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In the year 2000, Hanahan and Weinberg (1) defined the six Hallmarks of Cancer as: 
self-sufficiency in growth signals, evasion of apoptosis, insensitivity to antigrowth mech-
anisms, tissue invasion and metastasis, limitless replicative potential, and sustained 
angiogenesis. Eleven years later, two new Hallmarks were added to the list (avoiding 
immune destruction and reprograming energy metabolism) and two new tumor char-
acteristics (tumor-promoting inflammation and genome instability and mutation) (2). 
In multiple myeloma (MM), a destructive cancer of the plasma cell that grows predom-
inantly in the bone marrow (BM), it is clear that all these hallmarks and characteristics 
are in play, contributing to tumor initiation, drug resistance, disease progression, and 
relapse. Bone marrow adipose tissue (BMAT) is a newly recognized contributor to MM 
oncogenesis and disease progression, potentially affecting MM cell metabolism, immune 
action, inflammation, and influences on angiogenesis. In  this review, we discuss the 
confirmed and hypothetical contributions of BMAT to MM development and disease 
progression. BMAT has been understudied due to technical challenges and a previous 
lack of appreciation for the endocrine function of this tissue. In this review, we define the 
dynamic, responsive, metabolically active BM adipocyte. We then describe how BMAT 
influences MM in terms of: lipids/metabolism, hypoxia/angiogenesis, paracrine or endo-
crine signaling, and bone disease. We then discuss the connection between BMAT and 
systemic inflammation and potential treatments to inhibit the feedback loops between 
BM adipocytes and MM cells that support MM progression. We aim for researchers to 
use this review to guide and help prioritize their experiments to develop better treatments 
or a cure for cancers, such as MM, that associate with and may depend on BMAT.

Keywords: bone marrow adipose, BMAT, MAT, adipocyte, microenvironment, multiple myeloma, fatty acids,  
bone metastasis

iNTRODUCTiON

Within the last few years, researchers have begun to explore the mechanistic relationship between 
bone marrow (BM) adipose and adjacent tumors such as multiple myeloma (MM), which is a 
cancer characterized by clonal proliferation of transformed plasma cells (3). The clinical potential 
of such a research avenue is yet unknown, but preclinical data suggest that targeting BM adipose 
tissue (BMAT) could be an effective cancer treatment. BMAT also interacts with bone cells and 
other immune cells, highlighting indirect ways in which BMAT may affect MM disease progression 
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FiGURe 1 | Overview of cell–cell interactions relevant to BMAT and adipose effects on MM. Bone marrow adipose tissue (BMAT) may contribute to 
multiple myeloma (MM) growth in the marrow through indirect mechanisms, such as influences on other cells in the marrow, or direct mechanisms. BMAT has 
some evidence of inhibiting osteoblasts and the anticancer effects of immune cells and supporting osteoclasts and MM cell. White adipocytes, the basis of white 
adipose tissue (WAT), may also contribute to tumor growth in the bone marrow through systemic signaling pathways. MM cells also induce apoptosis in 
osteocytes, which may support MM cells. Bone lining cells and mesenchymal stromal cells (MSCs), as well as osteoclasts, support MM while osteoblasts may 
induce dormancy in MM cells.
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(Figures  1 and 2). Clearly, there needs to be more research in 
this area. MM cells accumulate within the BM and are highly 
dependent on this unique biochemical and cellular niche, as we 
have recently reported (4). Only recently, the idea that adipocytes 
may accelerate or support MM has come to researchers’ atten-
tion. The BM adipocyte may play a role in MM bone homing, 
tumor progression, drug resistance, recurrence, or osteolysis, 
due to local paracrine, endocrine, or metabolic signals. Just as 
understanding the relationship between osteoclasts and tumor 
cells led to the development of highly effective antiresorptive 
agents (bisphosphonates), and understanding the relationship 
between osteoblasts and MM cells has led to bone anabolic agent 
research, we propose that a clearer perception of the BMAT–MM 
cell relationship would identify novel ways to more effectively 
treat or prevent MM or MM-associated bone disease.

As adipose tissue is one of the main components within the 
BM niche, especially in old age, obesity, and upon radiation, there 
is clearly a need to characterize BMAT–MM relations. In  this 
review, we discuss the current evidence regarding the signal-
ing pathways driving effects of BMAT on myelomagenesis and 
progression. This review should guide future research strategies 
toward developing novel therapies to target MM or MM-induced 
bone disease through focusing on BMAT and its derivatives. 

For an overview of the contributions of the other components of 
the BM, we refer the reader to a few other recent reviews (4–6).

DeFiNiNG MULTiPLe MYeLOMA AND 
MYeLOMA-ASSOCiATeD BONe DiSeASe

Multiple myeloma is a cancer resulting from the accumulation 
of genetic mutations within an immune cell, called a plasma 
cell. Along the uncontrolled myeloma cell growth, MM also 
causes disruption of the BM and cancer-induced bone disease 
(4). Myeloma accounts for ~1–2% of cancers and ~13–15% of all 
blood cancers (7) and is characterized by clonal proliferation of 
tumor cells in the BM, monoclonal protein spikes in the blood 
or urine, and organ shutdown (3). In August 2015, a revised 
staging system was released for myeloma from the International 
Myeloma working group that categorized MM as stage I, II, or 
III, based on disease risk levels, such as chromosomal abnor-
malities and serum lactate dehydrogenase (LDH) levels (8). At a 
median follow-up of 46  months, the society found a 5-year 
overall survival rate of 82% in stage I, 62% in stage II, and 40% 
in stage III. The 5-year progression-free survival rates were 55, 
36, and 24%, respectively, for these groups. Although treatments 
for MM have significantly improved since the disease was first 
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FiGURe 2 | Signaling mediators of BMAT in MM. Bone marrow 
mesenchymal stromal cells (MSCs) can differentiate into adipocytes or 
osteoblasts, which may have an elasticity and ability to transdifferentiate 
across lineage lines and also signal to each other (black arrows). Both 
osteo-adipocytes (adipocytes in the bone marrow) and osteoblasts are able 
to signal to each other and to myeloma cells (blue dotted arrows). Myeloma 
cells are known to inhibit osteoblasts, but their effects on osteo-adipocytes 
are unknown. Osteoblasts seem to induce dormancy in myeloma cells, but 
their effects on adipocytes are unknown. Osteo-adipocytes produce lipids 
and adipokines that likely influence MM and bone cells. Lipids from 
osteo-adipocytes can act as PPARγ ligands and may thus stimulate a 
positive feedback loop, inducing more BMAT accumulation in the marrow.
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named in 1873 by J. von Rustizky (9), MM remains considered 
an incurable cancer. The disease is more common in males 
than females, African–Americans than Caucasians, older rather 
than younger people (the median age at diagnosis is 70), and 
in individuals with a family history of lymphatohematopoietic 
cancers (3). Obesity also has been found to be risk factor for 
MM in numerous studies and a pooled analysis of 20 prospective 
studies (10).

Myeloma arises from an asymptomatic precursor disease 
termed monoclonal gammopathy of undefined significance 
(MGUS) that progresses to smoldering myeloma and, eventually, 
overt, symptomatic myeloma (3). While early chromosomal 
abnormalities, such as immunoglobulin heavy chain transloca-
tions or trisomies, are present in both MGUS and MM, secondary 
translocations or mutations involving oncogenes (e.g., MMSET, 
MYC, MAFB, IRF4, FGFR3, RAS family members, among many 
others) (11) or tumor suppressors (e.g., CDKN2A, CDKN2C, or 
TP53) are unique to MM and absent in MGUS (12). Interestingly, 
deep sequencing of 203 tumor–normal paired samples revealed 
intratumor genetic heterogeneity with recurrent mutation 
occurring early or late during tumor evolution to be common 
in MM (12). Other pathways, such as the phosphatidylinositol 
3-kinase (PI3K) pathway (important for cell division, growth, 
survival, and motility), can also be hyperactivated in MM (due 
to external signaling from the bone milieu) and serve as a good 
target, despite a lack of mutations in the pathway (13). Cells from 
the immune system also appear to be abnormal in MM and con-
tribute to MM progression through expression of proteins such as 
TNFSF14 (6, 14) or by inducing T-cell immunosenescence (15). 

In sum, the genetic heterogeneity in MM may limit effectiveness 
of tumor-targeted therapy, indicating that better results may be 
obtained by targeting the bone microenvironment to impede 
MM and MM-induced bone disease.

Multiple myeloma-induced bone disease is the general 
term for the destruction of bone (associated with severe pain, 
pathologic fractures, and spinal cord compression) that occurs 
during myeloma colonization of the BM. Upon engrafting within 
the BM niche, MM cells accelerate osteoclastogenesis through 
expression of molecules, such as RANKL, MMP-13 (16), and 
Decoy receptor 3 (DcR3), a member of the tumor necrosis 
factor (TNF) receptor superfamily (17). MM cells also inhibit 
osteoblastogenesis, disrupting the normal equilibrium between 
these two processes (18), through expression of Dickkopf-1 
(DKK-1) and inducing upregulation of SOST in local osteocytes. 
Chemokines and cytokines associated with osteolysis in MM 
include CCL3, CCL20, and Activin-A (19). Increased osteoclastic 
activity leads to hypercalcemia (elevated calcium in the blood) 
and bone lesions. Therefore, the mnemonic for the signs and 
symptoms of MM is CRAB: C, elevated Calcium in the blood 
stream; R, renal failure due to elevated circulating protein 
(immunoglobulin); A, anemia, or lack of red blood cells due 
to tumor crowding into the BM; and B, bone lesions (4). Much 
research has been directed toward inhibiting the “vicious cycle” 
of osteoclast activation using bisphosphonates, OPG, or RANKL 
antibodies (denosumab) (6, 20–22). Using bone anabolic agents 
to regrow bone by stimulating osteoblasts (23) is another therapy 
for healing bone lesions and potentially inducing quiescence in 
MM cells (24). Lately, research has also focused on targeting MM 
cell homing to the BM, either through targeting the unique BM 
vasculature (25, 26), the molecules (e.g., sugars) and proteins on 
this vasculature (27, 28), or the chemokines (e.g., SDF1) within 
the BM (29–31). Other marrow cellular components, such as 
mesenchymal stromal cells (MSCs) (5, 32–34), osteocytes (35), 
and adipocytes, as described in this review, are also potential 
new avenues to regrow bone, inhibit bone loss, or inhibit MM 
survival or proliferation.

DeFiNiNG THe BM ADiPOCYTe

The anatomy and physiology of adipose tissue, as reviewed by 
Colaianni et al. (36), can direct energy storage (in white adipose), 
energy use (in brown adipose, for heat generation), or a combi-
nation of these and other functions yet to be discovered, as seen 
in BMAT. BMAT is a distinct adipose depot distinguishable from 
other adipose depots based on differences in phenotype, stress 
and diet response, physiological roles, gene expression, and 
origin. It has been found to affect the disease course of cancer, 
osteoporosis, and other pathologies of the bone (37). Composed 
of BM adipocytes and infiltrating inflammatory cells, BMAT has 
a gene expression pattern that overlaps with both white adipose 
tissue (WAT) and brown adipose tissue (BAT) (38). Like WAT, 
BMAT stores energy in the form of unilocular intracellular 
lipid droplets, opposed to multilocular droplets, as seen in BAT 
(39). Yet, WAT and BMAT are different in some other regards: 
BMAT expression of certain proteins [e.g., Dio2, peroxisome 
proliferator-activated receptor (PPAR) gamma coactivator 
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1-alpha (PGC-1α), and FOXC2] (40) is much higher than WAT 
expression, and while WAT volume decreases during starvation, 
BMAT volume increases perhaps highlighting its evolutionary 
role as the last energy store during starvation (41, 42). Gene 
expression level is also different for WAT and BMAT, as seen in 
the following genes: uncoupling protein 1 (UCP1), type II iodo-
thyronine deiodinase (Dio2), PGC-1α, PR domain containing 
16 (PRDM16), Forkhead box protein C2 (FOXC2), and leptin 
(43). Yet, these adipose depots are similar in other regards. For 
example, in response to obesity in mice and humans, both WAT 
and BMAT volumes increase due to increased adipocyte size and 
quantity, suggesting that both may act as reservoirs for excess 
energy storage (44, 45). Overall, due to the hard-to-access loca-
tion of BMAT, its interspersion with many other BM cells, and 
its absence from hematoxylin and eosin stain histology slides 
due to processing challenges, BMAT has been inadvertently 
ignored in the BM niche for years and is thus poorly understood 
relative to other adipose depots.

Adipose depot properties also diverge within the BM and 
are both cell- and microenvironment-dependent. Adipose in the 
distal long bone BM is termed “constitutive marrow adipose tis-
sue” (cMAT) and proximal adipose is termed “regulated marrow 
adipose tissue” (rMAT), as it is commonly “regulated,” or modi-
fied, rather than constitutively present (37). This suggests that BM 
adipocytes may be either location dependent or composed of two 
subpopulations of adipocytes; this remains under investigation. 
In rabbits, humans, and mice, MAT develops differently based 
on its location in the skeleton (46). cMAT, often termed “yellow 
adipose” due to its yellow appearance in the marrow, is found in 
the distal tibia and tail (caudal vertebra) of rodents and forms 
at birth, whereas rMAT accumulates with aging in proximal 
femora and more proximal vertebrae. cMAT volume can be 
measured by MRI in humans or by osmium microcomputed 
tomography in rodents and is constitutively present (47, 48). 
cMAT is proportional to bone mass in many cases; for example, 
the distal tibia, which is loaded with cMAT relative to the proxi-
mal tibia, and the caudal vertebrae, again loaded with cMAT 
relative to the lumbar vertebrae, also have more trabecular bone 
mass (46, 49). Interestingly, these sites with high cMAT/yellow 
MAT (distal tibia metaphysis, first lumbar vertebra), compared 
to regions with more red marrow (proximal tibia metaphysis 
or fifth caudal vertebra), also appear protected from bone loss 
induced by ovariectomy in rats (50).

Constitutive marrow adipose tissue may negatively impact 
hematopoiesis and maintain hematopoetic stem cells (HSCs) 
in a quiescent state (51). rMAT is often, but not always, corre-
lated with low bone mass and is regulated by factors including 
diet, drugs, age, and other endocrine and paracrine influences 
(42,  52–56). Interestingly, both cell-autonomous factors and 
the BM microenvironment appear to govern BMAT formation. 
In one study, although differentiation potential was found to be 
generally decreased in BM-MSCs, donor age was found to affect 
osteogenic differentiation of BM MSCs more than it affects adipo-
genic differentiation (57, 58). In another study, human adipose-
derived stem cells showed a shift in favor of adipogenesis with 
increased age (59). Yet, as demonstrated in a transplant study of 
BM cells into old and young mice, researchers found older hosts 

induced greater adipogenic lineage allocation than younger hosts 
did for the same transplanted MSCs, demonstrating the context 
and source influences on adipogenesis (60).

Lineage tracing experiments demonstrate that BMAT arises 
from an osterix-positive BM mesenchymal progenitor cell, 
common to osteoblasts, chondrocytes, and other BM stromal 
cells (61) (Figure 2). Interestingly, BM adipocytes cells are more 
closely related to osteoblasts and chondrocytes than are periph-
eral WAT adipocytes (62). One study found that a quiescent, 
leptin receptor-positive (LepR+) progenitor cell [stem cell factor 
(SCF) and CXCL12 expressing, and Nestin low] is the progenitor 
cell for most BM adipocytes, osteoblasts, and chondrocytes. This 
cell is also the progenitor to new cells formed after irradiation or 
fracture in the bone (61). These progenitors also express Prx1, 
PDGFRα, and CD51 markers expressed by BM-MSCs, emphasiz-
ing the need for more thorough bone progenitor classification 
(61). The plasticity or elasticity between different progenitors and 
their progeny may complicate the unequivocal identification of 
phylogenic lines, and differences between mouse and human cells 
and proteins may also further complicate these studies. A better 
understanding of the lineage pathways of BM cells would provide 
insight into a wide array of pathophysiologies.

BONe MARROw ADiPOCYTe 
iNFLUeNCeS ON MM

High body mass index (BMI) is correlated with an increased 
risk of developing MM and is associated with higher levels of 
BM adiposity, perhaps creating an optimal microenvironment, 
or “soil,” in which MM can engraft and grow (63–65). BM 
adipocytes isolated from MM patient femoral biopsies have been 
shown to support myeloma growth in  vitro and may protect 
MM cells from chemotherapy-induced apoptosis (66, 67). These 
results suggest that elevated adipocyte numbers support MM 
advancement. By excreting free fatty acids (FFAs) and produc-
ing a plethora of signaling molecules [e.g., adipokines (leptin, 
adiponectin, adipsin, etc.) and growth factors (e.g., IL-6, TNFα, 
MCP-1, insulin-like growth factor 1 (IGF-1), and insulin)], BM 
adipocytes are both an energy source and an endocrine signal-
ing factory (Figures  3 and 4). Many of these BMAT-derived 
signaling molecules may promote myelomagenesis and enhance 
tumor growth (42, 68) (Figure 3). In this section, we explore the 
potential contributions of BMAT to MM progression.

Lipids and Cellular Metabolism
When metastatic ovarian cells colonize the omentum (the fatty 
membrane surrounding the stomach and abdominal organs), 
they induce adipocytes to release lipids, which are subsequently 
utilized as energy for tumor cell proliferation. This process 
transforms the soft, flexible omentum fat pad into a hardened, 
tumor-infiltrated membrane with few remaining adipocytes in a 
process termed “omental caking” (69). This same phenomenon 
may occur in adipose-rich BM cavities, and fuel-switching in 
MM cells and the use of fatty acids could prove advantageous to 
MM cells owing to the high energy content of lipids and lipid-
induced cell signaling changes that lead to drug resistance. Yet, 
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FiGURe 4 | Tumor-suppressive effects of BMAT. In contrast to Figure 3, 
certain adipocyte-derived factors may have tumor-suppressive effects. For 
example, obese patients may have tumor cells that are more melphalan 
sensitive, which may be due to lipid effects on MM cells. Also, certain lipids, 
such as palmitic acid, can induce apoptosis in MM cells, and adiponectin, 
derived from adipose tissue, can induce cell death through the PKA/AMP 
signaling pathways.

FiGURe 3 | Tumor-supportive effects of BMAT. Many factors from BMAT 
may induce MM tumor growth and disease progression. Lipids may serve as 
a fuel source for tumor cells, antigens to stimulate precursor disease initiation 
[i.e., monoclonal gammopathy of undefined significance (MGUS)], or 
inhibitors of the immune system. IGF-1 and insulin can accelerate tumor 
proliferation. IL-1 and IL-15 can have effects on immune cells and 
inflammatory molecules to support MM growth and immune evasion. 
Complex interactions between TNFα, IL-6, leptin, PAI-1, and MCP-1 can lead 
to osteoclast activation, thrombosis, and JAK/Stat/MAPk signaling to cause 
osteolysis, thrombosis and tumor cell migration, drug resistance, and 
proliferation. Glycolytic and pentose phosphate pathway enzyme 
upregulation, potentially found in high energy states, can also lead to 
melphalan resistance in MM cells.
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this story is not clear cut. For example, despite the fact that obe-
sity correlates with increased risk of MM, one study found that 
obese and severely obese patients had superior overall survival 
and progression-free survival after high-dose melphalan and 

autologous hematopoietic stem cell transplantation compared 
with normal and overweight patients (70). Yet, other research 
found that melphalan-resistant MM cells upregulate glycolytic 
and pentose phosphate pathway (PPP) enzymes and downregu-
late tricarboxylic acid (TCA) cycle proteins (71). Together, these 
reports suggest that high BMI patients fuel MM cells via fatty 
acids, while hyperglycolytic diabetic patients could support MM 
cells via glycolysis, and that either metabolic pathways could sup-
port drug resistance. Additionally, some lipids, such as palmitic 
acid, have shown direct anti-myeloma effects (72).

Recent new data suggest that certain drugs, such as arsenic tri-
oxide (As2O3), may induce anti-MM effects by affecting the sphin-
golipid pathways in MM cells. U266 MM cells treated with As2O3 
displayed decreased lipid metabolites in this pathway including 
dihexosylceramide (Hex2Cer), sphingosine-1-phosphate (S1P), 
and sphinganine-1-phosphate (dhS1P) (73). As sphingolipids are 
a major group of membrane bioactive lipids, these changes could 
not only affect FFA metabolism but also membrane fluidity and 
cell–cell signaling. Further, complexity arises from the fact that 
sphingolipids and their metabolites also act as signal transduction 
messengers, regulating diverse cellular events such as cell cycle 
arrest or apoptosis, proliferation, cancer development, and mul-
tidrug resistance, as recently reviewed in Ref. (74). Increased fatty 
acid levels (saturated and n-6 polyunsaturated fatty acids) have 
also been observed in MM patient versus healthy donor blood 
serum (75). Lipid profiles differ between MM cells and plasma 
cells, such as the levels of glycerophospholipids [specifically 
phosphatidylcholine (16:0/20:4)] (76), which suggest potential 
therapeutic avenues based on lipid biochemistry.

Autophagy, the process by which intracellular proteins and 
organelles are degraded in lysosomes, is a protective process 
through which MM cells protect themselves from unfolded or 
misfolded proteins (77). Certain lipids can induce autophagy in 
hematological malignancies, but other lipids can induce tumor 
cell survival, proliferation, or cell death, so it is important to 
understand how different sphingolipids and their metabolizing 
enzymes cooperatively exert their functions (74). Modulating 
cholesterol metabolism in myeloma cells, in particular the sterols 
zymosternol and desmosterol, has also been shown to mediate 
autophagy signaling (78). Overall, it is clear that lipids may affect 
autophagy of MM cells.

New data also suggest that lipids may be drivers of monoclonal 
gammopathies, such as MM and MGUS, by acting as antigens 
for plasma-cell-derived antibodies (Figure 3). Evidence of this 
comes from data showing that clonal immunoglobulin in 33% 
of sporadic human monoclonal gammopathies is specific for the 
lysolipids lysoglucosylceramide (LGL1) and lysophosphatidyl-
choline (LPC) (79). Nair et al. reported that substrate reduction 
ameliorated Gaucher’s disease-associated gammopathy in mice 
and suggest that long-term immune activation by lysolipids 
may underlie both sporadic monoclonal gammopathies and 
Gaucher’s disease-associated gammopathies (79). This work 
was built on genetic analyses over the past two decades of 
immunoglobulin mutations in MM cells that found myelo-
magenesis to be an antigen-driven process (80). Implications 
of these findings are that decreasing key lipids responsible for 
myeloma initiation potentially represents a novel preventative 
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measure for at-risk populations. Moreover, the recent evidence 
finds that adipocyte-derived lipids, rather than adipokines, 
mediate obesity-related changes in macrophage phenotypes, 
highlighting the influential effects of adipocyte-derived lipids 
of the microenvironment (81).

Lipids also function as PPARγ agonists, and the PPARγ path-
way has evident tumor-promoting properties in multiple cancers, 
as recently reviewed in Ref. (82) (Figures 3 and 4). Although the 
receptor-independent effects of PPARγ ligands compound our 
understanding of PPARγ in MM, the PPARγ agonist function of 
certain lipids likely creates a positive feedback loop both accel-
erating BM adipogenesis and directly supporting MM. Recent 
data have also found that the PPARγ agonist pioglitazone (PIO) 
enhances the cytotoxic effect of the histone deacetylase inhibi-
tor (HDACi) and valproic acid (VPA) on MM cells, in vitro and 
in vivo, suggesting that agonizing PPARγ while inhibiting HDACs 
could decrease MM growth (83). Similarly, the PPARγ agonist 
rosiglitazone (RGZ) suppressed the expression of angiogenic fac-
tors in MM cells (HIF-1α and IGF-1) and inhibited proliferation 
and reduced viability of RPMI-8226 cells in a concentration- and 
time-dependent manner (84). RGZ also inhibited the expression 
of pAKT and downregulated the expression levels of phosphoryl-
ated extracellular signal-regulated kinase (pERK) in MM cells 
(84). However, PPARγ has a strong osteoclastogenic effect that 
would likely worsen osteolysis for MM patients, highlighting a 
downside of using RGZ in MM.

In contrast to the above, the PGC-1α is upregulated in myeloma 
cells grown in a high glucose media (modeling myeloma growth 
in hyperglycemic patients). It also contributes to chemotherapy 
(dexamethasone or bortezomib) resistance. These two properties 
suggest that inhibiting, rather than activating, the PPARγ pathway 
in MM cells (and controlling hyperglycemia) may improve the 
efficacy of chemotherapy in MM patients with diabetes. PGC-1α 
also increases vascular endothelial growth factor gene (VEGF) 
and GLUT-4 expression in MM cells suggesting that inhibition 
of PGC-1α in MM cells could decrease angiogenesis and glucose 
uptake, potentially slowing MM cell proliferation (85). Despite 
the growing knowledge in this area, it is still unclear how best to 
modulate the PPARγ pathway to inhibit MM disease progression 
in patients.

Adipocyte Cell Signaling Pathways
In addition to lipid molecules, there are a vast number of proteins 
derived from adipocytes that may influence MM tumor growth, 
as described here.

Adipokine and Growth Factors Affecting MM Cells
Adipocyte-derived cytokines (adipokines) within the local 
microenvironment may also uniquely stimulate the growth 
of MM cells or contribute to other aspects of the disease (86). 
Some of the major humoral factors and adipokines that WAT and 
BMAT secrete are TNFα, monocyte chemoattractant protein-1 
(MCP-1), plasminogen activator inhibitor-1 (PAI-1), resistin, 
leptin, and adiponectin (87, 88) (Figure  3). TNFα is a known 
MM-supportive, osteoclast-activating, and osteoblast-inhibitory 
factor (89). TNFα treatments induce MEK and AKT phospho-
rylation in MM cells and stimulate the production of IL-6. This 

causes a forward feedback loop that drives MM cell growth and 
survival (90). An autocrine TNFα-MCP-1 loop has also been 
identified in MM cells, which was found to stimulate MM cell 
migration (91) (Figure 3).

Plasminogen activator inhibitor-1 causes increased risk of 
thrombosis, as it inhibits fibrinolysis, the physiological process 
that degrades blood clots (Figure 3). PAI-1 has been shown to be 
elevated in MM patients and appears to contribute to the greater 
risk of pulmonary embolism and blood clots in these patients 
(92). Some results suggest that patients with MM have decreased 
fibrinolytic activity mainly due to increased PAI-1 activity (92). 
In sum, these data suggest a link between adipocyte-specific 
cytokines, autocrine signaling, and obesity-linked cancer.

Adipocyte-Derived Hormones
Body weight is controlled by energy intake and expenditure, 
which are tightly regulated by communication between the 
brain and adipose depots through molecules such as adipocyte-
derived hormones. Some hormones signal satiety (leptin) and 
represent high energy stores; others indicate hunger result-
ing from low blood glocose, inducing caloric intake as the 
hypothalamus receives these signals and regulates behavioral 
responses (93). Key adipokines such as adiponectin, leptin, and 
resistin are often present in skewed levels in various disease 
states (94–98). Abnormal adipokine levels and leptin-induced 
changes in gene expression profiles have been observed in MM, 
suggesting that these may be drivers or useful biomarkers of 
the disease (99–103).

Adiponectin
Adiponectin is an anti-inflammatory cytokine primarily pro-
duced by adipocytes but found to be secreted by additional cell 
types, including osteoblasts and BM MSCs (104). It is decreased 
in obesity (105–107) and has been shown to inhibit MM disease 
progression (100, 108) (Figure  4). In fact, low levels of adi-
ponectin are associated with obesity, cardiovascular disease, and 
diabetes and are a risk factor for breast cancer (109). Circulating 
adiponectin was also decreased in patients with MGUS who then 
progressed to overt, symptomatic MM when compared to those 
with MGUS that did not develop MM (110). This study also 
showed that C57Bl6/KaLwRijHsd mice, which are permissive to 
5T murine myeloma cells, have significantly lower adiponectin 
gene expression and adiponectin protein in their BM and lower 
total serum adiponectin compared to the non-permissive, but 
closely related C57BL6/J mice (110). Moreover, pharmacological 
stimulation of adiponectin in tumor-bearing mice led to a decrease 
in tumor burden and increased survival (110). Importantly, in 
humans, low circulating adiponectin and resistin, but not leptin, 
are associated with MM (99, 100, 108). Adiponectin has been 
shown to inhibit proliferation of MM through an increase in cell 
death via activation of the protein kinase A/AMP-activated path-
ways (111) (Figure 4). In sum, these are important findings that 
demonstrate the potential relevance of increasing adiponectin for 
MM and associated bone disease therapy.

Bone marrow adipose tissue, WAT, and BAT-derived adipo-
cytes express relatively similar amounts of the anti-myeloma 
protein adiponectin on the mRNA level (40), but on the protein 
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level, and in  vivo, adiponectin secretion is greater from MAT 
than from WAT (42). Moreover, BMAT specifically increases its 
production of adiponectin in times of starvation and in patients 
with cancer therapy (42). Expression of adipoq, the gene encod-
ing adiponectin, in tibiae and femurs has been found to mirror 
changes in serum adiponectin, which suggests that circulating 
adiponectin levels are directly related to adiponectin production 
from BMAT (42). Therefore, adiponectin appears to be one of the 
major BMAT-derived molecules responsible for signaling from 
BMAT to MM cells.

Leptin
Leptin, a peptide hormone produced and secreted by adipocytes, 
has primarily been characterized for its role in the regulation of 
hunger response and metabolic activity (112). The main signaling 
capability of leptin is through the long form of its receptor, which 
is expressed in peripheral and brain tissues, although its primary 
function has been identified as signaling through the hypothala-
mus (112). Signaling through its receptor, leptin stimulates JAK/
STAT cascades, mainly JAK2/STAT3 and JAK2/STAT5, to signal 
satiety (Figure 3). Congenital leptin deficiency in both mice and 
humans results in early obesity due to severe hyperphagia, but 
can be corrected with leptin replacement therapies (113, 114). 
In patients with obesity, circulating leptin levels are significantly 
higher than in normal age- and sex-matched patients, suggesting 
that a level of leptin resistance exists in these obese patients (115). 
Plasma leptin levels were found to be increased in both newly 
diagnosed male and female MM patients compared to healthy 
controls (100), and leptin levels are decreased in response to 
disease treatment (102). Similar to the effects of lipids mentioned 
above, autophagy, can also be induced by adipocyte-derived hor-
mones (116) (Figure 3). Adipocytes have been found to upregu-
late the expression of autophagic proteins in MM cells via leptin 
and adipsin, leading to chemoresistance, suppression of caspase 
cleavage, and suppression of apoptosis in melphalan-treated MM 
cells in vitro and in vivo (67).

Resistin, Insulin, Insulin-Like Growth Factor 1, and Androgens
Data on resistin do not translate as well from mice to human 
as leptin appears to, and the relationship between resistin and 
adiposity is not consistent between humans and mice (117).

Still, in both species, resistin is elevated in obesity, regulates 
insulin sensitivity, and is positively associated with insulin 
resistance and glucose tolerance (118). In clinical studies, low 
circulating resistin levels are associated with MM risk (108). 
Yet, another study found no significant differences in circulating 
serum resistin levels between newly diagnosed MM patients and 
healthy controls (100). Insulin and IGF-1 are, however, both 
adipose-derived growth factors that stimulate proliferation for 
MM cells (68, 119) (Figure  3). Lastly, adipose tissue is one of 
the major sources of aromatase, an enzyme also expressed in the 
gonads, which synthesizes estrogens from androgen precursors. 
Adipose-derived aromatase and the subsequent synthesis of 
estrogen could contribute to MM growth, as certain MM cells 
have been found to express estrogen receptors and proliferate 
in response to estrogen (78). However, the bone anabolic effects 

of estrogen suggest that this enzyme could combat myeloma-
induced bone disease. In sum, the net effects that adipocyte-
derived hormones potentiate on MM and MM-induced bone 
disease are currently an open area of research.

BMAT and Hypoxia: Tumor Growth and 
Drug Resistance
The relationship between BMAT and hypoxia is likely an impor-
tant, dynamic, and bidirectional relationship that contributes to 
MM development and drug resistance. As oxygen tension ranges 
from 21 (in normoxia) to 12% in peripheral blood and ~1.3 to 3% 
(hypoxia) in the BM, based on the proximity to the vasculature 
and endosteum (120), it is probable that BMAT-MM in  vitro 
experiments, and perhaps all BM cultures, will give more trans-
lational data if they are performed in hypoxic rather normoxic 
conditions (121). This is because hypoxia can drive proliferation 
of stem cells via HIF1 signaling (122), induce drug resistance in 
MM cells, and affect MM cell homing and egress from the BM 
(123–126). Some data demonstrate that hypoxia decreases adipo-
genic differentiation (127), and severe hypoxia (1% O2) inhibits 
adipogenic, chondrogenic, and osteogenic differentiation of 
human BM-MSCs (128). Pachón-Peña et al. found that hypoxia 
increased adipose-derived stem cell (hASC) proliferation and 
migration from lean, but not obese, patients (129), so patient 
type is likely important in how cells respond to hypoxia. hASC 
donor BMI has also been found to dictate adipogenic potential, 
immunophenotypic profile, and response to oxygen tension 
in  vitro (129). Other studies have confirmed that obesity, and 
FFAs specifically, decrease stem cell multipotency (130). Overall, 
there appears to be an interaction coefficient between donor 
BMI/lipids and response to hypoxia for stem cells, suggesting that 
multiparameter experiments should be designed to capture these 
complex, non-linear interactions.

Hypoxia itself is an important factor in tumor drug resist-
ance and is associated with poor prognosis. However, due to the 
challenges associated with measuring oxygen tension within the 
BM, it is not yet clear how, or if, the oxygen gradients in the 
BM specifically dictate the locations of osteolysis (131). Hypoxia 
activates the VEGF (132), a major stimulator of angiogenesis and 
neovascularization, as well as a direct inducer of MM cell growth, 
survival, and migration (133). Neovascularization is common in 
the bones of myeloma patient and in mice in areas infiltrated 
with myeloma cells and provides more exit routes for tumor cell 
intravasation and increased nutrient delivery to sustain tumor 
growth (134). Targeting vasculogenesis and VEGF signaling 
has been found to be successful to decrease tumor burden in 
in vivo models (25). VEGF concentration in the BM significantly 
correlates with BM microvascular density, percentage of tumor 
cells in bone biopsy, and hypercalcemia (135). VEGF is also 
significantly increased in patients after treatment who progress 
versus those with a partial or complete remission (135). Since 
adipose tissue has been shown to express high levels of VEGF, 
it is likely that BMAT is an important source for VEGF family 
members in the BM, supporting aberrant microvessel growth 
and neovascularization and directly fueling MM cell proliferation 
(136, 137). Paracrine signaling of VEGFA from BMAT to MM 
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cells may also be fueled through autocrine signaling, as MM 
cells also demonstrate high VEGFA expression and production 
levels (124).

As MM cells are often resistant to hypoxia-induced cell death, 
antiangiogenic factors do not seem to be highly effective for this 
type of tumor cell, despite the correlations between BM vessels 
and disease progression. Hypoxia protects tumor cells from 
apoptosis through an increase in local VEGF concentrations and 
subsequent increases in tumor cell MAPK/ERK signaling (138). 
In MM cells, hypoxia increases HIF1α and activates the PI3K/
Akt/mammalian target protein of rapamycin (mTOR) pathway 
(139). MM cells in the BM also show high glucose uptake, similar 
to most tumors, as demonstrated by 18F-FDG PET imaging and 
increased glucose transport protein 3 (GLUT3) expression (140). 
As the metabolic shift from oxidative metabolism to glycolysis 
occurs based on both energy and oxygen sources, it is clear 
that the fuel type (lipid versus glucose), expression of glucose 
transporter, and glycolytic enzymes, as well as oxygen tension, 
direct tumor cell metabolism and fuel switching. Therefore, 
lipids and adipose tissue affect MM cell metabolism depend-
ing on oxygen availability. Specifically, decreasing local lipid 
concentrations may simply switch tumor cell metabolism from 
fatty-acid oxidation to glycolysis and not necessarily decrease 
tumor proliferation, or, fuel switching coupled with oxygen 
tension control may prove a viable therapeutic avenue through 
which to tackle MM. As a final consideration here, intermittent 
hypoxia also affects adipose tissue macrophage polarization and 
tumor infiltration, suggesting that immune changes should also 
be considered when investigating metabolic and hypoxic-based 
interventions in MM (141).

Bone Marrow Adipocytes and Skeletal 
Remodeling
The growing evidence associating elevated BMAT with low 
bone density suggests that BM adipocytes may contribute to 
bone loss in MM or that bone loss may contribute to increased 
BM adiposity. Either dynamic could support MM growth and 
increased risk of fracture (Figure  2). In humans (142–145) 
and rodents (146–149), there is often an inverse correlation 
between BMAT and bone quantity. Decreased bone volume or 
mass coinciding with higher BMAT is consistently observed 
across sexes, ages, models, and underlying disease etiologies 
(54). Moreover, many pharmacologic strategies cause opposing 
effects on bone and adipose tissue [glucocorticoids, hormone 
replacement therapies, radiation, and thiazolidinediones (TZD)] 
(150). Higher BMAT has been found to correlate with lower 
trabecular bone mineral density (BMD) in older women, but 
not men, and higher marrow fat is associated with prevalent 
vertebral fracture in men, even after adjustment for BMD (145). 
Lumbar spine BMD has been found to negatively correlate with 
BMAT (151). High BMAT also leads to disrupted hematopoiesis 
and reduced BMD in other studies and may increase the risk 
of bone metastasis, potentially resulting from an increase in 
receptor activator of NFκB-ligand (RANKL) and downregula-
tion of osteoprotegerin, as observed in aging-related marrow 
adipogenesis (44, 152, 153).

In moving beyond correlation into causation, recent evidence 
demonstrates that adipocytes actively inhibit osteogenesis, based 
on lower mineralization, alkaline phosphatase activity, and expres-
sion of osteogenic (Runx2, osteocalcin) mRNA markers, using 
conditioned media experiments with hMSCs (154). Adipocytes 
can also induce osteoblast apoptosis (154). One pathway found to 
govern the effects of adipokines on osteoblasts is the PI3-kinase-
FoxO1 pathway (155). Both decreased osteoblast function and 
induced apoptosis were enhanced by dexamethasone treatment 
of adipocytes, and both processes appear to be driven by the 
lipotoxic effect of two FFAs, stearate and palmitate, which may 
act as PPARγ-ligands (inhibiting osteogenesis), and can induce 
ROS in human cells (154). These findings demonstrate that 
increased BMAT may decrease osteogenesis, thus contributing 
to bone disease in MM patients, although this has not yet been 
explored in myeloma patient MSCs. Overall, the effects of BMAT 
specifically on MM-induced bone disease and osteolysis may be 
substantial and promising as a new therapeutic target.

Bone Marrow Adipocytes and 
Hematopoiesis
As BM adipocytes are interspersed throughout the vascular and 
endosteal niches responsible for guiding the lineage commitment 
of HSCs, they may also affect hematopoiesis both via local and 
systemic effects. Research on human iliac crest-derived marrow 
adipocytes found that these cells have the ability to support 
CD34+ hematopoietic progenitor cells in vitro (39). BMAT is also 
intimately associated with the blood-forming marrow. Primary 
human BMAT adipocytes, purified from the iliac crest, have 
the ability to support differentiation of CD34+ hematopoietic 
progenitor cells in long-term culture in vitro (39). Yet, other data 
suggest that BMAT may be inhibitory toward hematopoiesis; this 
has been observed in mouse experiments where BMAT induced 
hematopoietic cell quiescence and decreased the number of 
progenitor marrow cells (51). Adipocyte-derived factors are also 
known to inhibit B lymphopoiesis (156).

The number of adult BM adipocytes was found to correlate 
inversely with the hematopoietic activity of the marrow and 
decrease marrow transplant cell engraftment after irradiation 
(51). Yet, in another study, mice treated with a TZD called 
“Troglitazone,” which causes massive BMAT expansion, hemat-
opoietic progenitor frequency was not altered, and, in fact, 
preadipocytes were found to support hematopoetic cells in vitro 
(77). Thus, it is unclear if MAT always has a negative influence 
on the hematopoietic niche, or if this is time, location, or disease 
dependent.

iNFLUeNCeS OF MYeLOMA ON BMAT

Bone marrow MSCs can give rise to BM adipocytes and 
osteoblasts, as dictated through expression of proteins in major 
transcriptional regulatory pathways such as PPARγ and Wnt, 
respectively. It is not well understood how MM cells alter BMAT 
or MSC cell fate, but a study from 2007 revealed that MM-MSCs 
retain their capacity to differentiate down adipogenic and osteo-
genic lineages, although quantification of this differentiation 
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(e.g., with oil red O or alizarin red staining) was not performed 
(157). Studies since then have observed a decreased ability for 
MM-MSCs to proliferate and undergo osteogenic differentiation 
(5, 32), suggesting that their adipogenic capacity may be altered. 
It is also possible that MM cells utilize the lipids stored in BMAT 
to fuel their proliferation and migration, as other tumor cells 
(ovarian cells) have been found to do in other adipose depots (the 
omentum) (158). This utilization would decrease the amount of 
lipid stored in these cells, though this is an observation that has yet 
to be examined. Research into the bidirectional communication 
between MM cells and BMAT is needed to determine how MM 
cells affect BMAT as well as the ramifications of these interactions 
on tumor growth and osteolysis.

LiNKiNG BMAT AND SYSTeMiC 
iNFLAMMATiON

Bone marrow adipose tissue is linked to systemic inflammation 
through mechanisms that include the production of proinflam-
matory cytokines and lipids able to undergo oxidation. Obesity 
and aging both correlate with increased systemic inflammation, 
increased risk of MM, and increased BMAT. This leads to a 
few potential hypotheses: (1) that BMAT drives MM through 
local and/or systemic effects (e.g., on inflammation), or (2) that 
elevated BMAT and MM correlate because both are driven by a 
common or linked underlying mechanism, e.g., obesity, aging, or 
decreased immune function. Currently, either hypothesis could 
prove true. While WAT imparts systemic/endocrine influences, 
BMAT may produce systemic as well as local, paracrine, and 
cell–cell contact-based effects on tumors. The close proximity 
of BMAT and MM cells suggests potential contact-mediated 
bidirectional signaling between these cells, which is absent from 
WAT–MM cell interactions. However, WAT appears to be com-
prised of cells that derive from the marrow (up to 35%) (159); the 
signaling parallels and lineage tracing links between WAT and 
BMAT confound determining the specific contributions of each 
toward MM progression or myelomagenesis. Although more 
research examining the specific contributions of each depot are 
needed, much evidence suggests that immune system alterations 
resulting from elevated BMAT or WAT could contribute to MM 
progression (44, 152, 160).

In breast cancer, obesity-related host factors, such as compo nents 
of the secretome (e.g., insulin, IGF-1, leptin, adiponectin, steroid 
hormones, cytokines, vascular regulators, and inflammation-
related molecules), explain the causative link between increased 
risk of breast cancer in postmenopausal women and poor prog-
nosis in pre- and postmenopausal women (161). Many of these 
same factors are also systemic signals that could explain the link 
between obesity and increased MM risk. However, proinflamma-
tory cytokines that are derived from adipose tissue, such as IL-1 
(162), can be difficult to identify as anti-myeloma or myeloma-
supportive, because of the complex roles of the immune system 
in cancer. In general, immune cells attack and can eliminate 
myeloma cells. But systemic inflammation can also contribute 
to tumor growth if regulatory T-cells or myeloid  suppressor cells 
(which are cells that suppress other immune cells) are increased. 
Other adipocyte-derived factors are proinflammatory and support 

natural killer cells, such as IL-15 (163). As genetically modified, 
ex vivo-expanded natural killer cells are being used as a treatment 
for MM and many cancers, IL-15 and adipocyte-induced support 
of NK cells may in fact have anti-myeloma consequences (164). 
Yet, IL-15, along with other angiogenic factors (VEGF, IL-6, 
and HGF), is also significantly increased in MM patient blood 
serum reflecting a correlation between angiogenesis and MM 
(164). From this perspective, IL-15 and these other adipocyte-
derived factors appear to support tumor growth through both 
direct effects and also increased tumor vascularization. MSC 
adipogenic differentiation has also been found to be modulated 
by natural killer cells (165), suggesting that a forward feedback 
loop between inflammation and adipogenesis may be at work. 
These data suggest that adipocytes not only are affected by, but 
also affect, the immune system. For a review on systemic and 
BMAT-induced inflammation and its contributions to tumor 
growth and survival, dysregulated bone remodeling, and acti-
vation of inflammatory pathways in tumor cells (e.g., CCL2/
CCR2- and COX-2-dependent pathways), refer to the review by 
Hardaway et al. (166).

Lipids are essential components of cell membranes and rep-
resent an energy-rich fuel source. However, lipids are frequently 
targeted by reactive oxygen species (ROS), such as free radicals. 
This leads to the oxidation of lipids in a chain reaction known as 
lipid peroxidation, which has been associated with a wide range 
of diseases, including cancer, diabetes, and neurological disorders 
(167). Many of the products of free radical chain oxidation are 
unstable, but stable isoprostanes have become the gold standard 
measurable biomarker for oxidative stress (167). One well-studied 
lipid electrophile, 4-NHE, is generated from lipid peroxidation 
and mediates a variety of biological processes (e.g., DNA damage, 
mutagenesis, inflammatory response, cell growth, and apoptosis) 
through a range of pathways (ER stress, stress-responsive MAP 
kinase signaling, NF-kB signaling, and DNA damage response 
signaling) (167). Malondialdehyde (MDA) is another product of 
lipid peroxidation; it is highly mutagenic (168). MDA and 4-NHE 
are two molecules responsible for lipid-initiated genetic disrup-
tion that could support MM development through numerous 
pathways, such as the oxidative stress-driven activation of the 
PI3K/AKT pathway and inactivation of the tumor suppressor 
gene PTEN (169). Oxidative stress can also lead to increased 
PPAR, Cox-2, MAPK, and PKC signaling; any of these pathways 
could support myelomagenesis or disease progression (170). 
As antioxidants can abrogate oxidative-stress-induced apoptosis 
of osteoblasts, they may represent a potential therapeutic avenue 
in MM (154).

TReATMeNTS TARGeTiNG BMAT

There is immense potential in targeting BMAT or BMAT-
derived factors, to combat myeloma initiation, progression, 
relapse, chemoresistance, and osteolysis. Based on preclinical 
data regarding the roles of adiponectin in MM, recombinant or 
biologically isolated adiponectin treatment for MM patients with 
low adiponectin levels may hold great potential as a therapeutic 
treatment. Similarly, decreasing BMAT-derived factors that are 
MM-supportive using inhibitors or antibodies may be a potential 
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future BMAT-targeted therapy. Another way to target BMAT may 
be to target those signaling pathways that push MSCs down the 
adipogenic rather than osteogenic lineage, thus flipping the com-
mitment lineage switch. One such pathway is the Wnt signaling 
pathway, which supports osteogenic differentiation and inhibits 
adipogenic differentiation. As we know that sclerostin, a Wnt 
inhibitor, is elevated in the BM of MM patients, it is possible that 
antisclerostin antibodies would not only increase bone volumes 
but also decrease BMAT in MM patient marrow, creating a less 
hospitable microenvironment for MM cells to colonize (171, 
172). Other potential target lineage switches that induce osteo-
genesis and limit adipogenesis are parathyroid hormone receptor 
(PTH), TAZ/YAP (173), and numerous zinc finger proteins (174).

It is important to consider the link between BMAT and bone 
when analyzing adipose-directed therapies, because treatments 
that affect bone could affect BMAT (and vice  versa). As there 
appears to be a reciprocal relationship between BMAT and 
bone formation in both healthy and diseased conditions (175, 
176), increasing bone mass may be one novel way to decrease 
BMAT and also strengthen bones that are weakened by MM. It 
is becoming clear that the skeleton has a complex, non-linear, 
and genotype-dependent relationship with energy utilization and 
MAT (151, 177). Exercise has been shown to significantly sup-
press BMAT volume and induce bone formation in certain mouse 
models, suggesting that a healthy diet and increased exercise or 
strength training program could create a two-pronged attack to 
strengthen bones and decrease BMAT in MGUS or MM patients 
(178). The antidiabetic drug metformin can also decrease BMAT 
in mice that are fed with a high fat diet (Michaela R. Reagan 
and CJ Rosen, unpublished data). It can also modestly improve 
bone volume (179) as well as directly affect metabolism of tumor 
cells (180). These data suggest that metformin may be another 
potential multidimensional therapeutic. The topic of metformin 
effects on cancer has been reviewed recently (181).

Altering lipid levels, ratios, or content systemically or 
in the BM may also hold great promise as an anti-myeloma 
treatment. For instance, Abdi et al. demonstrated that omega-3 
fatty acids [n-3 polyunsaturated eicosapentaenoic acid (EPA) 
and docosahexaenoic acid (DHA)] induced apoptosis and 
increased sensitivity to bortezomib in MM cells preclinically, 
without affecting normal human peripheral mononuclear 
cells viability (182). These lipids modulated multiple signaling 
pathways including NFκB, Notch, Hedgehog, oxidative stress, 
and Wnt. They also induced apoptosis through mitochondrial 
perturbation and caspase-3 activation (182). Combined with 
the data above on oxidative stress, these data suggest that sup-
plements such as vitamins (antioxidants) and fish oil, and/or 
diets rich in fish, fruits, and vegetables, should be explored as 
preventative measures in the development of MM. However, 
carefully designed trials are necessary to best optimize treatment 
regimes, as some antioxidants, such as vitamin C and flavonoids 
in vegetables, fruits, and green tea, can neutralize and should not 

be used with bortezomib, a commonly prescribed anti-myeloma 
proteasome inhibitor (183).

CONCLUSiON

As reviewed herein, BMAT appears to affect MM through an 
array of different mechanisms. We have described what is cur-
rently understood about the BM adipocyte and BMAT. We next 
highlighted the ways in which BMAT may support MM, for 
example, through bioactive lipids (as a fuel source, signaling 
molecule, and a substrate for lipid peroxidation), and myeloma-
supportive adipokines (e.g., IL-6, TNFα, MCP-1, PAI-1, IL-6, 
resistin, and leptin). We also provided an overview of adiponectin, 
a protein that is decreased during obesity and has anti-myeloma 
properties making it an attractive potential therapeutic in MM. 
The complex relationship between hypoxia, BMAT, angiogenesis, 
and myeloma in the BM was discussed. Influence of BMAT on 
bone health and osteogenesis was delineated, and our current 
understandings of potential ways in which MM cells may affect 
BMAT were outlined. The review investigates the relationship 
between BMAT and systemic inflammation in relation to MM. 
Lastly, we suggested possible therapeutic avenues through which 
BMAT could be targeted, similarly to how osteoblasts and 
osteoclasts, and factors derived from these cells, have been suc-
cessfully targeted in MM. Targeting lipid metabolism of cancer 
cells and adipocytes in combination with standard antimyeloma 
therapies will likely reveal novel therapeutic avenues through 
which to attack hematological malignancies. In sum, we are 
optimistic about the development of new combination therapies 
and preventative methods that take into account the roles of the 
BM adipocyte in MM and other bone-metastatic cancers. The 
path toward improved therapies will be built on basic scientific 
research of BMAT roles in cancer.
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