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Objective: To evaluate the performance of a T2-weighted image (T2WI)-based radiomics

signature for differentiating between seminomas and nonseminomas.

Materials andMethods: In this retrospective study, 39 patients with testicular germ-cell

tumors (TGCTs) confirmed by radical orchiectomy were enrolled, including 19 cases

of seminomas and 20 cases of nonseminomas. All patients underwent 3T magnetic

resonance imaging (MRI) before radical orchiectomy. Eight hundred fifty-one radiomics

features were extracted from the T2WI of each patient. Intra- and interclass correlation

coefficients were used to select the features with excellent stability and repeatability.

Then, we used the minimum-redundancy maximum-relevance (mRMR) and the least

absolute shrinkage and selection operator (LASSO) algorithms for feature selection and

radiomics signature development. Receiver operating characteristic curve analysis was

used to evaluate the diagnostic performance of the radiomics signature.

Results: Five features were selected to build the radiomics signature. The radiomics

signature was significantly different between the seminomas and nonseminomas

(p < 0.01). The area under the curve (AUC), sensitivity, and specificity of the

radiomics signature for discriminating between seminomas and nonseminomas were

0.979 (95% CI: 0.873–1.000), 90.00 (95% CI: 68.3–98.8), and 100.00 (95% CI:

82.4–100.0), respectively.

Conclusion: The T2WI-based radiomics signature has the potential to non-invasively

discriminate between seminomas and nonseminomas.

Keywords: magnetic resonance imaging, T2-weighted imaging, testicular neoplasms, testicular germ cell tumors,

radiomics

INTRODUCTION

Testicular cancer represents 1% of neoplasms and 5% of urological tumors in males. However,
testicular cancer is the most common malignancy among men aged between 14 and 44 years (1, 2).
Statistics show that there were 71,105 new cases and 9,507 deaths of testicular cancer worldwide
in 2018 (3). Approximately 90–95% of testicular cancers are testicular germ cell tumors (TGCTs),
which are split into two broad categories: seminomas and nonseminomas (4).

https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org/journals/oncology#editorial-board
https://www.frontiersin.org/journals/oncology#editorial-board
https://www.frontiersin.org/journals/oncology#editorial-board
https://www.frontiersin.org/journals/oncology#editorial-board
https://doi.org/10.3389/fonc.2019.01330
http://crossmark.crossref.org/dialog/?doi=10.3389/fonc.2019.01330&domain=pdf&date_stamp=2019-11-28
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org
https://www.frontiersin.org/journals/oncology#articles
https://creativecommons.org/licenses/by/4.0/
mailto:minxiangde0129@126.com
mailto:wang6@tjh.tjmu.edu.cn
https://doi.org/10.3389/fonc.2019.01330
https://www.frontiersin.org/articles/10.3389/fonc.2019.01330/full
http://loop.frontiersin.org/people/768371/overview
http://loop.frontiersin.org/people/768382/overview
http://loop.frontiersin.org/people/768383/overview
http://loop.frontiersin.org/people/768390/overview
http://loop.frontiersin.org/people/768388/overview
http://loop.frontiersin.org/people/768380/overview
http://loop.frontiersin.org/people/768379/overview


Zhang et al. Radiomics Signature for Characterizating TGCTs

Radical orchiectomy is the main treatment for testicular
tumors and can be supplemented by radiotherapy and
chemotherapy (4, 5). In view of the different sensitivities
of seminomas and nonseminomas to radiotherapy and
chemotherapy, characterizing the histologic type of testicular
tumors is of great importance (6–8). For patients undergoing
orchidectomy, the differentiation of seminomas from
nonseminomas would not affect patient management. However,
the information gained preoperatively might help physicians
to explain the patient’s condition and tumor prognosis before
surgery, which would help decrease the patient’s anxiety.
However, for patients who are unwilling to undergo orchiectomy,
the seminomas, and nonseminomas must be identified by
other non-invasive means, such as imaging examinations,
because the guidelines do not recommend that patients with
suspected testicular tumors undergo punctures in order to avoid
tumor spread and metastasis (5). Therefore, several studies
have evaluated the value of sonography or magnetic resonance
imaging (MRI) for the non-invasive differentiation of seminomas
from nonseminomas (4, 9–11).

Currently, ultrasonography (US) is the initial imaging method
for confirming the existence of a testicular mass (5, 12). MRI
has emerged as a valuable modality that can be an alternative
diagnostic tool, especially in cases of non-diagnostic or equivocal
sonographic findings (13). Compared to US, MRI can provide
more abundant anatomical and functional information and is
less dependent on operator technique. Some MRI features of
TGCTs have been found to closely correlate with histopathologic
characteristics (4, 9). T2-weighted imaging (T2WI) is an essential
component of MRI in oncology. Some previous studies reported
that seminomas and nonseminomas have different features on
T2WI (8, 9). Most of the previous studies only used qualitative
features or limited quantitative features, which may not fully
explore the potential value of MRI.

Radiomics uses advanced image processing techniques to
extract a large number of quantitative features from imaging data
(14–16). It has been applied to various diseases such as lung
and head-and-neck cancer (17), gastric cancer (18), colorectal
cancer (19), liver fibrosis (20), and prostate cancer (21), etc., and
remarkably encouraging results have been reported. However,
to date, no study has applied radiomics to the evaluation of
testicular diseases.

The purpose of our study was to investigate whether a
T2WI-based radiomics signature could differentiate seminomas
from nonseminomas.

MATERIALS AND METHODS

Patient Information
Our institutional review board approved this retrospective study.
From February 2014 to March 2019, patients were included
according to the following inclusion criteria (Figure 1): (a)
had scrotal lesions on sonography or physical examination, (b)
underwent a preoperative 3T MRI examination, (c) underwent
radical orchiectomy, and (d) had pathologically confirmed
TGCTs. Patients were excluded if apparent susceptibility or
movement artifacts existed on the MR images. A total of 39

men (age range, 18–61 years; median age, 29 years) with 39
lesions were included. Nineteen tumors were pathologically
confirmed as seminomas, and 20 tumors were pathologically
confirmed as nonseminomas. The patients with nonseminomas
had embryonal carcinomas (n = 8), teratomas (n = 4), yolk sac
tumor (n = 1), and mixed germ cell tumors (n = 7) [embryonal
carcinomas and teratomas (n = 3), seminoma and embryonal
carcinoma (n = 1), teratoma, yolk sac tumor and embryonal
carcinoma (n = 1), seminoma, teratoma and yolk sac tumor
(n = 1), and seminoma, embryonal carcinoma, teratoma, and
yolk sac tumor (n = 1)]. The classification of the tumor types in
the current study was based on the NCCN guideline (22).

MRI Protocol
All the MR images were acquired with a 3T MR scanner
(MAGNETOM Skyra, Siemens Healthcare, Erlangen, Germany)
and an 18-element body matrix coil in combination with
a 32-channel spine coil. The patients were positioned in
a feet-first supine position. Transverse, sagittal and coronal
T2-weighted turbo spin-echo sequences with the following
parameters were used: repetition time/echo time (TR/TE) range
6500-6870/104ms, slice thickness of 3∼5mm, interslice gap of
0∼0.5mm, field of view (FOV) of 180 × 180 mm2, and a matrix
of 384× 320. Transverse T1-weighted turbo spin-echo sequences
were acquired with the following parameters: TR of 750ms, TE
of 13ms, slice thickness of 3∼5mm, interslice gap of 0∼0.5mm,
FOV of 300×300 mm2, and matrix of 320 × 240. Diffusion-
weighted imaging (DWI) and dynamic contrast enhanced (DCE)
sequences were performed for some patients, but these images
were not included in the analysis due to the limited number
of scans.

MRI Segmentation and Radiomics Feature
Extraction
ITK-SNAP software (version 3.4.0; www.itksnap.org) was used
for manual segmentation. Preoperative transverse T2WI was
obtained for image analysis. A three-dimensional volume of
interest (VOI) covering the tumor was delineated by stacking
regions of interest slice-by-slice on the transverse T2WI. Manual
segmentation of the tumors on the images was initially performed
by a radiologist (Reader 1). Twenty patients were randomly
selected from the study cohort. One month later, Reader
1 performed a second segmentation of the 20 patients to
assess the intraobserver reproducibility. Another radiologist
(Reader 2) performed a manual segmentation of these patients
independently to assess the interobserver reproducibility. Both
readers were blinded to the histologic results.

The radiomics features were extracted using the PyRadiomics
library (https://github.com/Radiomics/pyradiomics.git, version
2.1.2) in Python (version 3.7.0). PyRadiomics is a flexible open-
source platform capable of extracting a large panel of engineered
features from medical images (23). For the feature extraction
method, please reference the PyRadiomics documentation
(https://pyradiomics.readthedocs.io/en/latest/). All MRI data
were subjected to images normalization and resampled to the
same resolution (0.46875 × 0.46875 × 3mm) before feature
extraction. A total of 851 radiomics features were extracted,
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FIGURE 1 | Flow chart of patients’ inclusion and exclusion.

including the following four groups: 14 shape features, 18 first-
order intensity statistics features, 75 texture features [Gray Level
Co-occurrence Matrix (24), Gray Level Size Zone Matrix (16),
Gray Level Run Length Matrix (16), Neighboring Gray Tone
Difference Matrix (5), and Gray Level Dependence Matrix (14)],
and 744 wavelet features.

Statistical Analysis
As high-dimensional features were extracted in the current study,
we performed a feature dimension reduction process to select the
most relevant features for the classification of testicular lesions
to construct a radiomics signature. Features selection included
the following steps. First, we used the intra- and interclass
correlation coefficient (ICC) to assess the effects of the manual
segmentation variations on the value of the features. The ICC
was calculated for each radiomics feature. Features with good
agreement (ICC ≥ 0.8) were regarded as robust features and
selected for the following analyses. Second, we compared all
the features between seminomas and nonseminomas using the
Mann-Whitney U test for non-normally distributed features
or the independent t-test for normally distributed features.

Features with p < 0.05 were considered significant variables
and selected. To control the false-positive rate in multiple
comparisons, the false discovery rate-adjusted p-value was used
in the Mann-Whitney U test and the independent t-test (24).
Third, spearman’s correlation coefficient was used to compute
the relevance and redundancy of the features. Redundant
features indicated by a Spearman’s correlation coefficient ≥ 0.8
were eliminated. Fourth, we applied the maximum relevance
minimum redundancy (mRMR) algorithm to assess the relevance
and redundancy of the remaining features (25). The mRMR
algorithm was used to select the most relevant features for
the classification of testicular lesions, avoiding redundancy
between features. By using the mRMR method, the features were
ranked according to their relevance-redundancy scores (mRMR
scores). The mRMR score of a feature is defined as the mutual
information between the status of the lesions and this feature
minus the average mutual information of previously selected
features and this feature. The top 10 features with high-relevance
and low-redundancy were selected for the following analyses.
Fifth, the 10 features selected by the above steps were applied to
least absolute shrinkage and selection operator (LASSO) logistic
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regression model (26). The LASSO logistic regression model
with 5-fold cross-validation was adopted for further features
selection and radiomics signature construction. LASSO is a
regression analysis method that performs feature selection and
regularization to improve the mode prediction accuracy and
interpretability. Some candidate features coefficients were shrunk
to zero and the remaining variables with non-zero coefficients
were selected by LASSO. Then, the selected features were linearly
combined to construct a radiomics signature.

The differences in the radiomics signature between
seminomas and nonseminomas were compared using the
Mann-Whitney U test. The diagnostic performance of the

radiomics signature was evaluated using the receiver operating
characteristic (ROC) curve. The area under the curve (AUC),
sensitivity, and specificity were calculated. In addition, the
diagnostic performance of the top 10 features selected from
mRMR was also evaluated using ROC curve analysis. An
overview of the radiomics signature development process is
presented in Figure 2.

The statistical analyses were performed using R software
(version 3.3.4; https://www.r-project.org). The following R
packages were used: the “corrplot” package was used to calculate
Spearman’s correlation coefficient; the “mRMRe” package was
used to implement the mRMR algorithm; the “glmnet” was used

FIGURE 2 | The framework for the radiomics workflow. (a) All patients were scanned with preoperative MRI. (b) Tumors were delineated by stacking regions of

interest slice-by-slice on the transverse T2WI. (c) Radiomics features were extracted from the T2WI in a high-throughput manner. (d) Data analysis for the features

selection and a radiomics signature construction.

FIGURE 3 | Correlation matrix heatmaps of the features before (A) and after (B) correlation filtering. Before correlation filtering, a mass of redundant features with high

correlation coefficients existed.
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to perform the LASSO logistic regressionmodel, and the “pROC”
package was used to construct the ROC curve.

RESULTS

In the current study, 851 radiomics features were extracted from
the T2WI of each patient. Seven hundred eighty features with an
ICC≥ 0.8 were further selected. Two hundred twenty-seven non-
significant features were first eliminated using univariate analysis.
After removing the redundant features using a Spearman’s
correlation coefficient threshold value of 0.8, a total of 67
features with low correlation remained. The correlation matrix
heatmaps of the features before and after correlation filtering
are shown in Figure 3. The features were ranked according to
their mRMR scores. The top 10 features were selected using

TABLE 1 | The top 10 features selected by mRMR.

Features mRMR scores Groups

wavelet.LLL_glcm_MaximumProbability 0.31769474 Wavelet feature

wavelet.LLH_glcm_Idmn 0.08877716 Wavelet feature

wavelet.LHH_gldm_LargeDependenceLow

GrayLevelEmphasis

0.07167124 Wavelet feature

original_shape_Sphericity 0.07024193 Shape feature

wavelet.HHH_gldm_DependenceNon-

UniformityNormalized

0.07355068 Wavelet feature

wavelet.LHL_glcm_Idn 0.04066711 Wavelet feature

wavelet.LLH_gldm_DependenceEntropy 0.04644461 Wavelet feature

wavelet.LLH_glcm_MCC 0.02630265 Wavelet feature

wavelet.LHL_glrlm_LongRunHighGray

LevelEmphasis

0.02301324 Wavelet feature

wavelet.LHL_firstorder_Skewness 0.02354773 Wavelet feature

the mRMR algorithm (Table 1). Through the 5-fold cross-
validation of the LASSO algorithm, five features with non-zero
coefficients were included to construct the radiomics signature.
The feature selection process using the LASSO algorithm is
shown in Figure 4. The calculation formula to construct the
radiomics signature is shown in Table 2. The contribution of the
five features to the radiomics signature is shown in Figure 5A.
The radiomics signature of each patient is shown in Figure 5B.

The radiomics signature was significantly different between
seminomas and nonseminomas (p < 0.01). The ROC curves
of the radiomics signature and the top 10 features selected
from mRMR for discriminating between seminomas and
nonseminomas are shown in Figure 6 and Table 3. The AUC,
sensitivity, and specificity of the radiomics signature were 0.979
(95% CI: 0.873–1.000), 90.00 (95% CI: 68.3–98.8), and 100.00
(95% CI: 82.4–100.0), respectively. The AUC of the radiomics
signature was relativity higher than the AUCs of the top 10
features selected from mRMR.

DISCUSSION

In this study, an MRI-based radiomics signature was established
to preoperatively discriminate between seminomas and

TABLE 2 | Calculation formula for the radiomics signature.

Variables Coefficients

Intercept −0.04258474

wavelet.LLL_glcm_MaximumProbability −1.05440198

wavelet.LLH_glcm_Idmn −0.27559477

wavelet.LHH_gldm_LargeDependenceLowGrayLevelEmphasis −0.29108858

original_shape_Sphericity 0.10820225

wavelet.HHH_gldm_DependenceNon-UniformityNormalized 0.05352220

FIGURE 4 | Features selection using the LASSO algorithm. (A) Selection of the tuning parameter (Lambda) in the LASSO model using 5-fold cross-validation.

Binomial deviances from the LASSO regression cross-validation model were plotted as a function of log(Lambda). The dotted vertical line at the right was drawn at the

optimal value based on the minimum criteria and the 1-standard error rule (the 1-SE criteria). An optimal Lambda value of 0.102 with log(Lambda) = −2.280 and 5

non-zero coefficients were selected. (B) LASSO coefficient profiles of the 10 texture features. A vertical line was drawn at the optimal value selected using the 5-fold

cross-validation process in (A). The 5 features with non-zero coefficients were included to construct the radiomics signature.
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FIGURE 5 | (A) The contribution of the features to the radiomics signature. The histogram shows the contribution of the five features with non-zero coefficients to the

radiomics signature. The features that contributed to the radiomics signature are plotted on the y-axis, and their coefficients in the LASSO Cox analysis are plotted on

the x-axis. (B) Bar charts of the radiomics signature for each patient. The red bars indicate the radiomics signature of seminomas, while the light green bars indicate

the radiomics signature of non-seminomas.

FIGURE 6 | ROC analysis of the radiomics signature and 10 features [(A) the top 5; (B) the bottom five)] selected from mRMR. The AUC of the radiomics signature

was 0.979 (95% CI: 0.873–1.000).

nonseminomas. Our results showed that the radiomics
signature could provide an excellent diagnostic performance
(AUC = 0.979) by employing a large number of quantitative
imaging features (851 features were extracted).

Non-invasively discriminating between seminomas and
nonseminomas is of great significance. MRI has been proposed
as a valuable supplemental imaging technique for characterizing
testicular tumors (4, 9, 11). Tsili AC et al. enrolled 21 patients
(10 seminomas and 11 nonseminomas) to investigate the value
of MRI for differentiating seminomas from nonseminomas (9).
Their results showed that the MRI findings led to a correct
histologic diagnosis in 19 (91%) of 21 cases and the researchers

concluded that tumor heterogeneity on MRI is indicative of
nonseminomas. Another study including 15 seminomas and
11 nonseminomas showed that the mean apparent diffusion
coefficient (ADC) values of seminomas were significantly lower
than those of nonseminomas, while no significant differences
were observed in DCE between seminomas and nonseminomas
(4). Min et al. included 14 seminomas and 10 nonseminomas
to assess the value of whole-tumor ADC histogram parameters
for discriminating between seminomas and nonseminomas (11).
Their results showed that the 10th percentile ADC value yielded
the highest diagnostic performance. Although some positive
results for distinguishing seminomas from nonseminomas have
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TABLE 3 | ROC analysis of the features selected from mRMR.

Features AUC (95% CI) Sensitivity (95% CI) Specificity (95% CI)

Radiomics signature 0.979 (0.873–1.000) 90.00 (68.3–98.8) 100.00 (82.4–100.0)

wavelet.LLL_glcm_MaximumProbability 0.903 (0.764–0.974) 90.00 (68.3–98.8) 84.21 (60.4–96.6)

wavelet.LLH_glcm_Idmn 0.792 (0.632–0.905) 60.00 (36.1–80.9) 94.74 (74.0–99.9)

wavelet.LHH_gldm_LargeDependenceLowGrayLevelEmphasis 0.839 (0.687–0.937) 70.00 (45.7–88.1) 94.74 (74.0–99.9)

original_shape_Sphericity 0.718 (0.552–0.850) 85.00 (62.1–96.8) 57.89 (33.5–79.7)

wavelet.HHH_gldm_DependenceNonUniformityNormalized 0.703 (0.535–0.838) 65.00 (40.8–84.6) 84.21 (60.4–96.6)

wavelet.LHL_glcm_Idn 0.758 (0.594–0.880) 95.00 (75.1–99.9) 52.63 (28.9–75.6)

wavelet.LLH_gldm_DependenceEntropy 0.711 (0.543–0.844) 55.00 (31.5–76.9) 84.21 (60.4–96.6)

wavelet.LLH_glcm_MCC 0.679 (0.510–0.819) 55.00 (31.5–76.9) 84.21 (60.4–96.6)

wavelet.LHL_glrlm_LongRunHighGrayLevelEmphasis 0.737 (0.571–0.865) 75.00 (50.9–91.3) 73.68 (48.8–90.9)

wavelet.LHL_firstorder_Skewness 0.647 (0.478–0.793) 100.00 (83.2–100.0) 36.84 (16.3–61.6)

been reported, most previous studies used only some qualitative
features or limited quantitative features, which may not fully
explore the potential information of MRI, and no established
prediction model has been built. In contrast to the above studies,
in our study, a large number of quantitative radiomics features
were extracted from the images and the most useful features
were selected to construct a radiomics signature. Moreover, the
sample size included in our study was relatively larger than that
in previous studies.

Medical imaging provides valuable information for the
diagnosis and evaluation of diseases. The conventional methods
only use some qualitative features observable by the naked
eyes or basic quantitative features, which cannot fully mine
potential information from the images. Radiomics may help find
potentially valuable information through the high-throughput
extraction of quantitative features (14, 15). The newly proposed
radiomics method has been successfully applied to various
diseases (17, 18, 27–30). In a recent study, Lewin et al.
applied radiomics to predict the pathology of postchemotherapy
retroperitoneal nodal masses in germ cell tumors (27). Their
results showed that the discriminative accuracy, sensitivity, and
specificity of radiomics to identify GCT/teratoma vs. fibrosis
was 72, 56.2, and 81.9%, respectively. When combined with
clinical variables, the accuracy improved to 88%. In another
study, Dong et al. suggested that a CT-based radiomic nomogram
had excellent predictive ability for occult peritoneal metastasis
in advanced gastric cancer patients (18). In our study, we
used radiomics analysis to extract 851 features from T2WI
and constructed a radiomics signature that includes features
with excellent stability and reproducibility. Our results showed
that the radiomics signature provides excellent efficiency for
discriminating seminomas from nonseminomas. The AUC,
sensitivity, and specificity of the radiomics signature were 0.979,
90.00, and 100.00, respectively. The AUC of the radiomics
signature was 7.6–33.2% higher than the AUCs of the top 10
features selected from mRMR.

In this study, we only included T2WI for analysis, because
T2WI is an essential component of testicular MRI with high
contrast and spatial resolution. Previous studies have reported
that seminomas and nonseminomas have different characteristics

on T2WI (9). The presence of a relatively homogeneous testicular
mass with low signal intensity on T2WI is considered indicative
of seminomas. On the other hand, tumor heterogeneity is the
most valuable finding in the characterization of nonseminomas.
Although some studies have demonstrated the value of DWI
and DCE in the characterization of testicular tumors (4, 11),
these sequences have their limitations. The geometric distortion,
susceptibility, and signal intensity dropout of DWI on tissue-air
boundaries, such as the prostate, scrotum, and thyroid gland,
are remarkable. Moreover, the DWI sequence usually has a low
spatial resolution. These factors will limit the application and
efficiency of DWI in characterizing testicular tumors. In recent
years, some new techniques have been applied to DWI sequence
to reduce geometric distortion and susceptibility artifacts, as well
as to improve image resolution. However, few of these techniques
had been used in testes; we will explore the value of new DWI
techniques in testes in future studies (31–33). DCE-MRI usually
requires the injection of a gadolinium-based contrast agent,
which may increase the patient’s risk for nephrogenic systemic
fibrosis. Considering the above reasons and the limited sample
size, we did not include DWI and DCE in the analysis.

There are some limitations in this study. First, our sample
size was small. Although the number of patients included
was higher than that of most previous studies, the sample
size was still relatively small due to the low morbidity of
testicular tumors. Further large-scale and multicenter studies are
therefore warranted to obtain high-level evidence for clinical
application. Second, rather than an independent validation
cohort, internal validation was used in the current study, because
there is insufficient data available to create an independent
training cohort and a validation cohort. In this case, a fair
way to accurately estimate the diagnostic performance of the
radiomics signature is to use cross-validation (34). Third, the
MRI sequences employed similar parameters but slightly varied
slice numbers and thicknesses to cover some large lesions. To
this end, we resampled the images before feature extraction to
decrease the variability of the radiomics features extracted from
the MRI sequences (35).

In conclusion, in the present study, we established a
radiomics signature based on the features extracted from T2WI
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to characterize TGCTs. The radiomics signature provides a
non-invasive and quantitative method to differentiate between
seminomas from nonseminomas. Further studies are warranted
to validate our initial results.
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