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Summary: Randomized controlled trials are the gold standard to establishing causal relationships in clinical research.
However, these studies are expensive and time consuming to conduct. This article aims to provide orthopaedic surgeons and
clinical researchers with methodology to optimize inference and minimize bias in observational studies that are often much
more feasible to undertake. To mitigate the risk of bias arising from their nonexperimental design, researchers must first
understand the ways in which measured covariates can influence treatment, outcomes, and missingness of follow-up data.
With knowledge of these relationships, researchers can then build causal diagrams to best understand how to control sources
of bias. Some common techniques for controlling for bias include matching, regression, stratification, and propensity score
analysis. Selection bias may result from loss to follow-up and missing data. Strategies such as multiple imputation and time-to-
event analysis can be useful for handling missingness. For longitudinal data, repeated measures allow observational studies to
best summarize the impact of the intervention over time. Clinical researchers familiar with fundamental concepts of causal
inference and techniques reviewed in this article will have the power to improve the quality of inferences made from clinical
research in orthopaedic trauma surgery.

1. Introduction

The randomized controlled trial (RCT) is the gold standard for
demonstrating efficacy of an intervention in clinical research.
RCTs are commonly used to study causal relationships because
randomization is able to balance known and unknown
confounders that lead to bias in other observational study
designs.1 However, RCTs are time consuming and expensive to
conduct.1 In some cases, researchers are unable to conduct
RCTs because of lack of resources or clinical equipoise andmust
therefore rely on observational (nonrandomized) study designs.
As encountered with prospective RCTs, researchers may
encounter unfamiliar problems such as proper handling of
repeated measures or loss to follow-up. This article summarizes
the 2021 Orthopaedic Trauma Association Basic Science Focus
Forum’s Symposium on “Simple Design and Analysis Strategies

for Solving Common Problems in Orthopaedic Clinical Re-
search,” which provided orthopaedic surgeons and researchers
with a primer on clinical research methodology to optimize
inferences from observational data.

2. Understanding Causal Relationships

The aimofmost clinical research is to estimate causality, or a cause-
and-effect relationship, between certain variables and/or outcomes.
Even when a study is conducted to identify “modifiable risk
factors” or predictors of a particular outcome, some plausible
causal relationship is implied. Causality has been studied for more
than 3 centuries. The enlightenment philosopher David Hume
defined a cause as “an object, followed by another,...where, if the
first object had not been, the second had never existed.”2,3 Causal
inference is the study and application of strategies that allow
researchers to make causal conclusions based on scientific data,
rather than associations or distributions alone.4 Central to the
notion of causality in clinical research is the concept of a
“counterfactual.”3 Theoretically, understanding the effect of an
intervention requires the concept of an unobserved situation in
which a study participant would go back in time and be given a
treatment/exposure/risk factor that they did not receive, then be
followed forward in time for their outcome to be recorded, and
ultimately be compared with that which was actually observed. In
reality, the closest approximation of such a counterfactual scenario
is a control group in a randomized experiment. In observational
clinical studies, study participants have unique host, injury, and
environmental factors/variables that potentially affect both their
likelihood of receiving a treatment and likelihood of outcome of
interest, and this leads to amixing of effects known as confounding
bias. Randomized control trials (RCTs) minimize bias through
randomizing not just treatment but also the distribution of
confounding factors that are both known and unknown, thereby
neutralizing their ability to confound estimates of effect. However,
RCTs are often impossible in a clinical setting because of resource
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constraints and ethical concerns.Other causal inferencemethods can
providemeans tobest simulate the counterfactual environment in the
setting of observational clinical studies by providing safeguards in
study design and/or analysis against bias. To learn these techniques,
we must first review 3 foundational causal relationships.

There are 3 fundamental ways in which variables can interact
with one another through (1) confounding, (2) mediation, and (3)
collision (Fig. 1). The first and most common is that of
confounding, which occurs when a variable influences both the
intervention and the outcome. At the most basic level, confound-
ing can be defined as a “mixing of effects of extraneous factors
(called confounders) with the effect of interest.”3,5 Confounding
occurs when investigators fail to identify or estimate fundamental
causal parameters from the study data that determine their
observations6 (Fig. 1A). The principle of confoundingmay best be
conceptualized through illustration. In a recent study by
Patterson et al,7 early reoperation rates after internal fixation
were compared after either open or closed reduction in 234
patients with femoral neck fractures. In this instance, the
reduction method was the intervention (A) (see Fig. 1A) and
early reoperation was the outcome (B). Age is just one of many
factors that may have influenced choice of reduction technique
and also affected outcome; therefore, age can be considered a
confounder (C) of the association between reduction technique
and reoperation.

Mediation is the situation in which an outside variable lies
along the causal pathway of the study variables (Fig. 1B).
Blocking a mediator results in the loss of association between the
intervention and outcome. This concept is oftenmisunderstood in
clinical research and leads to erroneous adjustment. For example,
some have been concerned that the study by Patterson et al did not
control for quality of reduction.8 However, open reduction is
more likely to result in a better quality of reduction than closed
reduction, and a better quality of reduction mediates a better
outcome. Controlling for reduction quality would mask the
potential effect of the treatment on the outcome by negating the
associating of reduction quality with the reduction method and
outcome.

Collider bias results from conditional sampling bias or
adjustment for a factor that is influenced by 2 independent
variables and is a more complex concept (Fig. 1C). Although it
will not be discussed in detail here, the most common example of
collider bias is Berkson paradox.9 Adjustment for a collider will
induce a spurious association between the 2 independent
variables that affect the collider. In summary, estimating causal
effects from observational data requires recognition of potential
confounding bias as well as causal mediators and potential
colliders. Although adjustment for confounders is critical,
adjustment for mediators and colliders can introduce new sources
of bias that are difficult to predict.

3. Organizing Causal Diagrams

One key tool for identifying and controlling sources of bias is the
creation of a causal diagram which uses knowledge of subject
matter and of the fundamental relationship described above.
Casual diagrams map causal relationships between the interven-
tion(s), outcome(s), and any other related variables conceptual-
ized by the study team. These diagrams provide a clear map of
potential confounding variables that should be controlled for and
mediating variables within a causal pathway that should not be
adjusted for. One effective method of using a causal diagram is to
look for “backdoor paths” or constituted by potential confounders

that affect both the treatment and outcome. This method involves
identifying all the potential variables that affect the intervention
and control for those variables if they also have a causal path to the
outcome. It is essential to remember that only 1 variable along any
backdoor path needs to be controlled for tomitigate the path’s bias
on the study outcome. This conserves statistical power while still
minimizing study bias.

An example of a causal diagram is presented in Fig. 2A. This
causal diagram is based on a study by Slobogean et al, where early
pain and functional outcomes were compared in minimally
displaced complete lateral compression pelvic fractures undergoing
operative fixation versus nonoperative management. In this study,
many factors including age, injury severity, fracture displacement,
and associated injuries were identified as variables affecting
the study intervention and/or outcome. Fig. 2B shows a possible
scenario where sufficient confounding control is achieved by
backdoor pathways adjustment (age, injury severity, and fracture
displacement). Another possible scenario is presented in Fig. 2C. In
this case, if injury severity is not known or adequately measured,
associated injuries can also be controlled for to block the same
backdoor pathway as injury severity, to the outcome.

4. Adjusting for Confounding Bias

Once confounding variables have been identified on a causal
diagram, there aremultiple methods that can be used to control for
them. One can either prevent confounding in study design or
control for confounding in analysis. As mentioned above,
randomization is the gold standard design method for dealing
with confounding, as RCTs create the most counterfactual-like
environment by randomizing both known and unknown con-
founders.When aRCT is not appropriate, restriction andmatching
are effective tools to mitigate bias in observational studies.
Restriction involves limiting a study sample to participants with
only one level of a potentially confounding factor, thereby
eliminating variance in the variable as a potential source of
confounding bias. One example of restriction is creating an age
cutoff. Patterson et al did not include older patients (older than 65
years) to at least partially mitigate confounding by age. One
downside to restriction is that it limits sample size and limits the
scope of conclusions to only those patients included in this study.
Matching involves choosing control patients in a study based on
similar potentially confounding characteristics. This method has
many potential limitations, including decreasing the amount of
patients that can be included in a study and the number of variables
that can be analyzed, leading to decreased statistical power.

Confounding can also be adjusted for in the analysis phase of a
study. Two examples of adjustment in the analysis phase include
regression and stratification. Stratification involves dividing
study participants into groups for analysis. This method ensures
that an analysis is performed with only participants with similar
characteristics defining the subgroup. Averaging effects over
subgroups of the variable of interest may be performed if those
effects are sufficiently homogeneous, to yield average causal
effects that are no longer biased by the subgrouping variable. The
limitation of stratification arises when considering multiple
factors that one would like to adjust for simultaneously.
Regression is a method used to model the causal relationship
between a dependent variable (eg, study outcome) and the
independent variable(s) (eg, intervention and confounding
variables). The most common regression technique is linear
regression. Linear regression involves fitting a linear equation to
the data. When adequately fit to the data, regression can provide
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the average causal effect attributable to the intervention of
interest holding other factors in the model constant, with much
greater efficiency than multidimensional stratification.

Another class of analytical approaches to adjustment for
confounding requires an understanding of the drivers of
treatment allocation. The treatment mechanism is defined as the
various factors that influence the decision to provide a specific
intervention. For example, in the case of open versus closed
reduction for treatment of femoral neck fractures, many variables
can influence the decision of the reduction method including
patient, surgeon, and injury factors. One key difference between
observational data and a RCT is that the treatment method is
random in a RCT, whereas the treatment method is not known in
an observational study. However, with careful identification of
the known and potential confounders influencing treatment with

the use of a causal diagram, the treatment mechanism can be
estimated with statistical models such as logistic regression. A
propensity score (PS) represents the probability between 0 and 1
(0%–100%) that an individual patient would get the intervention
of interest, as calculated by a treatment regression model. The PS
considers all the factors affecting treatment instead of adjusting
for multiple confounding variables one at a time.

PSs have many quantitative and qualitative uses. PSs between
participants can be compared and used for adjustment methods
such as matching, stratification, and regression. Adjustment
through the use of PSs simulates a counterfactual environment
afforded by randomization whereby subjects are equally likely
to receive treatment within strata of the PS. In addition, PS
distributions can be compared between intervention groups
to identify outliers or subgroups of subjects where treatment

Figure 1.Causal diagrams for fundamental causal relationships between a treatment (A), outcome (B), and a third variable (C). a—The causal relationship between A
and B is confounded by variable C. b—The causal relationship between A and B ismediated by variable C. c—No causal relationship exists between A and B, unless
one is induced by conditioning on variable C, a collider.
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assignment may be deterministically assigned and comparison is
not appropriate (ie, PS very close to either 0 or 1). Patterson et al
used a logistic regression model to estimate PSs for each patient
who were used to control for confounding bias in reporting a
2.4-fold increase in the propensity-adjusted hazard of reoperation
in the patients undergoing ORIF (95% confidence interval,
1.3–4.4; P 5 0.004).

5. Missing Data

Missingness and missing data are a normal part of all medical
research. Missing data are described as “values that are not
available and that would be meaningful for analysis if they were
observed.”10 Missed visits, uncollected unique clinical variables,
loss to follow-up, participant refusal, and study design issues are
all reasons that data could be missing from a study. Missingness
can result in reduced sample size, which leads to reduced
statistical power, challenges with subgroup analysis and difficulty
drawing sound conclusions. It can also lead to various types of

bias. It is critical that study teams have an a priori analytic plan in
place before starting the study to avoid model dependence and
anticipate missingness.

To address missingness, we must first define the types of
missingness. Missingness Completely at Random (MCAR) is the
probability that the variable missing is unrelated to the value of
that variable or other variables in the data set. An example of
MCAR would be participants missing patient satisfaction values
with no systematic pattern. Missing at Random (MAR) is the
probability that the variable missing is unrelated to the value of
that variable after controlling for other variables in the data set.
For example, MAR would be patient satisfaction data missing
mostly among patients with public insurance. Missing Not At
Random (MNAR) is the probability that missing data are related
to the value of that variable. If only high scoring patient
satisfaction data were missing, that would be an example of
MNAR. The first 2 types of missingness (MCAR and MAR) can
be statistically tested for, but it is difficult to test for and identify
MNAR.

Figure 2. Examples of how causal diagrams can be used to guide efficient “back-door” adjustment for confounding bias of the relationship between an operative
treatment and pain and functional outcomes. A—The complete causal diagram with bolded arrow signifying the effect of interest as well as extraneous factors that
confound this association through “back-door” pathways. Sufficient confounding control can be achieved by controlling for theminimum subset of confounders that
block all “back-door” paths between intervention and outcome. This can be performed validly in this case by adjusting for age, fracture displacement, and either
injury severity (B—scenario 1) or associated injuries (C—scenario 2).
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The simplest way to address missingness is through a complete
record analysis, which restricts the analysis to record with
complete data. Although it is the simplest, it often results in a loss
of power and, potentially, selection bias. This analysis also
requires authors to prove that only cases with complete data are
relevant and that you haveMCAR. Another less commonmethod
to deal with missingness is through single imputation. This
method inputs missing values based on other values of themissing
variable. For example, the last or baseline observation could be
carried forward or analysts could do a mean imputation to fill in
the missing value. This method can also introduce bias and is not
usually recommended.

Multiple imputation is a very common method to address
MCAR and MAR. This method replaces missing values with
multiple values froman approximate distribution formissing values
that is based on observed data. Essentially, the statistical software of
choice creates 50–100 data sets with different values for missing
data based on existing data and some degree of randomness. The
goal of this method was not to estimate missing values but rather
produce unbiased estimates for the population parameters of
interest while incorporating a certain degree of uncertainty
introduced by a missing variable. This method of addressing
missingness was used in a study looking at intramedullary nailing
versus external fixation in the treatment of open tibial fractures in
Tanzania.11 This study used multiple imputation as a sensitivity
analysis to check for differences that may have arisen due to
exclusion of participants with missing observations of interval
quality of life data, when estimatingmain effects with complete case
data. In this case, no difference in estimates between the complete
case and multiple imputation analyses supported the robustness of
their results to those missing data.

Time-to-event analysis is helpful to address missingness because
of loss to follow-up also known as censoring. This analysis looks at
whether the outcome occurs andwhen the event occurred. Time-to-
event analysis allows investigators to analyze incomplete data by
setting the time-to-event as the primary outcome rather than the
presence or absence of the event. Every participant then contributes
person-time to the analysis as long as they are followed and free of
the event of interest (eg, failure or reoperations). A Kaplan–Meier
survival curve can be used to graphically demonstrate event-free
survival, and comparisons can bemade between different treatment

groups. Cox proportional hazard models are multivariate time-to-
event analyses that allow assessment of treatment effects while
controlling for potentially confounding factors. In their article on
risk of reoperation after internal fixation of displaced femoral neck
fractures, Patterson et al7 used a Cox proportional hazardmodel to
estimate the hazard of reoperation. This allowed the authors to
incorporate data from patients who were lost to follow-up, thereby
mitigating selection bias because of censoring.

6. Longitudinal Outcomes Data

Longitudinal outcomes or repeated measures data, such as pain,
health-related quality of life measures, and functional outcomes
taken at multiple time points for each participant,12 can be dealt
with in a multitude of ways. As these outcomes are usually
continuous, 1 option would be to conduct a hypothesis test such
as the t test at each time point to determine the difference in mean
scores at more than 1 time point. However, multiple t tests would
require additional statistical testing to mitigate the risk of false
discovery or Type 1 error. Moreover, t tests assume that the
observations are independent of one another, which in the case of
longitudinal outcomes data is not true. For longitudinal outcomes
data, repeated measures analysis would be a better statistical
analysis plan.

Repeated measures or multiple observations of an outcome per
patient over time form a line of each patient’s outcome data. Each
patient’s line can then be averaged within treatment groups to get
the overall treatment effect of each group (Fig. 3). A few examples
of techniques that are appropriate for analyzing longitudinal data
includemixed effect regressionmodels and generalized estimating
equations. One benefit of using repeated measure analysis is that
it increases statistical power because an increased number of
measurements per patient reduces variance and increases pre-
cision of estimates. Repeated measures also allow for inclusion of
patients with partially missing data because data from prior and
later visits can be used to help estimate data from missing time
points. This statistical method also avoids multiple testing and
allows analysts to easily account for confounding variables.

The Canadian Orthopaedic Trauma Society (COTS) Clavicle
RCT is 1 frequently cited example of how repeated measures
analysis should have been used. This trial compared patient
outcomes and complication rates of displaced midshaft clavicle
fractures after nonoperative treatment and plate fixation.13 Their
primary outcome was the Disabilities of the Arm, Shoulder, and
Hand (DASH) score, which was collected from patients at the
6-, 12-, 24-, and 52-week time points.13 Although this study used
multiple t tests to show that operativemanagementwas superior over
time, repeatedmeasureswould have been amore valid statistical tool.
Repeated measures would have allowed the COTS group to report
that, on average, operative treatment improved DASH scores over
the first year after surgery. Although the outcome could be reported
as an averaged over time, the averaged regression can also be used to
estimate point estimates of effect at isolated time points as well while
accounting for possible Type 1 error.

7. Conclusion

In this overview article, we have summarized some of the
challenges encountered in clinical research as they relate to
mitigation of bias. Causal diagrams have been introduced to
better conceptualize and differentiate confounders from
mediators and colliders in observational data. Once sources
of confounding bias have been identified, then steps can be

Figure 3. Repeated measurements of longitudinally measured outcome allows
for an averaging of difference in scores over multiple time points (shaded area).
This averaging of measurements over time increases the statistical power to
detect between group differences among a given sample.
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taken in either the design or analysis phase of this study to
adjust for them in estimating average causal effects. Further-
more, multiple imputation and time-to-event analysis can help
researchers address missingness and loss to follow-up. Finally,
we have highlighted some of the advantages of using
longitudinal outcome measurement and discussed how they
may be most appropriately analyzed with repeated measure
analysis. While not unique to observational studies, under-
standing the problems and their solution highlighted in this
review will improve the quality of this most common clinical
study design in orthopaedic trauma surgery.
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