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ABSTRACT
Induction chemotherapy (7 + 3 regimen) remains the gold standard for patients with acute myeloid 
leukemia (AML) but is responsible for gut damage leading to several complications such as blood-
stream infection (BSI). We aimed to investigate the impact of induction chemotherapy on the 
intestinal barrier of patients with AML and in wild-type mice. Next, we assessed the potential 
benefit of strengthening the mucosal barrier in transgenic mice releasing a recombinant protein 
able to reinforce the mucus layer (Tg222). In patients, we observed a decrease of plasma citrulline, 
which is a marker of the functional enterocyte mass, of short-chain fatty acids and of fecal bacterial 
load, except for Escherichia coli and Enterococcus spp., which became dominant. Both the α and β- 
diversities of fecal microbiota decreased. In wild-type mice, citrulline levels decreased under 
chemotherapy along with an increase of E. coli and Enterococcus spp load associated with con-
comitant histologic impairment. By comparison with wild-type mice, Tg222 mice, 3 days after 
completing chemotherapy, had higher citrulline levels, a faster healing epithelium, and preserved 
α-diversity of their intestinal microbiota. This was associated with reduced bacterial translocations. 
Our results highlight the intestinal damage and the dysbiosis induced by the 7 + 3 regimen. As 
a proof of concept, our transgenic model suggests that strengthening the intestinal barrier is 
a promising approach to limit BSI and improve AML patients’ outcome.
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Introduction

Induction chemotherapy that combines seven days of 
cytarabine and three days of anthracycline (7 + 3 regi-
men) remains the standard of care for patients with 
acute myeloid leukemia (AML), with a 70 to 80% 
complete remission rate.1 Subsequently, most patients 
undergo consolidation and conditioning chemother-
apy preceding allogeneic stem cell transplantation 
(allo-SCT). During these treatments, several compli-
cations may mitigate the prognosis of AML, such as 
bloodstream infections (BSI), relapse of the hemato-
logical disease, or acute graft-versus-host disease 

(GvHD) after allo-SCT. Because of their toxicity, che-
motherapies are responsible for the intestinal barrier 
failure that promotes BSI usually caused by gram- 
negative bacteria of the digestive tract.2,3 

Furthermore, the widespread use of antibiotics 
enhances the dissemination of multidrug-resistant 
bacteria, raising the health costs, and increasing the 
infection-related mortality rate.4

The intestinal barrier is composed of three differ-
ent components: the microbiota, the mucus layer, 
and the epithelial layer. Mucus interfaces the micro-
biota and mucosa allowing reciprocal and dynamic 
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interactions that maintain gut homeostasis and act 
as physical, biochemical, and biological defenses 
against aggressions and infections.5–7 Mucus is 
essentially composed of water (>90%). Gel-forming 
mucins such as MUC2 represent the main organic 
component of the ileal and colonic mucus gel.8 The 
highly conserved mucin CYS domain found in two 
copies in MUC2 acts as a natural crosslinker of 
MUC2 polymers that reinforces the mucus layer 
and mainly provides resistance against pathogen 
colonization.9 Our team generated a transgenic 
(Tg) mouse (line Tg222) able to release a string of 
a higher number of CYS domains (n = 12) in the 
intestinal lumen that strengthens the mucus barrier. 
We have previously demonstrated that the colonic 
mucus of the Tg mice is more protective against 
bacterial translocation and houses a higher abun-
dance of Lactobacillus spp in comparison to their 
wild-type (Wt) littermates. Such Tg mice are less 
sensitive to dextran sodium sulfate-induced colitis 
and to bacterial translocation.10

The aim of this translational study was to 
describe the intestinal barrier, including the micro-
biota, mucus, and epithelium in both AML patients 
and preclinical mouse models. The composition of 
microbiota has been assessed before, during, and 
after a 7 + 3 regimen in AML patients. Because 
intestinal biopsies cannot be routinely performed 
in such patients, we assessed gut impairment by 
measuring plasma concentrations of citrulline, 
a marker of functional enterocyte mass, and fecal 
short-chain fatty acids (SCFA) produced by intest-
inal microbiota, which are essential for maintaining 
colonic trophicity.11–13 To further determine the 
impact of chemotherapy on intestinal impairment, 
we studied a murine model mimicking induction 
chemotherapy for AML without antibiotics. 
Finally, we challenged the Tg222 mice to investigate 
the potential effect of strengthening the mucosal 
barrier during induction chemotherapy.

Results

Human

Patients’ outcome
Initial characteristics of the 15 patients enrolled are 
detailed in Table 1. All patients had a neutropenic 
fever and received broad-spectrum antibiotics during 

the 7 + 3 regimen. BSI occurred in 47% (7/15) of 
patients and was mostly due to E. coli (4/7). One 
patient died of a septic shock caused by refractory 
candidemia. There was a significant weight loss 
(expressed in percent of the weight at T0) at T1 
(−2.6% [−5.7; 0.9]; p = .027) and T2 (−5.2% [−7.9; 
−0.5]; p = .006). Compared with T0 (29 [22–33] µmol/ 
L), citrulline levels decreased significantly at T1 (14 
[10–19] µmo/L; p = .0002), and reached near normal 
values at T2 (25 [18–34] µmol/L; p = .412) (Figure 1a). 
Over 70% of the patients (11/15) were in remission 
after induction chemotherapy (Figure 1a).

Dysbiosis
The bacterial load of the feces assessed by qPCR 
decreased between T0 and T1 (−0. 8 log bacteria/g; 
p = .004) and remained low at T2 (−1 log bacteria/g; 
p = .05). The overall decrease observed from T0 to T1 
affected the following groups: Bacteroides spp., 
Streptococcus spp., Bifidobacterium spp., 
Akkermansia, C. coccoides, C. leptum with some 

Table 1. Patient characteristics.
Patient characteristics

Age, median [range] 54 [35–74]
Sex, n (%)

Female 6 (40)
Male 9 (60)

AML, n (%)
De novo 12 (80)
Secondary 3 (20)

BMI at admission, median [range] 25.3 [17.3–31]
Induction chemotherapy, n (%)

AraC + Ida * 7 (47)
AraC + Dauno ¥ 8 (53)

Time of assessment¶, median [range]
T0 −2 [−12-0]
T1 12 [8–18]
T2 24 [18–35]

ATB during induction phase, n (%) 15 (100)
Tazocilline 10 (67)
Imipenem 9 (60)
Cefepime 5 (33)
Vancomycine 3 (20)

During of ATB administration, day [range] 28 [15–43]
During of neutropenia, day [range] 20 [9–35]
Neutropenic fever, n (%) 15 (100)
Documented BSI§, n (%) 7 (47)

Escherichia coli 4 (26)
Enteroccocus spp 1 (7)
Klebsiella pneumoniae 1 (7)
Closdirium perfringens 1 (7)

Remission after induction, n (%) 11 (73)

*Aracytine 200 mg/m2 from d1 to d7 and Idarubicin 12 mg/m2 from d1 to d3. 
¥Aracytine 200 mg/m2 from d1 to d7 and Daunorubicin 60 mg/m2 from d1 
to d3. ¶ Time of assessment considering the delay from the initiation of 
chemotherapy: T0: before induction, T1: during aplastic period, and T2: 
after hematological recovery phase. § BSI: blood stream infection docu-
mented with blood culture. AML: acute myeloid leukemia; Ida: idarubicin; 
AraC: aracytine; Dauno: Daunorubicin; BMI: body mass index; ATB: 
antibiotics.
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individual variations. The bacterial load of dominant 
groups was not different between T1 and T2. The load 
of sub-dominant groups such as Enterococcus spp., 
E. coli and Lactobacillus spp. remained unchanged 
throughout the follow-up (Figure 1b).

In next generation sequencing analyzes of human 
stool microbiota, alpha-diversity, assessed by the 
Shannon index, decreased between T0 (3.6 [2.45–4.5]) 
and both T1 (2.05 [1.14 − 3.35]) (p = .008) and T2 
(1.46 [0.55–3.02]) (p = .003), but not between T1 and 
T2. Similarly, the Chao-1 index, decreased between 
T0 (160 [72–183]) and both T1 (62 [49–123]) (p = .01) 
and T2 (52 [23–70]) (p = .002), but not between T1 
and T2. The unweighted Unifrac beta-diversity high-
lighted a modification of microbiota between T0 and 
both T1 (p = .02) and T2 (p = .001), but not between 
T1 and T2 (p = .25) as depicted in Figure 2a.

Analysis of the heatmap presented in Figure 2b 
resulted in the identification of two major groups of 
microbiota patterns. The first group was mostly com-
posed of T0 samples characterized by the dominance 
of commensal Bifidobacteriaceae, Lachnospiraceae, 
and Ruminococcaceae. The second group was 

exclusively composed of both T1 and T2 samples 
and was characterized by the dominance of 
Enterococcaceae. These patterns corresponded to the 
time-dependent quantitative stability of E. coli and 
Enterococcus observed with qPCR. In two samples 
where Enterococcaceae were less abundant, micro-
biota composition was dominated by 
Pseudomonadaceae.

Unweighted Unifrac principal component ana-
lysis showed the clustering of the two groups of 
samples (T0, T1, and T2) according to their com-
position (Fig. S1).

SCFA released
Compared with T0, we observed a significant decrease 
of almost all SCFA concentrations at T1 and T2. At 
T2, all SCFA significantly decreased (Table 2).

Mice

Outcome of induction chemotherapy model
Similarly to what was observed in patients, the mor-
tality was low after completion of the induction 

Figure 1. (a) Body mass variation and plasma citrulline level in patients before induction (T0), during aplasia (T1) and after 
hematological recovery (T2). (b) Quantitative PCR for aerotolerant and anaerobic bacteria in patients’ feces. Bacteroides, 
Bifidobacterium, Akkermansia spp, C. coccoides and C. leptum represented dominant groups. Streptococcus spp, Enterococcus spp, 
E. coli and Lactobacillus spp represented sub-dominant groups. p < .05 is considered significant, n.s.: not significant. *p < .05; **p < .01; 
***p < .001.
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chemotherapy. Mice experienced a transient 
decrease in both blood count and body mass, 
which normalized within 1 week and 3 weeks, 
respectively (Figure 3a–f). Citrulline level also 
decreased throughout chemotherapy administration 
until d + 3 and returned to normal at d + 5 following 
its completion (Figure 3g).

Compared with baseline (0 [0–0]), histological 
damage score of the terminal ileum mucosa 
increased at d + 1 (6 [5–7]) (p < .0001) and 
remained high until d + 3 (3 [3–5]) (p = .005), 
before returning to baseline values at d + 5 (1 
[1–2]); p = .652). The number of goblet cells fol-
lowed the same kinetic variation: compared to 
baseline (13 [11–14]), goblet cells decreased sig-
nificantly at d + 1 (8 [7–10]; p = .019); d + 3 (9 

[8–10]; p = .035) and progressively returned to 
normal values at d + 5 (12 [10–13]; p = .9). 
Similarly, compared to baseline, the number of 
both PCNA-positive (14 [14–15]) and apoptotic 
cells (0 [0–0]) rose at d + 1 (20 [17–23] and 2 
[1–3]); (p = .1 and p = .02), and d + 3 (23 [20–27] 
and 2 [2–4]); (p = .002 and p = .0008), respectively, 
and then decreased to return to normal values at 
d + 5 (17 [15–20] and 1 [1–2]); (p = .686 and 
p = .249) (Figure 4a-d).

We observed a similar bacterial load in the term-
inal ileum, spleen, and liver at baseline and d + 3 in 
Wt. However, we identified exclusively 
Lactobacillus spp. at baseline, whereas aerotolerant 
species such as E. coli and/or Enterococcus spp., 
appeared at d + 3 (Fig. S2).

Figure 2. (a) Alpha-diversity in patients’ stool microbiome, represented by the Shannon index and Chao-1 index, before induction (T0), 
during aplasia (T1) and after hematological recovery (T2). p < .05 is considered significant. (b) A subset of OTUs, grouped by family, 
with a raw count at least of 300 was kept. Bray-Curtis distance and UPGMA algorithm were used to perform pairwise distance between 
samples and hierarchical clustering, respectively. The heatmap highlighted a clustering of two groups dominated by Bifidobacteriaceae, 
Lachnospiraceae and Ruminococcaceae at T0 progressively replaced by Enterococcaceae or Enterobacteriaceae at T1 and T2.

Table 2. Comparison of fermentative activity in feces.
Fermentative activity (μmol/g) T0 T1 T2 p* p**

Acetate 11.5 [4.8–21.8] 2.6 [1.8–9.9] 3.4 [2.3–11.4] 0.02 0.04
Propionate 4.7 [1.3–7.2] 0.3 [0.1–0.9] 0.1 [0.1–0.7] 0.08 0.03
Butyrate 1.9 [0.2–3.4] 0.1 [0–1.5] 0 [0–0.3] 0.2 0.03
Valerate 0.2 [0.1–1.1] 0 [0–0.2] 0 [0–0] 0.04 0.004
Caproate 0 0 0 n.s. n.s.
Isocaproate 0.4 [0.1–0.8] 0 [0–0.6] 0 [0–0.2] 0.1 0.05
Isovalerate 0.4 [0.2–0.9] 0 [0–0.5] 0 [0–0.2] 0.09 0.05

Comparison of short-chain fatty acids concentration between T0 vs. T1* and T0 vs. T2**, p < 0.05 is considered significant, n.s.: not significant.

e1800897-4 T. HUESO ET AL.



Figure 3. (a). Induction chemotherapy in a wild-type mouse model that consisted of a combined administration of aracytine (AraC) for 
five days and doxorubicin (Dox) for three days injected intraperitoneally. Baseline (Bsl) corresponded to the time before chemotherapy 
administration; d + 1, d + 3, and d + 5 corresponded to one day, three days and five days after the completion of chemotherapy. (b) 
Overall survival for different chemotherapies: AraC (5 days) + Dox (3 days). Triangle: AraC (150 mg/kg/d) + Dox (3 mg/kg/d); circle: AraC 
(200 mg/kg/d) + Dox (3 mg/kg/d); and square: AraC (200 mg/kg/d) + Dox (6 mg/kg/d). c – g. A model with AraC 150 mg/kg/d and Dox 
3 mg/kg/d was elected resulting in decrease of blood count body weight and plasma citrulline level (n = 10 to 15 at each time). Wt: 
wild-type B6D2F1; WBC: white blood count; Lym: lymphocyte; Gra: granulocytes; RBC: red blood count. p < .05 is considered significant, 
* p < .05; **p < .01; ***p < .001.
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Outcome of reinforced mucus layer model
Mouse weights remained comparable between Wt 
and Tg groups throughout induction chemotherapy 
(Figure 5a and b). However, at baseline, citrulline 
levels were higher in the Tg (76 [68–83] μmol/L) 
than in the Wt group (71 [63–78] μmol/L; 
p = .0017). Citrulline levels reached a nadir averaging 
at d + 1 in both groups but rose faster in Tg mice (44 
[39–55] μmol/L vs. 39 [31–42] μmol/L; p = .046) at 
d + 3 (Figure 5c). In the latter, tracking of the GFP- 
tagged transgene by confocal microscopy showed 

a transient significant decrease of fluorescence at 
d + 1 that progressively returned to normal value at 
d + 5 (Figure 5d and e).

After induction chemotherapy, histological 
recovery was faster at d + 3 in Tg compared to 
Wt mice: a lower damage score (2 [1–2] vs. 3 
[3–5]; p = .008) with higher villi, deeper crypt, 
and more goblet cells per villus and PCNA- 
positive cells per crypt. Increase of apoptotic 
cells, mainly localized in crypts, was similar in 
the two groups (Figure 6a-c).

Figure 4. (a). Histological analyses of terminal ileum mucosa after HE and ABPAS staining, (b) Representative immunostaining of PCNA 
and apoptosis along the ileal villus-crypt axis (in green) at d + 1 and d + 3 and d + 5. (n = 7 to 10). Other cells were counterstained with 
Hoechst 33258 (in blue). HE: Hematoxylin/eosin; ABPAS: Alcian blue/periodic-acid Schiff; PCNA: proliferating cell nuclear antigen; 
TUNEL: TDT-mediated dUTP-biotin nick end-labeling; Lu: lumen. p < .05 significant, *p < .05; **p < .01.
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Quantitative PCR analysis of adherent flora of 
the terminal ileum revealed similar concentration 
of overall bacteria and Lactobacillus spp. 
(L. murinus, L. reuteri, L. gasseri) at baseline and 
d + 3 in both Tg and Wt groups. Concentration of 
C. leptum was also comparable at baseline between 
the two groups (6.42 [5.93–6.56] log bacteria/g vs. 
6.39 [5.96–6.88] log bacteria/g; p = .81), but was 
higher in Tg group at d + 3 (6.44 [5.89–7.07] log 
bacteria/g vs. 5.41 [4.97–6.51] log bacteria/g; 
p = .02) (Fig. S3).

Results of alpha-diversity at d + 3 are detailed 
in Figure 6d. They were similar between Tg and 
Wt mice within the control group. Despite 
a trend of higher Shannon index (2.47 [1.9–2.8] 
vs. 1.38 [0.66–2.61]; p = .07), only the Chao-1 
index was higher in Tg mice compared with Wt 
mice at d + 3 (124 [86–137] vs. 88 [43–104]; 
p = .05). In addition, while the indexes were 
lower in Wt than in control mice (1.38 [0.66–-
2.61] vs. 2.74 [1.91–4.53]; p = .04 and 88 [43–-
104] vs. 128 [96–210]; p = .01, respectively), they 

Figure 5. (a) Induction chemotherapy model (AraC (150 mg/kg.d) + Dox (3 mg/kg/d)) in Wt and Tg mice. (b – c) Comparison of weight 
loss and plasma citrulline level of Wt (blue circles) and Tg mice (red squares) at baseline (Bsl) and d + 1, d + 3 and d + 5 after 
chemotherapy completion. (d – e) Tracking of GFP-tagged transgene using epifluorescence microscopy (in green) in the ileal lumen of 
Tg mice from Bsl to d + 5. Ara-C: aracytine; Dox: doxorubicin; GC: Goblet cells;. p < .05 is considered significant, n.s., not significant. 
*p < .05; **p < .01.
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remained stable in Tg mice. With regards to the 
unweighted Unifrac beta-diversity at d + 3, no 
difference was observed between Tg and Wt mice 
in the control group (p = .44) and after che-
motherapy (p = .84). Compared with the control 
group, unweighted Unifrac beta diversity showed 
a modified microbiota in the chemotherapy 
groups for both Wt (p = .011) and Tg mice 
(p = .043). Unweighted Unifrac principal compo-
nent analysis evidenced the overall modification 

of the microbiota composition after chemother-
apy in both Wt and Tg mice (Fig. S4).

After the S. Typhimurium challenge, we observed 
less translocations in Tg compared with Wt mice in 
both the liver (1.55 [1.33–2.19] log CFU/g vs. 2.27 
[1.51–3.59] log CFU/g; p = .033) and the spleen (2 
[1.85–2.2] log CFU/g vs. 2.94 [1.94–5.18] log CFU/g; 
p = .046). In control mice, which received PBS instead 
of chemotherapy, we did not observe significant 
translocation due to S. Typhimurium (Figure 7a-b).

Figure 6. (a) Transgenic and wild type mice received chemotherapy regimen. Control group received PBS (included 2 Tg and 2 Wt 
mice). All mice were sacrificed at d + 3. (b-c) Histological analyses with HE and ABPAS staining and representative immunostaining with 
PCNA and apoptosis along the ileal villus-crypt axis (in green) at d + 3 after completion of induction chemotherapy. Other cells were 
counterstained with Hoechst 33258 (in blue).(d) Metabarcoding sequencing analyses of alpha diversity in ileum adherent microbiota at 
d + 3 in Wt and Tg mice and in chemotherapy and control groups. Ara-C: aracytine; Dox: doxorubicin; PBS: phosphate-buffered saline; 
HE: Hematoxylin/eosin; ABPAS: Alcian blue/periodic-acid Schiff; PCNA: proliferating cell nuclear antigen; TUNEL: TDT-mediated dUTP- 
biotin nick end-labeling; Lu: lumen. p < .05 is considered significant; n.s., not significant.
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Discussion

To understand how the association of induction 
chemotherapy and antibiotics may affect the intest-
inal barrier and modify the intestinal microbiota, 
we prospectively monitored a cohort of patients 
with AML before, during, and after a 7 + 3 regimen. 
As expected, more than 70% of AML patients were 
in remission with the 7 + 3 regimen. Following 
chemotherapy administration, the patients lost 
weight, developed aplastic fever requiring broad- 
spectrum antibiotics, and were susceptible to E. coli 
septicemia. During the aplastic and recovery 
phases, we evidenced intestinal barrier impairment, 
as determined by citrulline levels, feces SCFA col-
lapse, and deep modifications of intestinal micro-
biota combining a dramatic loss of overall bacterial 
load and alpha and beta diversities with a switch 
from anaerobic to aerotolerant bacteria.

As already observed, the overall decrease of bacter-
ial populations was mostly due to the loss of oxygen- 
sensitive commensals such as Clostridiales. in favor of 
the relative abundance of E. coli and Enterococci.4,14 

The quantitative stability of these bacteria in qPCR is 
consistent with the qualitative clustering of the sam-
ples in different patterns. In our study, 
Lachnospiraceae and Ruminococcaceae, which usually 
constitute a portion of the autochthonous human 
intestinal microbiota, were particularly affected, with 
a gradual relative enrichment of Enterococcaceae, 
Enterobacteriaceae, and Pseudomonadaceae that are 
non-dominant species in enterotypes of a healthy 
human.15,16 Although the significance of this observa-
tion on disease prognosis remains to be determined, 
this relative enrichment in aerotolerant bacteria might 
be associated with the increased risk of BSI caused by 
these pathogens during aplasia.

Figure 6. (Continued).
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These gut microbiota modifications were concomi-
tant with a decrease of citrulline and fecal SCFA levels, 
two surrogate markers of the functional enterocyte 
mass, and the microbial fermentative activity, respec-
tively. Citrulline is a nonproteic amino acid produced 
mainly by enterocytes from glutamine. It was initially 
monitored in patients with short bowel syndrome, 
reflecting the reduction of functional enterocyte 
mass.17,18 In patients with hematological malignan-
cies, it was highly correlated with the intestinal perme-
ability test and the incidence of bacteriemia reflecting 
the intestinal impairment due to high-dose che-
motherapy regimen.19–22 SCFA are produced mainly 
by colonic anaerobic bacteria from the fermentation 
of indigestible polysaccharides.23 SCFA has a trophic 
effect on colonocytes, regulating crypt depth, mucus 
secretion, and limiting the luminal expansion of 
bacteria.24 They also play a role in tissue homeostasis 

and their decrease limits intestinal repair (especially 
during graft versus host disease, GVHD) and colonic 
regulatory T-cell expansion.25,26

To examine the specific role of induction chemother-
apy on the intestinal barrier, we mimicked AML induc-
tion in a mouse model without antibiotic 
administration. Our model was fairly representative of 
the effect of a 7 + 3 regimen in humans featuring 
transient weight loss, decrease of all blood cells, and 
loss of enterocyte functional mass as demonstrated by 
citrulline decrease and histologically an impairment of 
the terminal ileum. As opposed to what was observed in 
humans, changes in intestinal microbiota consecutive to 
chemotherapy in Wt mice, in the absence of antibiotic 
pressure, were mainly qualitative.27 Indeed, qPCR ana-
lyses did not reveal any loss of most bacterial popula-
tions, but compared with the baseline, E. coli, and 
Enterococcus spp. colonized the terminal ileum and 

Figure 7. Oral gavage of 107 CFU of Salmonella Typhimurium (S. Typhimurium) was conducted the last day of the chemotherapy 
regimen in Wt, Tg and controlled (Ctrl) mice. (b) Comparison of intestinal translocation of S. Typhimurium in Wt (blue circles), Tg (red 
squares) and Ctrl mice (green triangles) in liver spleen and feces at d + 2 after oral gavage. Ara-C: aracytine; Dox: doxorubicin; PBS: 
phosphate-buffered saline. CFU: Colony forming unit. p < .05 is considered significant, n.s., not significant. *p < .05; **p < .01; 
***p < .001.
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translocated through the damaged intestinal epithelium. 
However, a comparison between human and mouse 
microbiota must be interpreted with caution because 
of difference in sample origin (feces vs. ileal adherent 
flora) and the different microbial ecology between 
human and mouse. It is noteworthy that microbiota 
diversity followed the same trend in human and Wt 
mice samples.

Next, we investigated the interest of mucosal 
strengthening in Tg mice. At baseline, a strengthening 
of the mucosal barrier in Tg mice was suggested by 
higher citrulline levels than those in Wt mice. While 
intestinal damage induced by chemotherapy was initially 
similar in both Tg and Wt mice, Tg mice had faster 
ileum repair three days after chemotherapy achievement, 
with lower tissue damage score, higher PCNA staining, 
and citrulline levels. The ileum microbiota of Tg mice 
was maintained while the microbial composition signif-
icantly changed after chemotherapy compared with Wt 
mice. Moreover, Tg mice appeared less sensitive to the 
S. Typhimurium translocation. Thus, we hypothesized 
that BSI proceeded in two steps: first chemotherapy- 
induced dysbiosis and an increase in the burden of 
aerotolerant bacteria and subsequently translocation of 
bacteria through the damaged intestinal barrier.28 

Although baseline colonization was similar in Wt and 
Tg mice, our results show that mucus reinforcement 
could limit microbiota diversity impairment and patho-
logical bacterial translocation after induction 
chemotherapy.29

For decades, improving the intestinal barrier has 
remained a challenge in patients undergoing chemother-
apy. Various products have been evaluated to maintain 
intestinal homeostasis during the allo-SCT procedure, 
such as keratinocyte growth factor or analog of 
R-Spondin that inhibits heat shock proteins.30–32 In the 
last decade, our team demonstrated the beneficial role of 
early enteral nutrition, presumably due to its intestinal 
trophic effect on both GvHD severity and mortality in 
patients undergoing allo-SCT.33–36 More recently, we 
reported that increased macrophage reactivity and 
lower citrulline concentration before allo-SCT were 
strongly correlated with the incidence of GvHD in 
humans. These two parameters reflect persistent subcli-
nical damage secondary to high-dose chemotherapies 
delivered during a 7 + 3 regimen.37 In addition, the 
interest of citrulline level as a strong predictive factor 
of GvHD before an allo-SCT procedure was recently 
confirmed.38 In our experience, citrulline level below 

26 µmol/L before an allo-SCT constitutes an indepen-
dent risk factor of severe gastrointestinal GvHD.12 

Altogether, these data support the concept that main-
taining intestinal integrity in patients receiving an AML 
induction regimen and further chemotherapies could 
limit microbiota dysbiosis responsible for infectious dis-
ease and further complications such as GvHD after allo- 
SCT.39,40

To our knowledge, this is the first translational 
study showing the deep modification of the intest-
inal barrier and physiopathology of BSI occurring 
after a 7 + 3 regimen. Our human study revealed 
the deep impairment of the intestinal barrier with 
a transient epithelium damage associated with 
a prolonged loss of load, diversity, and function of 
the microbiota. Our murine model determined 
more precisely the specific impact of chemother-
apy, which is characterized by a qualitative dysbio-
sis and physical barrier impairment that facilitates 
bacterial translocation. As a proof of concept, we 
finally showed that strengthening the mucus can 
improve intestinal repair and maintain microbiota 
diversity thus limiting the risk translocation with 
entero-invasive bacteria.41 Although we need to 
determine if this protection is provided by the 
mucosal strengthening, change in microbiota, or 
reciprocal interactions, these results should lead to 
the development of new approaches to limit BSI 
and improve the outcome of patients with AML.

Material and methods

Human

Enrollment
This monocentric prospective observational study 
was conducted in the hematological ward of Gustave- 
Roussy Hospital between April 2013 and 
January 2014. Fifteen consecutive patients with AML 
received a conventional 7 + 3 regimen combining 
high-dose aracytine (cytarabine 200 mg/m2) for 
seven days and an anthracycline (idarubicin 12 mg/ 
m2 or daunorubicin 60 mg/m2) for three days. Broad- 
spectrum antibiotics were administered in case of 
neutropenic fever, at the discretion of the clinician. 
Serum and feces were collected before induction (T0), 
during aplasia (T1) and after recovery phase (T2) 
were stored at −20°C and −80°C, respectively. At 
each time, clinical parameters (temperature, antibiotic 
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intake, febrile episodes, and body mass index), biolo-
gical parameters (disease status, aplasia, bacteriologi-
cal documentation), and fecal analyses were recorded. 
Our institutional ethics committee approved the 
study and all patients signed a nonopposition form 
for the use of their data for the purpose of the study.

Fermentative activity
Concentrations of SCFA (acetate, propionate, buty-
rate, valerate, caproate, isocaproate, and isovale-
rate) in the feces were analyzed using gas-liquid 
chromatograph (Nelson 1020; Perkin-Elmer, 
St. Quentin en Yvelines, France) after water extrac-
tion of acidified samples, as described previously.42

Mice

Induction chemotherapy model
Eight-to-10 weeks old female B6D2F1 wild-type 
(Wt) mice were used. Increased doses of aracytine 
(Accord Healthcare, France) and doxorubicin 
(Arrowlabs, India) were administered intraperitone-
ally for five and three consecutive days, respectively, 
as previously described.43,44 Increased doses from 50 
to 150 mg/kg/d of aracytine and 1 to 3 mg/kg/d of 
doxorubicin were myelosuppressive and well toler-
ated. Doses over 150 mg/kg/d and 3 mg/kg/d, 
respectively, were deleterious with high rate mortal-
ity. Thus, we elected a regimen based on aracytine 
150 mg/kg/d and doxorubicin 3 mg/kg/d. Mice were 
kept in the specific pathogen-free animal facility of 
the University of Lille. Housing conditions fulfilled 
the European guidelines for animal welfare. Weight 
and tolerance were evaluated each day until the 
sacrifice at one (d + 1), three (d + 3), and five 
(d + 5) days after the end of chemotherapy. 
Animal Care Committee of the region Nord–Pas 
de Calais approved all of the experimental protocols 
(APAFIS#8328-201622316064271v3).

Reinforced mucus layer model
We used transgenic mice (Tg222) releasing 
a recombinant molecule of 12 consecutive CYS domains 
(rCYSx12) GFP-tagged in their intestinal lumen. To 
generate the transgene and Tg222 mice, a Transgenic 
(Tg) plasmid containing the trefoil factor 3 (Tff3) pro-
moter and an artificial exon encoding 12 CYS sequences 

was created. Then, the linearized DNA fragment was 
purified and injected into 4-week-old mice of a C57BL/6 
genetic background. These modifications are associated 
with a reduced susceptibility to chemical-induced colitis 
and a reduced bacterial translocation after oral gavage of 
Citrobacter rodentium.10

Heterozygous transgenic female with a C57BL/6 
genetic background was bred with DBA/2 Wt male 
mice, and pairs of cohoused female Tg and Wt 
B6D2F1 mice from the same litter were used 
throughout the present study. Four-week-old mice 
were screened for the presence of the transgene by 
PCR analysis using tail DNA extracted using spe-
cific primers as previously described.10 The ampli-
fied products were subjected to electrophoresis on 
a 12% acrylamide/bis-acrylamide gel. The presence 
of the transgene was confirmed by epifluorescence 
microscopy of fresh ileum or colon and by PCR.

Blood analyses
Blood was collected by cardiac puncture. White 
cell, red cell, and platelet counts were performed 
on the hematological counter (BC-2800Vet, 
Mindray, Shenzhen, China).

Histology and immunochemistry
On the day of sacrifice, 5-μm-thick sections of 
terminal ileum were prepared. Alternate sections 
were stained with Alcian blue (AB)-periodic acid- 
Schiff (PAS) and hematoxylin and eosin (HE). 
Villus height and crypt depth were determined on 
10 villi in three different sections. To count goblet 
cells, the total number of PAS-positive cells was 
determined in 10 longitudinally sectioned crypts 
of villi of the ileum per section. Intestinal damage 
was assessed using a validated score of colitis, tak-
ing into account the extent of inflammatory cell 
infiltrates, epithelial changes with goblet cell loss, 
and mucosal architecture with villous blunting.45

Sections were stained immunohistochemically with 
anti-proliferating cell nuclear antigen (PCNA) using the 
PC10 anti-PCNA monoclonal antibody (Abcam, 
Cambridge, UK), as described previously.10 To assess 
apoptosis, we used a TDT-mediated dUTP-biotin nick 
end-labeling (TUNEL) method (Roche, Boulogne- 
Billancourt, France). When using the ab290 antibodies 
and TUNEL, a heat-mediated antigen retrieval step was 
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performed before conducting the immunohistology.46 

The sections used in immunofluorescence experiments 
were counterstained with Hoechst 33258 (1: 1.000)

Bacterial culture
Tissues (ileum, spleen, and liver) and feces were har-
vested and introduced into preweighed vials containing 
1.5 mL of cysteinated Ringer’s solution. After physical 
disruption, dilutions were assessed and cultivable micro-
biota from tissues and feces were quantified.46 Total 
counts were conducted and different types of colonies 
were subcultured and identified according to established 
morphological and biochemical criteria. Final identifica-
tion was confirmed by mass spectrometry (MALDI- 
TOFF, Biotyper instrument, Bruker Daltonics). 
Salmonella Typhimurium challenge

To evaluate the potential impact of mucus reinforce-
ment, we studied intestinal translocation after a bacterial 
challenge by oral gavage the last day of induction che-
motherapy. Thus, mice were infected with 100 μL of an 
overnight culture of Luria broth (LB) containing 
approximately 107 CFU of the kanamycin-resistant 
GFP-tagged Salmonella enterica serovar Typhimurium 
(S. Typhimurium) strain and killed 2-day postinfection 
corresponding to d + 2. Feces and biopsy specimens of 
ileum, spleen, and liver were collected in a preweighed 
2.0 mL microtube containing 1.0 mL of PBS. Tissue and 
feces were weighed and then homogenized with a pellet 
pestle. Tissues and feces were serially diluted in phos-
phate buffer saline (PBS), plated onto LB agar plates 
containing 100 mg/mL of kanamycin sulfate (Sigma- 
Aldrich, Saint Louis, MO) and incubated overnight at 
37°C.47,48 S. Typhimurium colonies were counted the 
following day and normalized to tissue weight.

Human and mouse

Plasma citrulline level
Fasting plasma from human and mouse was deprotei-
nized with a sulfosalicylic acid solution and the super-
natants were stored at −80°C until analysis. Plasma 
citrulline concentrations were assessed by high- 
performance liquid chromatography combined with 
tandem mass spectrometry as previously described.49

DNA extraction and qPCR of microbiota in human 
feces and in mouse terminal ileum
Total DNA was extracted from aliquots of 
200–250 mg of human feces and 12 to 28 mg of 

mouse terminal ileum without stool according to 
the protocol described by Godon et al.50 Dominant 
bacteria groups such as aerotolerant (Colibacillus, 
Lactobacillus, Streptococcus, Enterococcus) and anae-
robic bacteria (Bifidobacterium, Bacteroides, 
Clostridium leptum/coccoides, Akkermansia) present 
in the samples at each time was evaluated using 
quantitative PCR (qPCR) analyses, as previously 
described.51 PCR inhibition was tested with fecal 
and ileum mucosal DNA dilutions using a TaqMan 
exogenous internal positive control (Applied 
Biosystems, Carlsbad, CA). No inhibition was 
detected using 10−3 dilutions for fecal DNA and 8 
10−2 dilutions for ileal DNA; consequently, these 
dilutions were used for all PCR amplifications.

Microbiota characterization in human feces and in 
mouse terminal ileum
Bacterial diversity was assessed for each sample by 
targeting the V3 and V4 hypervariable regions of 
the 16S ribosomal RNA-coding gene and was 
amplified with the primers‘16SFor’ 5ʹ- 
CTTTCCCTACACGACGCTCTTCCGATCTTA-
CGGRAGGCAGCAG −3ʹ and ‘16SRev’ 5ʹ- 
GGAGTTCAGACGTGTGCTCTTCCGATCTT-
ACCAGGGTATCTAATCCT −3ʹ). This first PCR 
reaction was performed using 10 ng of DNA, 
0.5 μM primers, 0.2 mM dNTP, and 0.5 U of the 
DNA-free MOLTaq 16S DNA-polymerase 
(Molzym), using the following PCR profile: 1 
cycle at 94°C for 60 s, followed by 30 cycles at 
94°C for 60 s, 65°C for 60 s, 72°C for 60 s, with 
an end-step at 72°C for 10 min. The PCR reactions 
were sent to GenoScreen (Lille, France) for 
sequencing using Illumina MiSeq technology. 
Single multiplexing was performed using an opti-
mized and standardized 16S-amplicon-library 
preparation protocol (Metabiote; GenoScreen, 
Lille, France). Briefly, 16S rRNA gene PCR was 
conducted using 5 ng of genomic DNA according 
to Metabiote protocole instructions using 192 bar- 
coded primers (Metabiote MiSeq Primers; 
GenoScreen) at final concentrations of 0.2 μM 
and an annealing temperature of 50°C for 30 
cycles. PCR products were cleaned up using an 
Agencourt AMPure XP-PCR Purification system 
(Beckman Coulter, Brea, USA), quantified accord-
ing to the manufacturer’s protocol, and multi-
plexed at equal concentration. Sequencing was 
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performed using a 300-bp paired-end sequencing 
protocol on an Illumina MiSeq platform 
(Illumina, San Diego, CA) at GenoScreen. The 
next steps were realized with Snakemake to man-
age QIIME (2019.1) software.52,53

Bioinformatic analyses
Sequences were joined and then filtered.54 

Operational Taxonomic Units (OTUs) were created, 
with Deblur software, truncating the sequence at 300 
bp.55 Blast+ and SILVA database (release 128, version 
99) were used to annotate sequences.56,57 Then, Mafft 
aligned sequences and phylogenetic trees were built 
with FastTree to calculated diversity metrics.58,59

Microbiome diversity was analyzed using alpha and 
beta-diversity metrics. Alpha-diversity, representing 
number and abundance of species within samples, was 
studied using Shannon and Chao-1 indices. Beta- 
diversity was estimated using unweighted Unifrac dis-
tances representing OTU presence or absence.60,61 

Diversity analysis was assessed with 10360 and 9000 
sequences for the human and the murine studies, respec-
tively. A PERMANOVA test was used to compare beta- 
diversity between groups. Principal coordinate analysis 
(PCoA) of unweighted Unifrac distances was conducted 
with Emperor to study the evolution of beta-diversity 
over time.62

Statistical analyses

Continuous variables were presented as median and 
range or interquartiles range. For the human study, the 
non-parametric Friedman test was used. Comparisons 
for each patient between T0 and T1, and T0 and T2 
were conducted using the Wilcoxon signed-rank test. 
One patient who died between T0 and T1 was excluded 
from the analysis.

For mouse experiments, the Kruskal-Wallis with 
a posthoc Dunn’s correction was used to conduct multi-
ple comparisons. The Wilcoxon signed-rank test was 
used to compare cohoused Wt and Tg mice from the 
same litter. Overall survival was estimated using a log- 
rank test and represented by Kaplan–Meier curves.

Statistical significance was defined as p < .05 
based on two-sided tests. Statistical analyses were 
performed using R, version 3.1.0 (R Foundation for 
Statistical Computing) and GraphPad Prism, ver-
sion 6.0 (GraphPad Software, La Jolla, CA).
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