer to detect COVID‐19 by generating a score of probability for
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each class of COVID‐19, CAP, and normal. It achieved an AUC of 0.96 for identifying
COVID‐19 in the independent testing data set. Ouyang et al.76 proposed two 3D ResNet34
networks36 with a novel online attention model. The model was employed on a large testing
data set, achieving an AUC of 0.944.

Alongside 3D deep learning models for distinguishing COVID‐19 from CAP, a multiview
representation learning technique has been proposed recently.46 The authors extracted
189‐dimensional features from each image based on the lesion region produced from the
segmentation model. Their model achieved 95.5% accuracy, 96.6% sensitivity, and 93.2%
specificity. Sun et al.47 used adaptive feature selection guided deep forest (AFS‐DF) based on
extracted location‐specific features from segmented images. For CT segmentation, they applied
VB‐Net developed in Reference [90]. The experimental results showed 0.963% and 91.79% in
terms of AUC and accuracy, respectively.

Additionally, ML algorithms have been applied for identifying confirmed COVID‐19
patients from negative COVID‐19 cases.72,78

3.2 | Using chest radiographs (X‐ray)

Although CT modality has been utilized as a primary imaging tool for COVID‐19 diagnosis,
chest radiology has also been considered as an alternative diagnostic method for this disease.56

While a recent study reported that the sensitivity of X‐ray (69%) was lower than that of RT‐PCR
(91%), X‐ray images showed COVID‐19 signs in six patients who initially tested negative by
RT‐PCR.38

Chest X‐ray imaging is cost‐effective and commonly used for screening purposes. The
predominant chest radiographic finding in COVID‐19 patients is consolidation, followed by
ground‐glass opacities.38,91 While lower zone distributions, peripheral distributions, and bi-
lateral involvements presented in X‐rays of COVID‐19 patients, pleural effusions were an
uncommon feature.38 Overall, X‐ray findings in COVID‐19 and other forms of pneumonia are
highly similar (Figure 4).

Compared to chest CT, the sensitivity of X‐ray is generally low for pulmonary diseases.
Therefore, accurate diagnosis of COVID‐19 pneumonia can be more challenging on X‐ray
images than on chest CT scans, as shown in Figure 5.

Nevertheless, radiologic examinations might be an essential diagnostic method for mon-
itoring the progression of lung abnormalities in patients affected by COVID‐19. Numerous
studies, presented in Table 4, have developed different ML algorithms for establishing auto-
mated systems for COVID‐19 diagnosis using X‐ray images. Two recent studies employed ML
models for binary classification tasks to discriminate between COVID‐19 infections and other
lung diseases and healthy lungs.53,98,99,103,106 Certain studies utilized the transfer learning
method through pre‐trained CNN models on the ImageNet data set33 to distinguish COVID‐19
positive patients from healthy controls.53,103 Also, Brunese et al.98 proposed a diagnostic model
based on pretrained VGG‐1631 architecture to discriminate COVID‐19 from other pulmonary
diseases.

Elaziz et al.106 utilized novel Fractional Multichannel Exponent Moments (FrMEMs) as
features extractor and Manta‐Ray Foraging Optimization (MRFO) modified by Differential
Evolution (DE) as features selector. They then trained and evaluated K‐nearest neighbors
(KNN) classifier and were able to classify COVID‐19 patients with 98.09% and 96.09% accuracy
rates on two different data sets. Yoo et al.99 proposed a classifier model that comprised three
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DL‐based decision trees. The first one classified X‐ray images into normal and abnormal images
with 98% accuracy. The second decision identified tuberculosis (TB) patients with an accuracy
of 80%. The third tree was able to distinguish X‐rays that contained signs of COVID‐19 with
95% accuracy.

FIGURE 4 Chest X‐ray images. (A) Normal sample.92 (B) A female in her 30 s with Mycoplasma

pneumoniae pneumonia. X‐ray shows GGO (Adapted from Reference [93]). (C) A 29‐year‐old female with SARS.
X‐ray reveals consolidation (Adapted from Reference [94]). (D) A 41‐year‐old male with COVID‐19. X‐ray,
obtained 11 days after the symptoms, shows bilateral diffuse patchy and fuzzy shadows (Adapted from
Reference [95]). (E) An elderly male with COVID‐19. X‐ray shows consolidative changes in the right lobe
(Adapted from Reference [91]). (F) A single nodular consolidation is observed in X‐ray image from a patient
with COVID‐19 (Adapted from Reference [68]). (G) A 65‐year‐old male. X‐ray, obtained 9 days after onset of
symptoms, shows a progressive infiltrate and consolidation (Adapted from Refernce [96]). (H) X‐ray of patient of
COVID‐19 shows patchy ground‐glass opacities and patchy consolidation (Adapted from Reference [68]). (I) A
59‐year‐old female with COVID‐19. X‐ray shows patchy GGO (Adapted from Reference [69]). CL, consolidation;
CT, computed tomography; GGO, ground‐glass opacity [Color figure can be viewed at wileyonlinelibrary.com]
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Various ML algorithms for multiclass classification to differentiate COVID‐19 infections
from other forms of pneumonia and healthy cases have been developed.54,55,100,102,104,105 In one
study, the authors developed a suitable model for training on a relatively limited data set that
comprised 126 cases with COVID‐19, 14 with viral pneumonia, 41 with tuberculosis,
39 with bacterial pneumonia, and 134 normal cases.100 The authors used fully
convolutional‐DenseNet103107 to extract lung area and heart contour of X‐ray images, followed
by a patch‐based CNN based on ResNet‐1832 as a backbone to identify viral pneumonia
including COVID‐19 from other classes. The proposed model showed 88.9% accuracy and

FIGURE 5 Comparison of chest X‐ray (left panel) and CT (right panel) of COVID‐19 (A, B) X‐ray and CT of
a 34‐year‐old man, the fifth RT‐PCR test was positive after 5 days from onset. X‐ray and CT scan at disease onset
show patchy GGO (Adapted from Reference [97]). (C, D) A CT thorax coronal scan and X‐ray performed on the
same day of a COVID‐19 patient. GGO was observed on CT but was not visible on X‐ray (Adapted from
Reference [91]). (E, F) X‐ray and CT of a 43‐year‐old man. CT scan shows GGOs, and he had negative findings
on X‐ray image (Adapted from Reference [38]). CT, computed tomography; GGO, ground‐glass opacity;
RT‐PCR, reverse transcription polymerase chain reaction [Color figure can be viewed at wileyonlinelibrary.com]

REHOUMA ET AL. | 5101

http://wileyonlinelibrary.com


T
A
B
L
E

4
Su

m
m
ar
y
of

pe
rf
or
m
an

ce
of

M
L
m
od

el
s
ap

pl
ie
d
fo
r
de

te
ct
io
n
of

C
O
V
ID

‐1
9
u
si
n
g
C
h
es
t
X
‐ra

y

R
ef
er
en

ce
N
u
m
be

r
of

sa
m
p
le
s

P
re
‐p
ro
ce

ss
in
g
d
at
a

M
od

el
's
n
am

e
(M

L
te
ch

n
iq
u
es
)

P
u
rp

os
e

A
C
C
/

A
U
C

Se
n
(%

)
Sp

ec
(%

)

39
12
7
C
O
V
ID

‐1
9
im

ag
es

N
ot

pr
ov
id
ed

D
ar
kC

ov
id
N
et

(D
ar
kn

et
‐1
9)

B
in
ar
y
cl
as
si
fi
ca
ti
on

:

50
0
P
N
A

im
ag
es

C
O
V
ID

‐1
9
vs
.
n
o‐
fi
n
di
n
gs

98
.0
8%

95
.1
3

95
.3

50
0
n
o‐
fi
n
di
n
gs

im
ag
es

M
u
lt
ic
la
ss

cl
as
si
fi
ca
ti
on

:

C
O
V
ID

‐1
9
vs
.
h
ea
lt
h
y
vs
.

ot
h
er

P
N
A

87
.0
2%

85
.3
5

92
.1
8

98
25
0
C
O
V
ID

‐1
9

R
es
iz
e
to

22
4
×
22
4
pi
xe
ls

V
G
G
N
et

(V
G
G
‐1
6)

M
od

el
1:

h
ea
lt
h
y
vs
.

C
O
V
ID

‐1
9
an

d
pu

lm
on

ar
y

96
%

96
98

27
53

ot
h
er

pu
lm

on
ar
y

di
se
as
es

M
od

el
2:

C
O
V
ID

‐1
9
vs
.

ot
h
er

pu
lm

on
ar
y

98
%

87
94

35
20

h
ea
lt
h
y
co
n
tr
ol
s

54
29
5
C
O
V
ID

‐1
9
im

ag
es

N
ot

pr
ov
id
ed

M
ob

il
eN

et
V
2,

M
u
lt
ic
la
ss

cl
as
si
fi
ca
ti
on

:

98
P
N
A

im
ag
es

Sq
u
ee
aN

et
,

C
O
V
ID

‐1
9
vs
.
h
ea
lt
h
y
vs
.

ot
h
er

P
N
A

99
.2
7%

10
0

99
.0
7

65
n
or
m
al

cl
as
s
im

ag
es

SV
M
.

99
16
2
C
O
V
ID

‐1
9
im

ag
es

H
or
iz
on

ta
l
fl
ip
,
w
id
th

an
d

h
ei
gh

sh
if
t
ra
n
ge

(0
.2
),

ro
ta
ti
on

an
gl
e

D
L
‐b
as
ed

de
ci
si
on

‐tr
ee

B
in
ar
y
cl
as
si
fi
ca
ti
on

:

49
2
T
B
im

ag
es

C
O
V
ID

‐1
9
vs
.
T
B

10
0%

/
1.
00

10
0

10
0

58
5
N
or
m
al

im
ag
es

C
O
V
ID

‐1
9
vs
.
n
on

‐T
B

89
%
/0
.8
9

93
86

55
21
9
C
O
V
ID

‐1
9

R
ot
at
e
an

d
fl
ip

au
gm

en
ta
ti
on

ap
pr
oa
ch

es
on

tr
ai
n
in
g
da

ta

C
N
N
,
SV

M
,
K
N
N
,

D
ec
is
io
n
T
re
e.

M
u
lt
ic
la
ss

cl
as
si
fi
ca
ti
on

:

13
41

n
or
m
al

C
O
V
ID

‐1
9
vs
.
ot
h
er

vi
ra
l

P
N
A

vs
.
n
or
m
al

98
.9
7%

89
.3
9

99
.7
5

13
45

vi
ra
l
P
N
A
.

10
0

18
0
C
O
V
ID

‐1
9;

20
vi
ra
l

P
N
A
;
57

T
B
;
54

ba
ct
er
ia
l
P
N
A
;
19
1

n
or
m
al

N
or
m
al
iz
at
io
n

F
C

‐D
en

se
N
et
10
3

M
u
lt
ic
la
ss

cl
as
si
fi
ca
ti
on

:

Se
gm

en
ta
ti
on

R
es
N
et
‐1
8

V
ir
al

P
N
A

in
cl
u
di
n
g

C
O
V
ID

‐1
9
vs
.
ba

ct
er
ia
l

P
N
A

vs
.
T
B
vs
.
n
or
m
al

88
.9
%

89
.5

96
.4

5102 | REHOUMA ET AL.



T
A
B
L
E

4
(C

on
ti
n
u
ed

)

R
ef
er
en

ce
N
u
m
be

r
of

sa
m
p
le
s

P
re
‐p
ro
ce

ss
in
g
d
at
a

M
od

el
's
n
am

e
(M

L
te
ch

n
iq
u
es
)

P
u
rp

os
e

A
C
C
/

A
U
C

Se
n
(%

)
Sp

ec
(%

)

10
1

23
1
C
O
V
ID

‐1
9
im

ag
es

R
es
iz
e
to

12
8
×
12
8
w
id
th

an
d

h
ei
gh

t
sh
if
t,
sh
if
t
ra
n
ge

(0
.2
),
an

d
h
or
iz
on

ta
l
fl
ip

C
ap

sN
et

(5
fu
lly

co
n
vo
lu
ti
on

al
la
ye
rs
)

B
in
ar
y
cl
as
si
fi
ca
ti
on

:

10
50

n
o‐
fi
n
di
n
gs

im
ag
es

C
O
V
ID

‐1
9
vs
.
h
ea
lt
h
y

97
.2
4%

97
.4
2

97
.0
4

10
50

P
N
A

im
ag
es

M
u
lt
ic
la
ss

cl
as
si
fi
ca
ti
on

:

C
O
V
ID

‐1
9
vs
.
ot
h
er

P
N
A

vs
.
h
ea
lt
h
y

84
.2
2%

84
.2
2

91
.7
9

10
2

21
9
C
O
V
ID

‐1
9;

13
45

vi
ra
l
P
N
A
;1
34
1

n
or
m
al

C
V
D
N
et

(C
N
N
)

M
u
lt
ic
la
ss

cl
as
si
fi
ca
ti
on

:

C
O
V
ID

‐1
9
vs
.
ot
h
er

P
N
A

vs
.
h
ea
lt
h
y

96
.6
9%

96
.8
4

–

92
28
4
C
O
V
ID

‐1
9
im

ag
es

R
es
iz
e
to

22
4
×
22
4
pi
xe
ls
w
it
h

a
re
so
lu
ti
on

of
72

dp
i

C
or
oN

et
(X

ce
pt
io
n
C
N
N
)

B
in
ar
y
cl
as
si
fi
ca
ti
on

:
C
O
V
ID

‐1
9
vs
.
n
or
m
al

99
%

99
.3

98
.6

33
0
ba

ct
er
ia
l
P
N
A

im
ag
es

M
u
lt
ic
la
ss

cl
as
si
fi
ca
ti
on

:
89
.6
%

89
.9
2

96
.4

32
7
vi
ra
l
P
N
A

im
ag
es

C
O
V
ID

‐1
9
vs
.
ba

ct
er
ia
l

P
N
A

vs
.
vi
ra
l
P
N
A

vs
.

h
ea
lt
h
y
co
n
tr
ol
s

31
0
n
or
m
al

im
ag
es

C
O
V
ID

‐1
9
vs
.
h
ea
lt
h
y
vs
.

ot
h
er

P
N
A

95
%

96
.9

97
.5

10
3

14
2
C
O
V
ID

‐1
9
im

ag
es

R
es
iz
e
to

22
4
×
22
4
pi
xe
ls
,

h
or
iz
on

ta
l
an

d
ve
rt
ic
al

fl
ip
pi
n
g

n
C
O
V
n
et

(C
N
N
)

B
in
ar
y
cl
as
si
fi
ca
ti
on

:

14
2
n
or
m
al

im
ag
es

C
O
V
ID

‐1
9
vs
.
n
or
m
al

88
.1
0%

97
.6
2

78
.5
7

10
4

10
5
sa
m
pl
es

C
O
V
ID

‐1
9

F
li
pp

in
g,

tr
an

sl
at
io
n
an

d
ro
ta
ti
on

,
a
h
is
to
gr
am

m
od

if
ic
at
io
n
te
ch

n
iq
u
e

D
eT

ra
C

(p
re
tr
ai
n
ed

C
N
N
)

M
u
lt
ic
la
ss

cl
as
si
fi
ca
ti
on

:

11
sa
m
pl
es

SA
R
S

C
O
V
ID

‐1
9
vs
.
n
or
m
al

vs
.
SA

R
S

93
.1
%

10
0

85
.1
8

80
sa
m
pl
es

n
or
m
al

(C
on

ti
n
u
es
)

REHOUMA ET AL. | 5103



T
A
B
L
E

4
(C

on
ti
n
u
ed

)

R
ef
er
en

ce
N
u
m
be

r
of

sa
m
p
le
s

P
re
‐p
ro
ce

ss
in
g
d
at
a

M
od

el
's
n
am

e
(M

L
te
ch

n
iq
u
es
)

P
u
rp

os
e

A
C
C
/

A
U
C

Se
n
(%

)
Sp

ec
(%

)

10
5

36
4
im

ag
es

C
O
V
ID

‐1
9

T
h
e
im

ag
e
co
n
tr
as
t

en
h
an

ce
m
en

t
al
go
ri
th
m

(I
C
E
A
)

M
H
‐C
ov
id
N
et

(D
L
,
B
P
SO

an
d
B
G
W
O

m
et
a‐

h
eu

ri
st
ic

al
go
ri
th
m
s,
SV

M
)

M
u
lt
ic
la
ss

cl
as
si
fi
ca
ti
on

:

36
4
im

ag
es

P
N
A

C
O
V
ID

‐1
9
vs
.
h
ea
lt
h
y
vs
.

ot
h
er

P
N
A

99
.3
8%

–
–

36
4
im

ag
es

n
or
m
al
.

21
42
3
im

ag
es

C
O
V
ID

‐1
9

R
es
iz
e,

ro
ta
ti
on

,
an

d
tr
an

sl
at
io
n

pr
e‐
tr
ai
n
ed

C
N
N

al
go
ri
th
m
s

B
in
ar
y
cl
as
si
fi
ca
ti
on

:
C
O
V
ID

‐1
9
vs
.
n
or
m
al

99
.7
0%

99
.7
0

99
.5
5

14
85

im
ag
es

vi
ra
l
P
N
A

M
u
lt
ic
la
ss

cl
as
si
fi
ca
ti
on

:
97
.9
4%

97
.9
4

98
.8
0

15
79

im
ag
es

n
or
m
al

C
O
V
ID

‐1
9
vs
.
n
or
m
al

vs
.

ot
h
er

vi
ra
l
P
N
A

53
18
4
im

ag
es

C
O
V
ID

‐1
9

F
li
pp

in
g
an

d
ro
ta
ti
on

R
es
N
et
18
,

B
in
ar
y
cl
as
si
fi
ca
ti
on

:

50
00

im
ag
es

N
on

‐C
O
V
ID

‐1
9

R
es
N
et
50
,
Sq

u
ee
ze
N
et
,

D
en

se
N
et
‐1
61

C
O
V
ID

‐1
9
vs
.

N
o‐
C
O
V
ID

‐1
9

0.
99
2

98
92
.9

A
bb

re
vi
at
io
n
s:
A
C
C
,a
cc
u
ra
cy
;A

D
3D

‐M
IL
,a
tt
en

ti
on

‐b
as
ed

de
ep

3D
m
u
lt
ip
le
in
st
an

ce
le
ar
n
in
g;
A
F
S‐
D
F
,a
da

pt
iv
e
fe
at
u
re

se
le
ct
io
n
gu

id
ed

de
ep

fo
re
st
;A

U
C
,a
re
a
u
n
de

r
th
e
re
ce
iv
er
‐o
pe

ra
ti
n
g

ch
ar
ac
te
ri
st
ic
s
cu

rv
e;

C
A
P
,c
om

m
u
n
it
y‐
ac
qu

ir
ed

pn
eu

m
on

ia
;C

P
,c
om

m
on

pn
eu

m
on

ia
;I
A
V
P
,i
n
fl
u
en

za
‐A

vi
ra
l
pn

eu
m
on

ia
;M

L
P
,m

u
lt
il
ay
er

pe
rc
ep

tr
on

;M
SC

N
N
,m

u
lt
is
ca
le

co
n
vo
lu
ti
on

al
n
eu

ra
l
n
et
w
or
k;

P
N
A
,
pn

eu
m
on

ia
;
Se
n
,
se
n
si
ti
vi
ty
;
Sp

ec
,
sp
ec
if
ic
it
y;

SV
M
,
su
pp

or
t
ve
ct
or

m
ac
h
in
e.

5104 | REHOUMA ET AL.



92.5% sensitivity. Abbas et al.104 adapted a deep CNN architecture, termed Decompose,
Transfer, and Compose (DeTraC), that relied on a class decomposition technique. They eval-
uated DeTraC with various pretrained CNN models to distinguish COVID‐19 from SARS and
normal using a limited data set. Experimental results showed VGG‐1931 with an accuracy of
93.1% and 87.09% sensitivity, and ResNet108 with 93.1% accuracy and 100% sensitivity.
Ouchicha et al.102 introduced CVDNet, a deep CNN model designed for discriminating
COVID‐19 from other pneumonia and healthy controls using a public open‐source X‐ray data
set.21 Their model was able to correctly identify COVID‐19 with an average accuracy of 97.20%.
Two different deep CNN models were recently proposed to extract features from X‐rays, fol-
lowed by optimization algorithms to select the efficient features which were then fed to the
SVM classifier.54,105 While Canayaz105 applied the image contrast enhancement algorithm on
the data set as a preprocessing step, Toğaçar et al.54 used the Fuzzy Color technique to
restructure data classes, and both original and structured images were stacked. These two
proposed approaches obtained remarkable classification rates with an accuracy of 99.38% and
99.27%, respectively. Nour et al.55 proposed a deep CNN model consisting of five convolution
layers to extract features from X‐rays collected from an open‐access data set.21 For the classi-
fication task, three different ML algorithms were evaluated to identify COVID‐19, including
SVM, KNN, and decision tree. Experimental results showed that the SVM classifier obtained
the best performance with 98.97% accuracy.

Four studies have developed ML models for binary and multi‐class classification
tasks.21,39,92,101 Chowdhury et al.21 trained and evaluated eight pretrained CNN models,
demonstrating that the performance of all models was quite similar. The classification accuracy
rates were 99.70% and 99.41%, respectively, for discriminating COVID‐19 from healthy with
and without image augmentation. The proposed approach obtained accuracy rates of 97.94%
and 97.74%, respectively, in distinguishing COVID‐19 from normal and other forms of viral
pneumonia with and without image augmentation. Ozturk et al.39 developed a DarkCovidNet
model inspired by the architecture of the Darknet‐19 classifier model,109 obtaining an average
accuracy of 87.02% to discriminate COVID‐19 from other pneumonia, and 98.08% to classify
COVID‐19 from X‐ray images. Finally, a capsule network model by Toraman et al.101

comprised of four convolution layers and the primary capsule layer obtained 97.24%, and
84.22% accuracy, respectively, in the binary and multiclass classifier, after training and
evaluation using open‐sources data sets.18,26

3.3 | Using lung ultrasonography

Besides to CT and X‐ray modalities, lung ultrasonography is a significant and promising
technique for diagnosis and monitoring patients affected by COVID‐19.110 According to
Tung‐Chen et al.,111 ultrasound has a low false‐negative rate in diagnosing patients affected by
COVID‐19. They observed that all COVID‐19 abnormalities on CT scans presented on
ultrasound as well. Moreover, a limited number of preprint studies, excluded from this review,
developed ML models using ultrasound imaging to discriminate COVID‐19 from other
pneumonia and healthy.

While existing studies focus on establishing automatic COVID‐19 diagnostic systems based
on CT or radiographic images, Horry et al.112 applied a transfer learning approach to diagnose
COVID‐19 infections using three different imaging modes, involving ultrasound, CT scan, and
X‐ray. They trained and evaluated eight popular CNN models in a comparative study to identify
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a suitable model. Experimental results showed the selected VGG‐1931 model was performing
considerably better in distinguishing COVID‐19 from other pneumonia when using ultrasound
images. The experimental results showed ultrasound with 100% sensitivity compared to 86%
with X‐ray and 83% with CT images.

4 | ML FOR IMAGE ‐BASED ASSESSMENT OF COVID ‐19
SEVERITY AND PROGRESSION

Early assessment of coronavirus disease severity is crucial tool to assist in the prevention of
disease progression and in decreasing the fatality rate through early intervention and the
delivery of required healthcare to high‐risk patients.

In addition to using medical imaging to develop ML algorithms effective for identifying
patients with COVID‐19 amid healthy patients and patients affected by other types of pneu-
monia, a variety of studies, summarized in Table 5, implemented ML to develop a prognostic
algorithm to assess COVID‐19 severity, identify patients who will progress to severe disease,
and estimate the mortality risk of a COVID‐19 patient based on CT, radiography (X‐ray), and
ultrasound imaging.

Moreover, a number of studies discussed in Section 3.1 have developed systems for prog-
nostic analysis.17,51 Zhang et al.17 applied Light Gradient Boosting Machine (LightGBM) and
Cox proportional‐hazards (CoxPH) regression models to predict COVID‐19 progression to se-
vere or critical illness based on CT lung lesions and clinical parameters. The DL system
developed by Wang et al.51 succeeded to classify COVID‐19 patients into low‐risk and high‐risk
groups.

5 | DISCUSSION

With the rapid, global spread of COVID‐19, early and accurate diagnosis of COVID‐19 is
essential. While RT‐PCR testing has revealed certain issues during the outbreak of COVID‐19
including low sensitivity in detecting the infection in the early stages, medical imaging can
effectively detect the lung abnormalities in suspected cases of COVID‐19. High‐resolution CT
scans are able to identify early SARS‐CoV‐2 infection in patients who initially test negative on
RT‐PCR test, and ultrasound imaging offers low false‐negative rates for the detection of
COVID‐19. Despite the shortcomings of traditional radiography compared with CT, X‐ray
imaging may be a fit alternative tool for diagnosing and monitoring disease progression,
especially in endemic regions with a high number of infected people, because this technology is
widely available, fast, and cost‐effective. Nevertheless, we advocate for the combination of
medical imaging, RT‐PCR testing, and laboratory results to identify and diagnose patients
suspected of COVID‐19 infection, especially for the identification of asymptomatic patients.

Recent studies have demonstrated that ML is able to assist in the diagnosis of the disease, to
improve radiologists' performances in identifying COVID‐19 and in discriminating it from
healthy and other forms of pneumonia using various medical imaging tools. Medical imaging‐
based supervised ML algorithms and deep learning are the most common methods applied to
diagnose COVID‐19 and to assess its severity. The majority of studies discussed above have
utilized CNN architectures for building automatic COVID‐19 diagnostic systems. This is due to
the remarkable growth in the number of its applications in medical imaging122,123 and its
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TABLE 5 Main contributions of studies applied ml approaches for assessment severity of COVID‐19 and
prediction of the disease progression and mortality risk using medical imaging

Reference Modality
COVID‐19 patient
cohort Main contributions

113 Chest X‐ray 131 images of 84
patients

• Proposed deep‐learning CNN model with
Dense regression layer to produce
different severity scores from portable
X‐ray for predicting COVID‐19 severity.

• Compared traditional and transfer
learning that showed better
performance.

114 Chest CT scans Severe group:97 scans
of 32 patients

Non‐severe group: 452
scans of 164
patients

• Developed a DL model based on U‐Net29

equipped with the ResNet‐34115 to
segment lung lesions of thick‐section CT
scans.

• Computed biomarkers (POI and iHU)
used as inputs for logistic regression
model to classify severe and non‐severe
COVID‐19, achieving AUC of 0.97.

• Computed changes of lung lesion volume
to assess COVID‐19 progressing.

116 Chest CT scans 23812 CT images from
408 patients

• Developed multiple instance learning
model using ResNet‐34115 as backbone
to distinguishing severe from non‐severe
COVID‐19, achieving AUC of 0.892.

• The model was also applied for
identifying patients with mild COVID‐
19 at hospital admission, who
progressed to severe disease. It achieved
AUCs of 0.955 and 0.923 in two different
subgroups.

117 Chest CT scans 72 serial CT of 24
patients

• Developed a DL model based on U‐Net29

for automated lung segmentation.
• Utilized quantification of infected regions

to assess COVID‐19 progression.
• Created heatmaps to visualize the

progression.

118 Chest X‐ray 581 patients • A convolutional Siamese neural network
was built using DenseNet12150 to
provide the pulmonary X‐ray severity
score, and assess the disease severity.

• To build the model, a training set of X‐ray
images was manually annotated using
modified version of RALE scoring
system, and the model was pretrained
with chest X‐ray images from
CheXpert27 for better performance.

(Continues)
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pivotal role in achieving substantial improvements of performance for multiple medical ima-
ging tasks, including classification, feature extraction, and segmentation.124,125 On the other
hand, logistic regression algorithms have been widely applied for evaluating the relationship
between clinical parameters and medical image characteristics to assess the COVID‐19 severity
and to predict the mortality risk.

TABLE 5 (Continued)

Reference Modality
COVID‐19 patient
cohort Main contributions

23 Chest CT, and clinical
characteristics.

Stable group:
222 patients
Progressive group:
25 patients

• Applied multivariate logistic regression to
identify critical features to construct a
nomogram. It was revealed that the
features including age, CT severity
score, and NLR were the significant,
independent risk predictors.

• Constructed the nomogram incorporating
the predictors to predict the progression
risk of patients at admission time.

119 Ultrasound 58 lung ultrasound
videos from 20
patients

• An unsupervised and automatic model
was proposed to detect and localize the
pleural line in ultrasound data using
HMM and Viterbi algorithm, achieving
94% and 84% in terms of accuracy for
linear and convex probes, respectively.

• Depending on pleural line, SVM classifier
evaluated the severity of COVID‐19 with
accuracy rates of 94% and 88%,
respectively, for linear and convex
probes.

25 Ultrasound 277 lung ultrasound
videos from 35
patients

• Introduce a fully annotated version of the
ICLUS‐DB database.

• Propose a novel DL network to predict the
severity score at frame level, and present
uninorms‐based method120 to estimate
the severity score at video level.

121 Chest CT scan. 30 patients • Utilized a conditional logistic regression
model to identify critical predictors of
CT scan features to predict the mortality
in nonelderly COVID‐19 patients
without underlying comorbidities.

• It was revealed that the CT severity score
was the significant mortality predictor,
with the highest specificity and
sensitivity of 0.87 and 0.83, respectively.

Abbreviations: AUC, area under the receiver‐operating characteristics curve; CNN, convolutional neural network; DL, deep
learning; HMM, hidden Markov model; ICLUS‐DB, Italian COVID‐19 lung ultrasound database; iHU, the average infection
HU; NLR, neutrophil‐to‐lymphocyte ratio; POI, the portion of infection; RALE, radiographic assessment of lung edema; SVM,
support vector machine.
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Despite the promising results, the application of ML methods in medical imaging‐based
COVID‐19 diagnosis research face some limitations summarized below:

• Lack of labeled, annotated training data: Insufficient data of medical images is available
for building ML‐based diagnostic systems. Various studies applied augmentation ap-
proaches to increase the number of samples for the training phase, and others built
systems based on pre‐trained networks to deal with this issue. Nevertheless, the lack of
large data sets is a standing issue currently faced by the researchers. Moreover, anno-
tating training data sets requires professional radiologists, not included in a significant
number of the studies.

• Imbalanced data set: There was a remarkable data imbalance between COVID‐19 samples
and non‐COVID‐19 samples (healthy and other lung diseases) in training and validating
cohorts. This mainly affects the robustness and performance of the COVID‐19 diagnostic
models.

• Data quality: The public data sets encompass low‐quality images which were extracted
from websites and online publications. Moreover, using medical images from different
public data sets may lead to duplication issues. Regarding image resolution, various ML
models lower the image resolution to reduce the number of inputs or features. This
leads to a decreasing number of parameters to be optimized while diminishing the
overfitting risk. However, extensive lowering of the image resolution may result in a
loss of significant information needed for correct classification,126 specifically in a
classifier required to discriminate between COVID‐19 and other viral pneumonia which
share similar characteristics on CT scans and X‐ray images. The above studies resized
the medical images to different resolutions (128 × 128),101 (224 × 224),75,77,92,98,103,113

(256 × 256),74,80 and (512 × 512).17 Models featuring those resolutions achieved high
rates of accuracy and sensitivity.

• Model evaluation: Relatively few models were evaluated using external validation
datasets17,51,73,74 to address model generalizability, that is, the ability of a diagnostic
and prognostic model to produce accurate predictions based on varied sources of
medical imaging data which differ structurally from the datasets used for model
development.

• Interpretability: To improve the interpretability of COVID‐19 diagnostic models, some
studies utilized the gradient‐weighted class activation mapping (Grad‐CAM)127

heat map approach39,71,74,77,98,100,117 or class activation maps44 to visualize the region of
lesions used by the model for decision making. Other studies provided attention
maps37,73,76,78 able to highlight the precise locations of regional lesions. However,
these models were not able to visualize unique COVID‐19 features in medical imaging.
Interestingly, Zhang et al.17 visualized prognosis prediction and they provided
lesion segmentation with quantitative analysis of all lesion features using
CT scans.

Although significant number of models for COVID‐19 detection have been developed, most
are unlikely to be validated and implemented in medical practice. Notwithstanding, health
experts and radiologists can still benefit from these models by gaining a better understanding of
the critical aspects of infected cases. In future studies, large, high‐quality medical images data
sets, improvements in interpretability and generalizability will play important roles in
determining the robustness and reproducibility of different models.
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6 | CONCLUSION

Earlier published reviews broadly discussed the use of AI applications in the fight against the
COVID‐19 pandemic, including the prediction of pandemic transmission, diagnosis, mortality,
and drug discovery. We specifically considered the ML models developed for COVID‐19 de-
tection based on medical images making our review paper valuable for researchers interested in
ML and medical imaging. We reviewed and analysed 62 studies that have introduced ML‐based
solutions, in particular deep learning algorithms, to cope with the different challenges faced in
COVID‐19 detection and in assessing disease severity and progression.

Nevertheless, this review has a certain limitations. One of the them is the lack of studies
which compare the performance of ML models between X‐ray and CT scan images. This due to
the lack of studies that developed ML models using multiple image modalities. Another lim-
itation is that several studies released recently in high impact journals were not included as
they have been published at the time of finalizing this review, and all preprint studies were
excluded as well.

Despite the power of ML in COVID‐19 research, the lack of large data sets is a significant
issue facing researchers when developing ML algorithms for COVID‐19 detection. While some
studies have fine‐tuned or modified the pretrained networks to improve the performance of
their diagnostic model on limited data sets, others used data augmentation approaches or
capsule networks. However, these models need to be further validated on large data sets.
Besides, it is important to evaluate the models using an external validation data set to highlight
generalizability to other varied data sources.

While we anticipate rapid development and growth of ML applications in COVID‐19 di-
agnosis, the emphasis should be on improving the cross‐disciplinary collaborations of ML
developers and clinicians to cope with low quality, insufficient data and overfitting risk which
negatively impact on the performance of ML classifiers. Moreover, combining findings from
medical images with clinical characteristics and laboratory results will further improve the
quality and performance of ML models.

ORCID
Rokaya Rehouma http://orcid.org/0000-0002-9157-4485
Michael Buchert https://orcid.org/0000-0003-2672-0148
Yi‐Ping Phoebe Chen https://orcid.org/0000-0002-4122-3767

REFERENCES
1. Gorbalenya AE, Baker SC, Baric RS, et al. The species severe acute respiratory syndrome‐related cor-

onavirus: classifying 2019‐nCoV and naming it SARS‐CoV‐2. Nat Microbiol. 2020;5(4):536‐544.
2. Munster VJ, Koopmans M, van Doremalen N, van Riel D, de Wit E. A novel coronavirus emerging in

China—key questions for impact assessment. N Engl J Med. 2020;382(8):692‐694.
3. WHO. Coronavirus disease 2019 (COVID‐19) situation reports. 2021.
4. Huang C, Wang Y, Li X, et al. Clinical features of patients infected with 2019 novel coronavirus in Wuhan,

China. Lancet. 2020;395(10223):497‐506.
5. Wang D, Hu B, Hu C, et al. Clinical characteristics of 138 hospitalized patients with 2019 novel

coronavirus–infected pneumonia in Wuhan, China. JAMA. 2020;323(11):1061‐1069.
6. Chen N, Zhou M, Dong X, et al. Epidemiological and clinical characteristics of 99 cases of 2019 novel

coronavirus pneumonia in Wuhan, China: a descriptive study. Lancet. 2020;395(10223):507‐513.
7. Iaccarino G, Grassi G, Borghi C, et al. Age and multimorbidity predict death among COVID‐19 patients:

results of the SARS‐RAS study of the Italian society of hypertension. Hypertension. 2020;76(2):366‐372.

5110 | REHOUMA ET AL.

http://orcid.org/0000-0002-9157-4485
https://orcid.org/0000-0003-2672-0148
https://orcid.org/0000-0002-4122-3767


8. Curigliano G. Cancer patients and risk of mortality for COVID‐19. Cancer Cell. 2020;38(2):161‐163.
9. Tahamtan A, Ardebili A. Real‐time RT‐PCR in COVID‐19 detection: issues affecting the results. Expert Rev

Mol Diagn. 2020;20(5):453‐454.
10. Watson J, Whiting PF, Brush JE. Interpreting a covid‐19 test result. BMJ. 2020;369:m1808.
11. Fang Y, Zhang H, Xie J, et al. Sensitivity of chest CT for COVID‐19: comparison to RT‐PCR. Radiology.

2020;296(2):E115‐E117.
12. Woloshin S, Patel N, Kesselheim AS. False negative tests for SARS‐CoV‐2 infection—challenges and

implications. N Engl J Med. 2020;383(6):e38.
13. Xie X, Zhong Z, Zhao W, Zheng C, Wang F, Liu J. Chest CT for typical coronavirus disease 2019 (COVID‐

19) pneumonia: relationship to negative RT‐PCR testing. Radiology. 2020;296(2):E41‐E45.
14. Ai T, Yang Z, Hou H, et al. Correlation of chest CT and RT‐PCR testing for coronavirus disease 2019

(COVID‐19) in China: a report of 1014 cases. Radiology. 2020;296(2):E32‐E40.
15. Ghahramani Z. Probabilistic machine learning and artificial intelligence. Nature. 2015;521(7553):452‐459.
16. Domingos P. A few useful things to know about machine learning. Commun ACM. 2012;55(10):78‐87.
17. Zhang K, Liu X, Shen J, et al. Clinically applicable AI system for accurate diagnosis, quantitative mea-

surements, and prognosis of COVID‐19 pneumonia using computed tomography. Cell. 2020;181(6):
1423‐1433.

18. Cohen JP, Morrison P, Dao L, Roth K, Duong TQ, Ghassemi M. COVID‐19 image data collection: pro-
spective predictions are the future. 2020. https://arxiv.org/abs/2006.11988

19. He X, Yang X, Zhang S, et al. Sample‐efficient deep learning for COVID‐19 diagnosis based on CT scans.
medRxiv. 2020.

20. Yan T. COVID‐19 and common pneumonia chest CT dataset. In: Data M, trans. 1st ed. Mendeley
Data; 2020.

21. Chowdhury MEH, Rahman T, Khandakar A, et al. Can AI help in screening viral and COVID‐19
pneumonia? IEEE Access. 2020;8:132665‐132676.

22. Italian Society of Medical and Interventional Radiology. COVID‐19 database. 2020. https://www.sirm.org/
category/senza‐categoria/covid‐19/. Accessed December 21, 2020.

23. Feng Z, Yu Q, Yao S, et al. Early prediction of disease progression in COVID‐19 pneumonia patients with
chest CT and clinical characteristics. Nat Commun. 2020;11(1):4968.

24. Born J, Brändle G, Cossio M, et al. POCOVID‐Net: automatic detection of COVID‐19 from a new lung
ultrasound imaging dataset (POCUS). 2020. https://arxiv.org/abs/2004.12084

25. Roy S, Menapace W, Oei S, et al. Deep learning for classification and localization of COVID‐19 markers in
point‐of‐care lung ultrasound. IEEE Trans Med Imaging. 2020;39(8):2676‐2687.

26. Wang X, Peng Y, Lu L, Lu Z, Bagheri M, Summers RM. ChestX‐Ray8: hospital‐scale chest X‐ray database
and benchmarks on weakly‐supervised classification and localization of common thorax diseases. In:
Paper Presented at 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR),
July 21‐26, 2017.

27. Irvin J, Rajpurkar P, Ko M, et al. CheXpert: a large chest radiograph dataset with uncertainty labels and
expert comparison. 2019. https://arxiv.org/abs/1901.07031

28. Shi F, Wang J, Shi J, et al. Review of artificial intelligence techniques in imaging data acquisition,
segmentation and diagnosis for COVID‐19. IEEE Rev Biomed Eng. 2020;14:1‐1.

29. Ronneberger O, Fischer P, Brox T. U‐Net: convolutional networks for biomedical image segmentation. In:
Paper Presented at Medical Image Computing and Computer‐Assisted Intervention–MICCAI 2015;
2015; Cham.

30. Krizhevsky A, Sutskever I, Hinton GE. ImageNet classification with deep convolutional neural networks.
In: Proceedings of the 25th International Conference on Neural Information Processing Systems. Vol 1; 2012;
Lake Tahoe, Nevada.

31. Simonyan K, Zisserman A. Very deep convolutional networks for large‐scale image recognition. 2014.
https://arxiv.org/abs/1409.1556v4

32. He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Paper Presented at 2016
IEEE Conference on Computer Vision and Pattern Recognition (CVPR), June 27–30, 2016.

33. Deng J, Dong W, Socher R, Li L, Kai L, Li F‐F. ImageNet: a large‐scale hierarchical image database. In:
Paper Presented at 2009 IEEE Conference on Computer Vision and Pattern Recognition, June 20–25, 2009.

REHOUMA ET AL. | 5111

https://arxiv.org/abs/2006.11988
https://www.sirm.org/category/senza-categoria/covid-19/
https://www.sirm.org/category/senza-categoria/covid-19/
https://arxiv.org/abs/2004.12084
https://arxiv.org/abs/1901.07031
https://arxiv.org/abs/1409.1556v4


34. Szegedy C, Wei L, Yangqing J, et al. Going deeper with convolutions. In: Paper Presented at 2015 IEEE
Conference on Computer Vision and Pattern Recognition (CVPR), June 7–12, 2015.

35. Chollet F. Xception: deep learning with depthwise separable convolutions. In: Paper Presented at 2017
IEEE Conference on Computer Vision and Pattern Recognition (CVPR), July 21–26, 2017.

36. Hara K, Kataoka H, Satoh Y. Can spatiotemporal 3D CNNs retrace the history of 2D CNNs and ImageNet?
In: Paper Presented at 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, June
18–23, 2018.

37. Yan T, Wong PK, Ren H, Wang H, Wang J, Li Y. Automatic distinction between COVID‐19 and common
pneumonia using multi‐scale convolutional neural network on chest CT scans. Chaos, Solitons Fractals.
2020;140:110153.

38. Wong HYF, Lam HYS, Fong AH‐T, et al. Frequency and distribution of chest radiographic findings in
patients positive for COVID‐19. Radiology. 2020;296(2):E72‐E78.

39. Ozturk T, Talo M, Yildirim EA, Baloglu UB, Yildirim O, Rajendra Acharya U. Automated detection of
COVID‐19 cases using deep neural networks with X‐ray images. Comput Biol Med. 2020;121:103792.

40. Sandler M, Howard A, Zhu M, Zhmoginov A, Chen L. MobileNetV2: inverted residuals and linear
bottlenecks. In: Paper Presented at 2018 IEEE/CVF Conference on Computer Vision and Pattern Recogni-
tion, June 18–23, 2018.

41. LeCun Y, Bengio Y, Hinton G. Deep learning. Nature. 2015;521(7553):436‐444.
42. Schmidhuber J. Deep learning in neural networks: an overview. Neural Netw. 2015;61:85‐117.
43. Bressem KK, Adams LC, Erxleben C, Hamm B, Niehues SM, Vahldiek JL. Comparing different deep

learning architectures for classification of chest radiographs. Sci Rep. 2020;10(1):13590.
44. Han Z, Wei B, Hong Y, et al. Accurate screening of COVID‐19 using attention‐based deep 3D multiple

instance learning. IEEE Trans Med Imaging. 2020;39(8):2584‐2594.
45. Zhang C, Han Z, Cui Y, Fu H, Zhou JT, Hu Q. CPM‐Nets: cross partial multi‐view networks. 2019.
46. Kang H, Xia L, Yan F, et al. Diagnosis of coronavirus disease 2019 (COVID‐19) with structured latent

multi‐view representation learning. IEEE Trans Med Imaging. 2020;39(8):2606‐2614.
47. Sun L, Mo Z, Yan F, et al. Adaptive feature selection guided deep forest for COVID‐19 classification with

chest CT. IEEE J Biomed Health Inform. 2020;24(10):2798‐2805.
48. Burt P, Adelson E. The laplacian pyramid as a compact image code. IEEE Trans Commun. 1983;31(4):

532‐540.
49. Shi H, Han X, Jiang N, et al. Radiological findings from 81 patients with COVID‐19 pneumonia in Wuhan,

China: a descriptive study. Lancet Infect Dis. 2020;20(4):425‐434.
50. Huang G, Liu Z, Maaten LVD, Weinberger KQ. Densely connected convolutional networks. In: Paper

Presented at 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), July 21–26, 2017.
51. Wang S, Zha Y, Li W, et al. A fully automatic deep learning system for COVID‐19 diagnostic and

prognostic analysis. Eur Respir J. 2020;56(2):2000775.
52. Iandola FN, Han S, Moskewicz MW, Ashraf K, Dally WJ, Keutzer K. SqueezeNet: AlexNet‐level accuracy

with 50x fewer parameters and <0.5MB model size. 2016. https://arxiv.org/abs/1602.07360
53. Minaee S, Kafieh R, Sonka M, Yazdani S, Jamalipour Soufi G. Deep‐COVID: predicting COVID‐19 from

chest X‐ray images using deep transfer learning. Med Image Anal. 2020;65:101794.
54. Toğaçar M, Ergen B, Cömert Z. COVID‐19 detection using deep learning models to exploit Social Mimic

Optimization and structured chest X‐ray images using fuzzy color and stacking approaches. Comput Biol
Med. 2020;121:103805.

55. Nour M, Cömert Z, Polat K. A novel medical diagnosis model for COVID‐19 infection detection based on
deep features and bayesian optimization. Appl Soft Comput. 2020;97:106580.

56. Zu ZY, Jiang MD, Xu PP, et al. Coronavirus disease 2019 (COVID‐19): a perspective from China.
Radiology. 2020;296(2):E15‐E25.

57. Chung M, Bernheim A, Mei X, et al. CT imaging features of 2019 novel coronavirus (2019‐nCoV).
Radiology. 2020;295(1):202‐207.

58. Herpe G, Lederlin M, Naudin M, et al. Efficacy of chest CT for COVID‐19 pneumonia diagnosis in France.
Radiology. 2021;298(2):E81‐E87.

59. Long C, Xu H, Shen Q, et al. Diagnosis of the coronavirus disease (COVID‐19): RT‐PCR or CT? Eur
J Radiol. 2020;126:108961.

5112 | REHOUMA ET AL.

https://arxiv.org/abs/1602.07360


60. Ye Z, Zhang Y, Wang Y, Huang Z, Song B. Chest CT manifestations of new coronavirus disease 2019
(COVID‐19): a pictorial review. Eur Radiol. 2020;30(8):4381‐4389.

61. Li K, Wu J, Wu F, et al. The clinical and chest CT features associated with severe and critical COVID‐19
pneumonia. Invest Radiol. 2020;55(6):327‐331.

62. Fu Z, Tang N, Chen Y, et al. CT features of COVID‐19 patients with two consecutive negative RT‐PCR
tests after treatment. Sci Rep. 2020;10(1):11548.

63. Koo HJ, Choi S‐H, Sung H, Choe J, Do K‐H. RadioGraphics update: radiographic and CT features of viral
pneumonia. Radiographics. 2020;40(4):E8‐E15.

64. Wang Y, Dong C, Hu Y, et al. Temporal changes of CT findings in 90 patients with COVID‐19 pneumonia:
a longitudinal study. Radiology. 2020;296(2):E55‐E64.

65. Bernheim A, Mei X, Huang M, et al. Chest CT findings in coronavirus disease‐19 (COVID‐19):
relationship to duration of infection. Radiology. 2020;295(3):200463.

66. Li X, Fang X, Bian Y, Lu J. Comparison of chest CT findings between COVID‐19 pneumonia and other
types of viral pneumonia: a two‐center retrospective study. Eur Radiol. 2020;30(10):5470‐5478.

67. Sun Z, Zhang N, Li Y, Xu X. A systematic review of chest imaging findings in COVID‐19. Quant Imaging
Med Surg. 2020;10(5):1058‐1079.

68. Yoon SH, Lee KH, Kim JY, et al. Chest radiographic and CT findings of the 2019 novel coronavirus disease
(COVID‐19): analysis of nine patients treated in Korea. Korean J Radiol. 2020;21(4):494‐500.

69. Kong W, Agarwal PP. Chest imaging appearance of COVID‐19 infection. Radiol: Cardiothoracic Imaging.
2020;2(1):e200028.

70. Bai HX, Hsieh B, Xiong Z, et al. Performance of radiologists in differentiating COVID‐19 from non‐
COVID‐19 viral pneumonia at chest CT. Radiology. 2020;296(2):E46‐E54.

71. Li L, Qin L, Xu Z, et al. Using artificial intelligence to detect COVID‐19 and community‐acquired
pneumonia based on pulmonary CT: evaluation of the diagnostic accuracy. Radiology. 2020;296(2):
E65‐E71.

72. Mei X, Lee H‐C, Diao K‐Y, et al. Artificial intelligence–enabled rapid diagnosis of patients with COVID‐19.
Nat Med. 26(8), 2020:1224‐1228.

73. Harmon SA, Sanford TH, Xu S, et al. Artificial intelligence for the detection of COVID‐19 pneumonia on
chest CT using multinational datasets. Nat Commun. 2020;11(1):4080.

74. Ko H, Chung H, Kang WS, et al. COVID‐19 pneumonia diagnosis using a simple 2D deep learning
framework with a single chest CT image: model development and validation. J Med Internet Res. 2020;
22(6):e19569.

75. Hu S, Gao Y, Niu Z, et al. Weakly supervised deep learning for COVID‐19 infection detection and
classification from CT images. IEEE Access. 2020;8:118869‐118883.

76. Ouyang X, Huo J, Xia L, et al. Dual‐sampling attention network for diagnosis of COVID‐19 from
community acquired pneumonia. IEEE Trans Med Imaging. 2020;39(8):2595‐2605.

77. Bai HX, Wang R, Xiong Z, et al. Artificial intelligence augmentation of radiologist performance in dis-
tinguishing COVID‐19 from pneumonia of other origin at chest CT. Radiology. 2020;296(3):E156‐E165.

78. Wang X, Deng X, Fu Q, et al. A weakly‐supervised framework for COVID‐19 classification and lesion
localization from chest CT. IEEE Trans Med Imaging. 2020;39(8):2615‐2625.

79. Xu X, Jiang X, Ma C, et al. A deep learning system to screen novel coronavirus disease 2019 pneumonia.
Engineering. 2020;6(10):1122‐1129.

80. Wu X, Hui H, Niu M, et al. Deep learning‐based multi‐view fusion model for screening 2019 novel
coronavirus pneumonia: a multicentre study. Eur J Radiol. 2020;128:109041.

81. Ardakani AA, Kanafi AR, Acharya UR, Khadem N, Mohammadi A. Application of deep learning tech-
nique to manage COVID‐19 in routine clinical practice using CT images: results of 10 convolutional
neural networks. Comput Biol Med. 2020;121:103795.

82. Szegedy C, Vanhoucke V, Ioffe S, Shlens J, Wojna Z. Rethinking the inception architecture for computer
vision. In: Paper Presented at 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR),
June 27–30, 2016.

83. Chen L‐C, Papandreou G, Schroff F, Adam H. Rethinking atrous convolution for semantic image
segmentation. arXiv:170605587. 2017. http://arxiv.org/abs/1706.05587

REHOUMA ET AL. | 5113

http://arxiv.org/abs/1706.05587


84. Badrinarayanan V, Kendall A, Cipolla R. SegNet: a deep convolutional encoder‐decoder architecture for
image segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481‐2495.

85. Devalla SK, Renukanand PK, Sreedhar BK, et al. DRUNET: a dilated‐residual U‐Net deep learning
network to segment optic nerve head tissues in optical coherence tomography images. Biomed Opt
Express. 2018;9(7):3244‐3265.

86. Shelhamer E, Long J, Darrell T. Fully convolutional networks for semantic segmentation. IEEE Trans
Pattern Anal Mach Intell. 2017;39(4):640‐651.

87. Lin T, Dollár P, Girshick R, He K, Hariharan B, Belongie S. Feature pyramid networks for object detection. In:
Paper Presented at 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), July 21–26, 2017.

88. Rudyanto RD, Kerkstra S, van Rikxoort EM, et al. Comparing algorithms for automated vessel segmentation
in computed tomography scans of the lung: the VESSEL12 study. Med Image Anal. 2014;18(7):1217‐1232.

89. Wang S, Shi J, Ye Z, et al. Predicting EGFR mutation status in lung adenocarcinoma on computed
tomography image using deep learning. Eur Respir J. 2019;53(3):1800986.

90. Shan F, Gao Y, Wang J, et al. Lung infection quantification of COVID‐19 in CT images with deep learning.
2020. https://arxiv.org/abs/2003.04655

91. Ng M‐Y, Lee EY, Yang J, et al. Imaging profile of the COVID‐19 infection: radiologic findings and
literature review. Radiol: Cardiothoracic Imaging. 2020;2(1):e200034.

92. Khan AI, Shah JL, Bhat MM. CoroNet: a deep neural network for detection and diagnosis of COVID‐19
from chest x‐ray images. Comput Methods Programs Biomed. 2020;196:105581.

93. Nambu A, Ozawa K, Kobayashi N, Tago M. Imaging of community‐acquired pneumonia: roles of imaging
examinations, imaging diagnosis of specific pathogens and discrimination from noninfectious diseases.
World J Radiol. 2014;6(10):779‐793.

94. Paul NS, Roberts H, Butany J, et al. Radiologic pattern of disease in patients with severe acute respiratory
syndrome: the Toronto experience. Radiographics. 2004;24(2):553‐563.

95. Wu F, Zhao S, Yu B, et al. A new coronavirus associated with human respiratory disease in China. Nature.
2020;579(7798):265‐269.

96. Phan LT, Nguyen TV, Luong QC, et al. Importation and human‐to‐human transmission of a novel
coronavirus in Vietnam. N Engl J Med. 2020;382(9):872‐874.

97. Feng H, Liu Y, Lv M, Zhong J. A case report of COVID‐19 with false negative RT‐PCR test: necessity of
chest CT. Jpn J Radiol. 2020;38(5):409‐410.

98. Brunese L, Mercaldo F, Reginelli A, Santone A. Explainable deep learning for pulmonary disease and
coronavirus COVID‐19 detection from X‐rays. Comput Methods Programs Biomed. 2020;196:105608.

99. Yoo SH, Geng H, Chiu TL, et al. Deep learning‐based decision‐tree classifier for COVID‐19 diagnosis from
chest X‐ray imaging. Front Med. 2020;7:427.

100. Oh Y, Park S, Ye JC. Deep learning COVID‐19 features on CXR using limited training data sets. IEEE
Trans Med Imaging. 2020;39(8):2688‐2700.

101. Toraman S, Alakus TB, Turkoglu I. Convolutional capsnet: a novel artificial neural network approach to detect
COVID‐19 disease from X‐ray images using capsule networks. Chaos, Solitons Fractals. 2020;140:110122.

102. Ouchicha C, Ammor O, Meknassi M. CVDNet: a novel deep learning architecture for detection of cor-
onavirus (Covid‐19) from chest X‐ray images. Chaos, Solitons Fractals. 2020;140:110245.

103. Panwar H, Gupta PK, Siddiqui MK, Morales‐Menendez R, Singh V. Application of deep learning for fast
detection of COVID‐19 in X‐rays using nCOVnet. Chaos, Solitons Fractals. 2020;138:109944.

104. Abbas A, Abdelsamea MM, Gaber MM. Classification of COVID‐19 in chest X‐ray images using DeTraC
deep convolutional neural network. Appl Intell. 2020;51(2):854‐864.

105. Canayaz M. MH‐COVIDNet: diagnosis of COVID‐19 using deep neural networks and meta‐heuristic‐
based feature selection on X‐ray images. Biomed Signal Process Control. 2021;64:102257.

106. Elaziz MA, Hosny KM, Salah A, Darwish MM, Lu S, Sahlol AT. New machine learning method for image‐
based diagnosis of COVID‐19. PLOS One. 2020;15(6):e0235187.

107. Jégou S, Drozdzal M, Vazquez D, Romero A, Bengio Y. The one hundred layers tiramisu: fully con-
volutional densenets for semantic segmentation. In: Paper Presented at 2017 IEEE Conference on Computer
Vision and Pattern Recognition Workshops (CVPRW), July 21–26, 2017.

108. Szegedy C, Ioffe S, Vanhoucke V, Alemi A. Inception‐v4, inception‐ResNet and the impact of residual
connections on learning. 2016. https://arxiv.org/abs/1602.07261

5114 | REHOUMA ET AL.

https://arxiv.org/abs/2003.04655
https://arxiv.org/abs/1602.07261


109. Redmon J, Farhadi A. YOLO9000: better, faster, stronger. In: Paper Presented at IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), July 21–26, 2017.

110. Peng Q‐Y, Wang X‐T, Zhang L‐N, Chinese G. Critical Care Ultrasound Study. Findings of lung ultra-
sonography of novel corona virus pneumonia during the 2019‐2020 epidemic. Intensive Care Med. 2020;
46(5):849‐850.

111. Tung‐Chen Y, Martí de Gracia M, Díez‐Tascón A, et al. Correlation between chest computed tomography
and lung ultrasonography in patients with coronavirus disease 2019 (COVID‐19). Ultrasound Med Biol.
2020;46(11):2918‐2926.

112. Horry MJ, Chakraborty S, Paul M, et al. COVID‐19 detection through transfer learning using multimodal
imaging data. IEEE Access. 2020;8:149808‐149824.

113. Zhu J, Shen B, Abbasi A, Hoshmand‐Kochi M, Li H, Duong TQ. Deep transfer learning artificial in-
telligence accurately stages COVID‐19 lung disease severity on portable chest radiographs. PLOS One.
2020;15(7):e0236621.

114. Li Z, Zhong Z, Li Y, et al. From community‐acquired pneumonia to COVID‐19: a deep learning‐based
method for quantitative analysis of COVID‐19 on thick‐section CT scans. Eur Radiol. 2020;30(12):1‐10.

115. Xie S, Girshick R, Dollar P, Tu Z, He K. Aggregated residual transformations for deep neural networks. In:
Paper Presented at the IEEE Conference on Computer Vision and Pattern Recognition (CVPR); 2017; New York.

116. Xiao L‐S, Li P, Sun F, et al. Development and validation of a deep learning‐based model using computed
tomography imaging for predicting disease severity of coronavirus disease 2019. Front Bioeng Biotechnol.
2020;8:898.

117. Pu J, Leader JK, Bandos A, et al. Automated quantification of COVID‐19 severity and progression using
chest CT images. Eur Radiol. 2020;31(1):436‐446.

118. Li MD, Arun NT, Gidwani M, et al. Automated assessment and tracking of COVID‐19 pulmonary disease
severity on chest radiographs using convolutional Siamese neural networks. Radiol: Artif Intell. 2020;2(4):
e200079.

119. Carrer L, Donini E, Marinelli D, et al. Automatic pleural line extraction and COVID‐19 scoring from lung
ultrasound data. IEEE Trans Sonics Ultrason. 2020;67(11):2207‐2217.

120. Melnikov V, Hüllermeier E. Learning to aggregate using uninorms. In: Paper Presented at: Machine
Learning and Knowledge Discovery in Databases; 2016. Cham.

121. Tabatabaei SMH, Rahimi H, Moghaddas F, Rajebi H. Predictive value of CT in the short‐term mortality of
Coronavirus Disease 2019 (COVID‐19) pneumonia in nonelderly patients: a case‐control study. Eur
J Radiol. 2020;132:109298.

122. Litjens G, Kooi T, Bejnordi BE, et al. A survey on deep learning in medical image analysis. Med Image
Anal. 2017;42:60‐88.

123. Sahiner B, Pezeshk A, Hadjiiski LM, et al. Deep learning in medical imaging and radiation therapy. Med
Phys. 2019;46(1):e1‐e36.

124. Hosny A, Parmar C, Quackenbush J, Schwartz LH, Aerts HJWL. Artificial intelligence in radiology. Nat
Rev Cancer. 2018;18(8):500‐510.

125. Hassan M, Ali S, Alquhayz H, Safdar K. Developing intelligent medical image modality classification
system using deep transfer learning and LDA. Sci Rep. 2020;10(1):12868.

126. Sabottke CF, Spieler BM. The effect of image resolution on deep learning in radiography. Radiol: Artif
Intell. 2020;2(1):e190015.

127. Selvaraju RR, Cogswell M, Das A, Vedantam R, Parikh D, Batra D. Grad‐CAM: visual explanations from
deep networks via gradient‐based localization. In: Paper Presented at 2017 IEEE International Conference
on Computer Vision (ICCV), October 22–29, 2017, 2017.

How to cite this article: Rehouma R, Buchert M, Chen Y‐PP. Machine learning for
medical imaging‐based COVID‐19 detection and diagnosis. Int J Intell Syst. 2021;36:
5085‐5115. https://doi.org/10.1002/int.22504

REHOUMA ET AL. | 5115

https://doi.org/10.1002/int.22504



