

### ORAL PRESENTATION



# T2\*-weighted MRI technique for visualization of RF ablation lesions

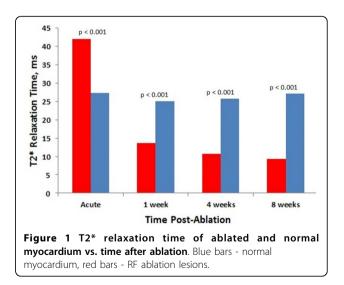
Eugene Kholmovski<sup>1,2\*</sup>, Ravi Ranjan<sup>2</sup>, Nathan Angel<sup>2</sup>, Nassir F Marrouche<sup>2</sup>

From 19th Annual SCMR Scientific Sessions Los Angeles, CA, USA. 27-30 January 2016

#### Background

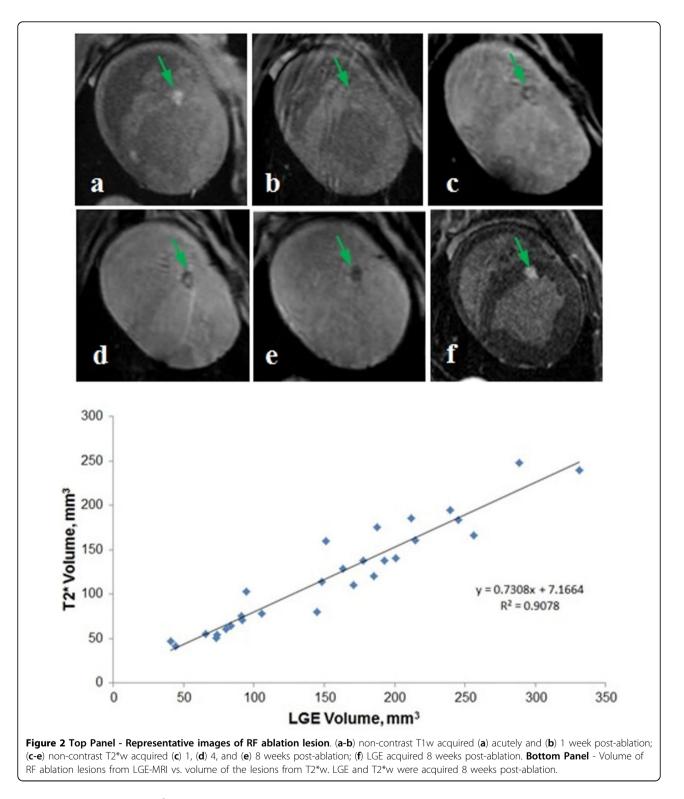
LGE-MRI is widely used to assess cardiac RF ablation lesions. However, LGE-MRI requires contrast injection and the appearance, dimensions and visibility of lesions in LGE-MRI noticeably change with time after ablation and time after contrast injection. Recently proposed non-contrast T1-weighted (T1w) technique is only applicable to visualize acute (< 3 days) RF lesions. The main goal of this study was to develop and validate a non-contrast MRI technique for assessment of sub-acute (> 3 days) RF ablations.

#### Methods


Non-contrast T2\*-weighted (T2\*w) MRI technique for RF lesion visualization has been implemented. This technique exploits the difference in T2\* relaxation between normal and ablated myocardium. Reduction in T2\* relaxation time of ablated myocardial tissues is caused by the transformation of hemoglobin into hemosiderin from ruptured and obstructed blood vessels as a result of RF ablation. To validate this technique, RF ablations were performed in 6 canines using ThermoCool catheter (Biosense Webster) at 30 Watts for 30 seconds. Imaging studies were performed on a 3T scanner (Verio, Siemens HealthCare) at 0, 1, 4, and 8 weeks post-ablation. Study protocol included T1w, T2\*w, and LGE scans with a resolution of  $1.25 \times 1.25 \times 2.5$  mm and T1, T2 and T2\* mapping.

#### Results

Dependence of T2\* relaxation time of ablated and normal myocardium on time after ablation is shown in Fig. 1. T2\* of normal myocardium was similar for all postablation studies (p = N.S.). For acute (0 week) studies, T2\* relaxation time of ablated regions (42.0 ± 8.8 ms) was


<sup>1</sup>UCAIR, Department of Radiology, University of Utah, Salt Lake City, UT, USA Full list of author information is available at the end of the article significantly higher (p < 0.001) than T2\* for normal myocardium (27.4 ± 3.7 ms). This observation may be explained by the presence of severe edema at the ablated regions. T2\* time of RF ablations significantly reduced with time after ablation (p < 0.05) and it was significantly lower than T2\* of normal myocardium at 1, 4, and 8 weeks after ablation (p < 0.001).

Representative T1w, T2\*w, and LGE images are shown in Fig. 2, top panel. All RF lesions (n = 28) were detectable on non-contrast T1w images acquired acutely. Lesion visibility in non-contrast T1w MRI was considerably reduced 1 week post-ablation. Visibility of lesions in T2\*w images improves with time after ablation. Lesions have hypointense boundaries in T2\*w images acquired 1 and 4 weeks post-ablation. Whole lesions are hypointense in T2\*w images acquired 8 weeks postablation.





© 2016 Kholmovski et al. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/ publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.



Strong correlation ( $\mathbb{R}^2 = 0.908$ ) between lesions volumes estimated from LGE and T2\*w images acquired 8 weeks post-ablation was found (Fig. 2, bottom panel). Lesion volume from T2\*w scans was about 27% smaller than lesion volume from LGE scans.

#### Conclusions

T2\* relaxation time of cardiac RF ablation lesions significantly reduces with time after ablation. Non-contrast T2\*w technique can be used to visualize sub-acute RF ablations as early as a week post-ablation. Visibility of the lesions in  $T2^*w$  image considerably improves with time after ablation as  $T2^*$  relaxation time of the lesions becomes shorter.

#### Authors' details

<sup>1</sup>UCAIR, Department of Radiology, University of Utah, Salt Lake City, UT, USA. <sup>2</sup>CARMA Center, University of Utah, Salt Lake City, UT, USA.

Published: 27 January 2016

doi:10.1186/1532-429X-18-S1-O128

**Cite this article as:** Kholmovski *et al.*: **T2\*-weighted MRI technique for visualization of RF ablation lesions.** *Journal of Cardiovascular Magnetic Resonance* 2016 **18**(Suppl 1):O128.

## Submit your next manuscript to BioMed Central and take full advantage of:

- Convenient online submission
- Thorough peer review
- No space constraints or color figure charges
- Immediate publication on acceptance
- Inclusion in PubMed, CAS, Scopus and Google Scholar
- Research which is freely available for redistribution

**BioMed** Central

Submit your manuscript at www.biomedcentral.com/submit