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Objective: This study aimed to prove the concept of a new optical video-based system

to measure Parkinson’s disease (PD) remotely using an accessible standard webcam.

Methods: We consecutively enrolled a cohort of 42 patients with PD and healthy

subjects (HSs). The participants were recorded performing MDS-UPDRS III bradykinesia

upper limb tasks with a computer webcam. The video frames were processed using the

artificial intelligence algorithms tracking themovements of the hands. The video extracted

features were correlated with clinical rating using the Movement Disorder Society revision

of the Unified Parkinson’s Disease Rating Scale and inertial measurement units (IMUs).

The developed classifiers were validated on an independent dataset.

Results: We found significant differences in the motor performance of the patients with

PD andHSs in all the bradykinesia upper limbmotor tasks. The best performing classifiers

were unilateral finger tapping and handmovement speed. Themodel correlated both with

the IMUs for quantitative assessment of motor function and the clinical scales, hence

demonstrating concurrent validity with the existing methods.

Conclusions: We present here the proof-of-concept of a novel webcam-based

technology to remotely detect the parkinsonian features using artificial intelligence. This

method has preliminarily achieved a very high diagnostic accuracy and could be easily

expanded to other disease manifestations to support PD management.

Keywords: Parkinson’s disease, kinematics, webcam, telemedicine, artificial intelligence and bio-inspired

algorithms

INTRODUCTION

Bradykinesia, defined as the slowness of movement and decrement in amplitude or speed (or
progressive hesitations/halts) in continuous movement, is the most relevant clinical motor feature
of Parkinson’s disease (PD) (1). For its evaluation, the clinicians analyze the multiple aspects of
movement, such as amplitude, speed, fatigue, and arrests when executing a motor task. Typically,
a clinician integrates all these features. The best example is its rating into a single severity score
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of different bradykinesia tasks part of the Movement Disorders
Society-sponsored revision of the Unified Parkinson’s Disease
Rating Scale motor subscale (MDS-UPDRS part III). This scale
is the most used standard evaluation of motor function in PD
(2) with a high test–retest reliability and inter-and intra-rater
reliability (3, 4). However, it is an ordinal scale with only five
discrete categories, and often its accuracy can be compromised
due to the subjectivity of the assessment and the difficulty to
detect the subtle changes in the consecutive time points.

To accurately quantify and analyze the motor performance
of the patients with PD, the technology-based tools, such as the
wearable sensors composed of accelerometers and gyroscopes
can be used (5). These objectivemeasurement tools can overcome
the subjective and non-linear measures resulting from the clinical
ratings (6). Additionally, they can be used to analyze the motor
status of the patient in the home setting (7).

The optical motion capture systems based on video processing
can also be used to study motor performance (8, 9). Specifically,
some video-based systems are developed for the automated
assessment of the upper limb movement in the patients with
PD (10). These systems included cameras combined with the
colored and reflective markers, bare hand tracking by the depth-
sensing devices that traced the upper limb movement while
performing theMDS-UPDRS part III bradykinesia tasks (11–13).
These systems are traditionally used in a lab setting and have
not yet been transitioned to the home environment. With the
surge of telemedicine and remote consultation, there is a need
for the supportive tools that permit an objective evaluation of
movement remotely.

In this work, we propose a markerless video-based motion
method to prove the concept that video-based objective
classification of PD motor function based on bradykinesia is
possible using a standard laptop webcam and an artificial
intelligence algorithm. This analysis provides an ideal proof-of-
concept for capturing bradykinesia of a patient with PD remotely
while using an accessible, standard webcam video-camera.

METHODS

Subjects
We recruited a consecutive cohort of 22 patients with PD and
20 healthy subjects (HSs). The eligible patients (i) had a PD
diagnosis in the preceding 5 years according to the UK Brain
Bank Clinical Criteria (14), further supported with (ii) a PET-
18FDopa neuroimaging. We excluded the HSs in the presence
of personal history, and first- and second-degree family history
of any movement disorder (i.e., tremor or parkinsonism), and
any known condition that could affect motor performance of the
upper limbs. The demographic characteristics were assessed for
both the groups, such as handedness (Laterality Preference Index,
LPI) (15). An independent dataset containing N = 12 videos (six
PD and six HSs) were also included as validation cohort for the
test. The Ethics Committee of HMHospitales approved the study
protocol (protocol number: 18.05.1245-GHM). The participants
provided the written informed consent before participating in
the study.

Clinical and Quantitative Motor
Assessment
The participants were always evaluated after overnight off
medication, and clinical evaluation included a motor assessment
performed by two trained specialists (MHGM and ASF) using
the MDS-UPDRS Part III. To evaluate the concurrent validity of
the new method with other objective tests, motor performance
was also evaluated with objective measures using the inertial
measurement units (IMUs) (KinesiaTM One system; Great
Lakes Neurotechnologies Inc., Cleveland, OH, USA) (16). We
quantified the motor function while performing the MDS-
UPDRS-III bradykinesia upper limb tasks (finger tapping, hand
movements, and pronation and supination movements of the
hand). For that, the IMU was placed on the index finger. Output
data from KinesiaTM is a continuous score from 0 (less) to 4
(maximum) impairment.

Video Data Collection
The participants were recorded with a computer webcam (640
× 426 pixels at 30 fps). During the examination, the participants
rested their elbow on an armchair, and the camera was adjusted
such that the hand and forearm were always present in the field
of view. The participants were instructed to perform the MDS-
UPDRS III bradykinesia upper limb tasks (finger tapping, hand
movements, and pronation and supination movements of the
hand) in front of the camera. Each task was performed three
times with each hand separately (i.e., single-hand tasks, named
unilateral motor tasks), and with both hands simultaneously
(i.e., two-hand tasks, named bilateral motor tasks). For the
normalization purposes, for each task the subjects were asked
to stay in a certain position for a few frames. In the finger
tapping and hand movements tasks, the patients were asked to
do a maximum aperture and closing of the fingers or hand. In
the pronation and supination movement of the hand task, the
subjects were asked to extend the arm with the palm down and
do the maximum supination movement. Each video sample was
restricted to 12 s.

Image Analysis
The video frames were processed with a Single Shot MultiBox
Detector (SSD) network trained to detect the hands in real-
time using the EgoHands dataset (17). The output of the SSD
is a series of bounding boxes each marked with the probability
of it containing a hand. The algorithm detects each hand and
processes each of the two bounding boxes separately. To refine
the detection process, we introduced some post-processing rules
depending on the task. For single hand tasks, we selected the
highest-ranking bounding box on the side required by the task,
and for the two-hand tasks, we selected the highest-ranking
bounding box on each side. We also performed a temporal
correction. If the probability of a certain bounding box was not
higher than its probability in the previous frame, we keep the
previous bounding box. This pre-process ensures a correct and
efficient detection of hands due to a varied background of the
videos. After the bounding boxes for the hands were computed
for all the frames, these boxes were cropped and processed by a
second CNN model named OpenPose (18), to detect the joints
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FIGURE 1 | Video-capture motion. Example of finger tapping, hand movement, and pronation supination movement of the hand while performing the single-hand

(upper) and two-hand (bottom) motor tasks. The bounding box is represented in green. The color markers over the hands represent specific landmarks extracted by

OpenPose.

of the hands (Figure 1). The specific landmarks extracted by
OpenPose for each hand are shown in Supplementary Figure 1.
From these landmarks, we select specific key-points to generate
time curves to describe each task. To compensate for the camera
distance and the size of the hand in the amplitude measurements,
we normalized the measurements to the maximum amplitude.
For finger tapping, the Euclidean distance (in pixels) between the
thumb and the index finger was computed for every frame. For
the hand grasp task, the Euclidean distance in pixels between the
wrist and the average of the tips of all fingers, except the thumb.
For the pronation-supination task, we computed the vector
resulting from subtracting the key points of the pinky finger
and the thumb. This vector was then transformed into the polar
coordinates to obtain the degrees of the rotation for every frame,
with respect to the normalization frames, as explained above.

The time signals were pre-processed with a Butterworth low
pass frequency filter. To select the frequency of the filter we
computed the Fourier transform of each graph to calculate their
frequency components. The frequency selected to perform the
low pass filter was the highest frequency of the peaks that have
an amplitude at least higher than one-fourth of the amplitude of
the highest frequency peak.

In addition, we applied an amplitude correction, to eliminate
the peaks due to noise. For the finger tapping task, we
used a normalized pixel threshold of 0.1, while for the
hand grasp and pronation/supination tasks, a 0.25 threshold
was applied. After filtering every signal, we extracted the
upper envelopes of the filtered signals, by detecting the
peaks and interpolating among them (Figure 2). We extracted
several features from the time curves: mean amplitude and
SD of the peaks, speed (number of peaks per second),

and fatigue (difference between the highest and the lowest
values of the upper envelope of the curve). The three
features were computed for both the left-hand and the right-
hand tasks.

To confirm the accuracy of the time signals generated by
our pipeline, the videos were assessed by an external clinician
that manually labeled every landmark of the hand in videos of
the finger tapping task of nine subjects. The clinician labeled
the frames from each video of both hands and the software
skipped two frames after each labeled frame. The salient points
were automatically extracted for the remaining frames by the
algorithm. Visual inspection of the salient points aligned to
the original video were used to confirm the accuracy of the
algorithm output.

Classification Model Design
We designed a model to differentiate between the PD and
HSs. For this, we extracted several single features that are
known to be related with bradykinesia (mean amplitude, SD
of the amplitude, speed, and fatigue) (19, 20) from both
the hands either in the single-hand tasks and in the two-
hands tasks. We trained three classifiers: Logistic Regression,
Gaussian Naive-Bayes, and Random Forest. Each classifier
received two values as input. These were the values of each
feature for the left and right hands, respectively. We trained
the classifiers using the features from each hand in the single
hand tasks and using the features from each hand in the
tasks performed with both hands simultaneously. A 4-fold
cross-validation per classifier was applied and the receiver
operating characteristic (ROC) curve per fold of the classifier was
produced. Subsequently, an average ROC curve was calculated
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FIGURE 2 | Acceleration traces during the single-hand (unilateral) and two-hand (bilateral) motor tasks using the webcam. Representative segment of the kinematic

signal reconstructed during unilateral (upper) and bilateral (bottom) motor tasks from finger tapping, hand movement, and pronation/supination movements of the

hand in a patient with Parkinson’s disease (PD). Note the general worse performance in the dual tasks shown in the lower part of the image when compared with the

corresponding task perform with just one hand.

and the corresponding area under the curve (AUC) was used to
compare the performance of the three candidate classifiers per
classification task.

Validation Dataset
An external validation dataset included 12 videos (six videos from
the patients with PD and six from HSs) recorded with the same
protocol. We evaluated the extracted features from each hand in
the single-hand tasks, and the extracted features from each hand
in the two-hand tasks.

Statistical Analysis
We compared the demographic characteristics between the
PD and HSs groups using Mann–Whitney’s U non-parametric
test (continuous) and the chi-square test (categorical). The
extracted motor features from the videos of the finger tapping,
hand movement, and pronation-supination movements of the
hands stratified by side were compared between the PD and
HSs groups using the non-parametric tests (Mann–Whitney
test). Spearman’s r correlations between the bradykinesia MDS-
UPDRS-III sub-scores and the quantitative assessment methods
were calculated. To rule out the confounding effects due
to gender and hand size, we evaluated the performance
of the classifiers on a strata containing only the male
participants. The significance level was set at a 2-sided P-
value of 0.05 and RStudio version 1.1.414 was used for the
statistical analysis.

RESULTS

Cohort Characterization
Twenty-two patients with PD (median [range] age: 49.7 [46.8–
62] years) and 20 age-matched HSs (age: 49.9 [43.5–50.9] years)
were enrolled in the study. The demographic features of the
PD and HSs are described in Table 1. The patients with PD
had a median disease duration of 2.6 [1.57–3.8] years since
diagnosis and a median MDS-UPDRS-III score in Off-state of 18
[14–33] points.

Quantitative Motor Assessment Using the
Webcam
The single features extracted by the classifiers showed differences
between the most affected side (MAS) and less affected side
(LAS) in the patients with PD and between the dominant side
(DS) and non-dominant side (NDS) according to handedness
in HSs (Table 2). There were statistically significant differences
for the unilateral finger tapping speed, hand movement speed,
and pronation-supination movement amplitude (P < 0.05)
(Table 2). For the bilateral task, there were statistically significant
differences for the finger tapping amplitude, finger tapping speed,
and hand movement speed (P < 0.05) (Table 2).

Concurrent Validity With MDS-UPDRS Part
III Scores and Inertial Data
In the patients with PD, the video-extracted speed of the MAS
showed significant moderate negative correlation with the MDS-
UPDRS-III score of the MAS for hand movement (r = −0.50,
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TABLE 1 | The demographic characteristics and clinical features of the patients with Parkinson’s disease (PD).

Parkinson’s disease

(n = 22)

Healthy subjects

(n = 20)

P-value

(PD vs. HS)

Baseline demographic characteristics

Age, median (IQR) 49.7 (46.8–62) 49.9 (43.5–50.9) 0.21

Sex, N (%) Man 16 (72.7) 6 (30) 0.01

Woman 6 (27.3) 14 (70)

Education, years median (IQR) 19 (17–20) 18 (16.7–20) 0.98

Laterality Preference Index (LPI)

Handedness, N (%) Right 19 (86.4) 20 (100) 0.48

Left 2 (9.1) 0 (0)

Parkinson’s disease patients’ characteristics

Time since diagnosis (years), median (IQR) 2.6 (1.57–3.8)

Predominant side at onset, N (%) Right 17 (77.3)

Left 5 (22.7)

Hoehn & Yahr stage, N (%) Unilateral 19 (86.4)

Bilateral 3 (13.6)

MDS-UPDRS III, median (IQR) 18 (14–33)

P < 0.05). The video-extracted features showed correlation with
objective quantification measures by IMU. Thus, the amplitude
and the speed of movement of the MAS measured by the
webcam showed significant moderate negative correlation with
the corresponding MDRS-UPDRS-III bradykinesia item task
measured by IMUs: finger tapping (r = −0.59, P < 0.05 and r
= −0.51, P < 0.05 for amplitude and speed, respectively), hand
movement (r = −0.50, P < 0.05; r = −0.70, P < 0.05), and
pronation-supination movement of the hand (r = −0.67, P <

0.05; r=−0.66, P < 0.05).

Classification Performance of the
Developed Model: Differentiating PD From
HSs Using the Webcam
In the developed model, the features extracted from single-hand
tasks (herein named unilateral) overall showed the highest
classification performance compared with those using features
extracted from the two-hand tasks (herein named bilateral).
The unilateral classifiers showed the mean sensitivity and
specificity values ranging from 41 to 73% and 23 to 80%,
respectively, for all the three features, with a cross-validation
AUC ranging from 0.35 to 0.81 (Supplementary Table 1).
In the unilateral motor tasks, the combined right-left speed
feature for finger tapping and hand movement and the
variation in the amplitude for the hand movements and
pronation-supination movements of the hand showed the
highest values and consistency across the three different
classifiers (Supplementary Table 1). In the bilateral motor
tasks, the combined right-left amplitude for finger tapping,
hand movement, and the combined right-left amplitude
variability for hand movements and fatigue for the hand
movements and pronation-supination movement of the hands
showed the highest value and consistency across the three
classifiers (Supplementary Table 1). The stratified analysis
among the male participants showed a cross validation AUC

ranging from 0.21 to 0.88. In the unilateral motor tasks,
the combined right-left speed feature for finger tapping and
hand movement and the mean amplitude and variation in
the amplitude for the pronation-supination movements of
the hand showed the highest values and consistency in the
three different classifiers. Similar results were found for the
bilateral tasks. The performance of classifiers can be found in
Supplementary Table 2.

Validation of the Model on an Independent
Dataset
When we applied our predictive model to an external validation
dataset containing 12 videos (six PD and six HSs), in the
unilateral motor tasks, the combined right-left speed for
finger tapping, hand movement, and pronation-supination
movement of the hand had the highest values and consistency
across the three different classifiers, along with the combined
right-left amplitude of the pronation-supination movement of
the hand (Table 3 and Figure 3). The AUC range for the
Logistic Regression model in the unilateral finger tapping,
hand movement, and pronation-supinations tasks ranged from
0.47 to 1, 0.28 to 1.00, and 0.40 to 0.94, respectively. For
Naïve Bayes model, the AUC results for the unilateral tasks
ranged from 0.47 to 0.83 in the finger tapping, 0.22 to 0.97
for hand grasp, and 0.41 to 0.89 in the pronation supination
task. Finally, for the Random Forest model, the AUCs ranged
from 0.41 to 0.75 in the finger tapping, from 0.49 to 0.78
in the hand grasp, and from 0.61 to 0.89 in the pronation-
supination task (Table 3). For the bilateral motor tasks, the
combined right-left amplitude for finger tapping, pronation-
supination movement of the hand, and the combined right-
left amplitude variability for hand movements and speed for
pronation-supinationmovement of the hands showed the highest
value and consistency across the three classifiers (Table 3 and
Figure 3).
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TABLE 2 | Video-extracted motor features in the unilateral and bilateral tasks of the MDS-UPDRS-III bradykinesia upper limb motor tasks.

PD HS

MAS LAS DS NDS P-value

Finger tapping

Single hand

(unilateral)

Amplitude

Normalized amplitude [0–1]

0.73 (0.3) 0.81 (0.3) 0.84 (0.4) 0.87 (0.4) 0.345

Speed

(Time[frames])

2.03 (0.85) 2.26 (0.99) 2.35 (0.86) 2.19 (0.69) 0.247

Fatigue 0.10 (0.27) 0.10 (0.27) 0.08 (0.15) 0.10 (0.19) 0.760

Two-hands

(bilateral)

Amplitude

Normalized amplitude [0–1]

0.56 (0.25) 0.77 (0.28) 0.79 (0.44) 0.80 (0.37) 0.042

Speed

(Time[frames])

2.13 (0.91) 2.25 (0.80) 2.03 (0.71) 2.03 (0.71) 0.705

Fatigue 0.11 (0.20) 0.15 (0.25) 0.00 (0.33) 0.05 (0.33) 0.106

Hand movements

Single hand

(unilateral)

Amplitude

Normalized amplitude [0–1]

0.92 (0.21) 0.97 (0.24) 0.9 (0.19) 1.02 (0.20) 0.904

Speed

(Time[frames])

1.40 (0.46) 1.80 (0.55) 1.68 (0.72) 1.58 (0.48) 0.143

Fatigue 0.01 (0.18) 0.07 (0.18) 0.04 (0.16) 0.05 (0.19) 0.531

Two-hands

(bilateral)

Amplitude 0.85 (0.25) 1.04 (0.27) 0.94 (0.15) 0.94 (0.15) 0.176

Speed

(Time[frames])

1.52 (0.41) 1.58 (0.46) 1.43 (0.41) 1.43 (0.41) 0.487

Fatigue −0.06 (0.17) −0.01 (0.21) 0.11 (0.14) 0.09 (0.19) 0.044

Pronation supination movement of the hand

Single hand

(unilateral)

Amplitude

(degrees)

116.67 (34.08) 137.21 (25.94) 136.18 (28.18) 120.72 (32.50) 0.053

Speed

(Time[frames])

1.55 (0.78) 1.78 (0.66) 1.65 (0.86) 1.54 (0.81) 0.698

Fatigue 4.91 (24.01) 23.39 (36.64) 17.21 (53.79) 6.81 (39.19) 0.346

Two-hands

(bilateral)

Amplitude

(degrees)

113.07 (30.70) 130.50 (39.93) 128.45 (37.67) 129.85 (37.90 0.159

Speed

(Time[frames])

1.38 (0.46) 1.47 (0.47) 1.45 (0.69) 1.56 (0.70) 0.689

Fatigue 21.94 (40.28) 4.88 (45.59) 28.39 (42.69) 2.00 (37.79) 0.622

Video-extracted motor features in the unilateral and bilateral tasks of the MDS-UPDRS-III bradykinesia upper limb motor tasks. PD, Parkinson’s disease; HSs, healthy subjects; MAS,
most affected side; LAS, less affected side; DS, dominant side; and NDS, non-dominant side.

DISCUSSION

In this study, we have proven the concept that the motor
performance can be assessed objectively using a conventional
webcam. We found differences in the motor performances
between the different sides of the body and between the
patients with PD and HSs in all the upper limb motor
tasks used to evaluate bradykinesia. The best performing
classifiers were unilateral finger tapping and hand movement
speed achieving an almost perfect classification similar to
other diagnostic tests in PD (21). In addition to this
high classification performance, the model correlated both
with IMUs for quantitative assessment of motor function
and the most used standard MDS-UPDRS part III, hence
demonstrating concurrent validity with the existing gold
standard methods.

Video-Based Motor Evaluation
Different video-based systems have been described for the
automated assessment of upper limb motor performance in the
patients with PD (10). Most of these studies are restricted to the
performance of one single motor task of the MDS-UPDRS-III
with scarce comparisons of the motor performance between the
different body sides (10, 11). Additionally, most of these systems
have been traditionally used in a lab setting and have not yet been
transitioned to the home setting (10, 22).

Recently, some video-based technologies have approached the
study of motor performance using the low-quality video cameras.
Using the smartphones cameras, different studies showed that
it is possible to predict the presence of bradykinesia while
performing the finger-tapping tasks, with an over 0.70 test
accuracy, but with low discriminative capacity between the PD
and HSs (23–25). Other studies, assessing the finger tapping
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TABLE 3 | Model performance validation for PD classification.

Validation dataset LR NB RF

AUC ACC AUC ACC AUC ACC

Finger tapping

Single hand Amplitude_mean 0.472 0.333 0.583 0.500 0.458 0.500

(unilateral)l Amplitude_std 0.583 0.500 0.472 0.500 0.458 0.417

Speed 1.000 1.000 0.833 0.667 0.750 0.667

Fatigue 0.722 0.583 0.611 0.583 0.417 0.500

Two-hands Amplitude_mean 0.777 0.750 0.750 0.500 0.556 0.417

(bilateral) Amplitude_std 0.444 0.500 0.500 0.583 0.597 0.583

Speed 0.208 0.500 0.125 0.250 0.458 0.417

Fatigue 0.500 0.416 0.222 0.500 0.556 0.500

Hand movements

Single hand Amplitude_mean 0.639 0.667 0.417 0.500 0.528 0.583

(unilateral) Amplitude_std 0.278 0.500 0.222 0.333 0.486 0.417

Speed 1.000 1.000 0.972 0.917 0.778 0.583

Fatigue 0.472 0.417 0.750 0.583 0.556 0.583

Two-hands Amplitude_mean 0.750 0.667 0.528 0.667 0.292 0.250

(bilateral) Amplitude_std 0.472 0.500 0.528 0.417 0.708 0.667

Speed 0.389 0.417 0.389 0.500 0.056 0.250

Fatigue 0.333 0.417 0.500 0.417 0.569 0.583

Pronation-supination movement of the hands

Single hand Amplitude_mean 0.917 0.667 0.778 0.750 0.667 0.417

(unilateral) Amplitude_std 0.944 0.917 0.889 0.917 0.889 0.833

Speed 0.750 0.750 0.417 0.250 0.611 0.667

Fatigue 0.444 0.417 0.611 0.500 0.778 0.750

Two-hands Amplitude_mean 0.833 0.750 0.861 0.833 0.542 0.500

(bilateral) Amplitude_std 0.611 0.750 0.861 0.750 0.625 0.583

Speed 0.611 0.583 0.750 0.750 0.750 0.750

Fatigue 0.306 0.333 0.583 0.583 0.306 0.500

Validation results of the combined right and left motor features for PD classification. The validation was made using three classifiers: Logistic regression (LR), Gaussian Naïve-Bayes
(NB), and Random Forest (RF). Features with cross-validation AUC > 0.6 are highlighted in bold. Units: normalized amplitude [0–1] for finger tapping and hand movements; amplitude
(degrees) for pronation supination for amplitude features. Time (frames), for speed in all the tasks. AUC, cross-validation area under curve; ACC, accuracy.

motor task with conventional webcams also showed similar
results to our study (11, 22).

One of the most interesting aspects of this work is that the
performance of the model was lower when we evaluated the
different motor features extracted individually than when we
integrated them. Specially, the inclusion of the side reflecting the
asymmetry typical of PD increased the diagnostic performance
dramatically and emphasized how critical the integration of
information is for the clinical diagnosis.

The integration of information happens during a standard
clinical evaluation. To evaluate a patient and establish a diagnosis,
the neurologist needs to: (1) have a predefined criteria of
average and non-average motor performance for each body side,
(2) evaluate the different aspects of the motor performance
(e.g., speed, amplitude, and fatigue), (3) compare the motor
performance between each body side, (4) evaluate if the observed
pattern matches the previous cases with the disease or that of
the HSs. In our study, we replicated this behavior and trained
a model that can recognize decrements in amplitude and speed
of movement between the PD and HSs groups. This information

was also combined with the motor performance asymmetry
of one side compared with the other one. Thus, the accuracy
obtained for some of the extracted motor features (i.e., finger
tapping speed or hand grasp speed) could complement the one
obtained from an expert neurologist (26). It is remarkable that the
computer needed a 12 s video per task to perform a classification
of PD vs. HSs based on the performance of bradykinesia
tasks. Therefore, our method has many conceptual resemblances
with the routine diagnostic process, making it interpretable
and aligned with the standard of care, and supporting the
potential of feature integration mimicking the behavior of the
human brain.

Importantly, the system could also detect the differences in
motor performance between the unilateral tasks and bilateral
tasks, showing a worse performance when performing bilateral
tasks in the group of patients with PD compare with HSs
(Table 2). This is in line with the described impaired ability to
perform the bilateral tasks, either simultaneously or sequentially,
that occurs in the patients with PD. Thus, when performing a
bilateral task, the motor performance in the patients with PD can
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FIGURE 3 | The receiver operating characteristic (ROC) curves in the validation cohort. (A–C) Example of ROC curves of the combined right-left amplitude and speed

of movement in the single-hand (unilateral) motor tasks for the three used classifiers for the patients with PD classification.
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show a dramatic reduction in the movement of the most affected
side compared to the unilateral tasks (27, 28).

This proof-of-concept study hence demonstrates that a
standard webcam coupled with an artificial intelligence method
has potential for accurately assessing upper limb bradykinesia
in the patients with PD remotely. The camera employed for
all the experiments was a webcam of standard laptop produced
in 2010 (a 2010 MacBookPro). Any current laptop or mobile
device allows video recording with a higher resolution and frame
rate. This tool expands the portfolio of technologies available
for evaluating the patients with PD, with the advantages of not
needing any dedicated equipment outside of a standard laptop
and using a video which also permits a simultaneous verification
of the motor performance using the traditional clinical methods
(i.e., the healthcare professional could review the raw video that
generated the score when needed for quality control purposes).
The most salient applications of this video-based technology
could be the use in remote teleconsultations, which have surged
with the severe acute respiratory syndrome coronavirus 2 (SARS-
CoV-2) pandemic (29) and the decentralized clinical trials, as a
complement for the standard assessments using MDS-UPDRS
or other objective evaluation methods (i.e., sensors) (30, 31). In
addition, this system could help minimize variability in clinical
assessment in the clinical trials.

In this way, and in keeping with the previous initiatives
(11, 22), we have recently developed a web app for the remote
recording of the upper limb bradykinesia motor tasks. The app
includes conformance statement signing, video instructions for
every task, and the indications to facilitate hand positioning.
Furthermore, it requires no software to be installed, thus using
any standard laptop and any operating system. The upcoming
studies will show the feasibility of its implementation for the
assessment of the tasks in the at-home setting.

Limitations
Our work has several limitations. First, this is a proof-of-
concept study with a reduced sample size, with specific disease
characteristics (age and duration of disease), and the comparison
was made only with healthy controls. Both the factors limit the
generalizability of the results. Additionally, the study cohort is
integrated by early patients with PD with predominant unilateral
motor symptoms. Yet, this provides a convenient scenario to
test the discriminative strength of the method. In the future, our
results should be verified in larger cohorts with a representation
of a broad spectrum of the patients with PD, such as the
groups with different age and disease duration. In addition,
the discriminative power of the method when including other
parkinsonian syndromes in the mix remains to be established
as well. Another limitation is that we restricted the assessment
to the upper limb bradykinesia motor tasks of the MDS-
UPDRS III. However, the motor performance of upper limbs
is a predictive characteristic of onset and PD progression (32,
33). Therefore, its analysis is of the utmost relevance for the
clinical evaluation and outcome of the patients with PD. The
assessment of the global motor performance, such as lower limbs,
and other disease manifestations, such as tremor, axial signs,
and gait represents a future expansion of the current concept

of objectively measuring other disease motor features using a
standard video. This can improve the model performance and
hence needs to be investigated. Finally, we focused our analysis
on the evaluation of the binary classification performance of
the present method. Future work should evaluate the additional
quantitative aspects of the motor performance, increasing the
granularity of the information, be able to rate the disease severity,
and the detection of subtle changes in the motor status along
the time, and after a therapeutic intervention. Those aspects will
be critical for the application of this system in telemedicine and
potentially clinical trials.

CONCLUSIONS

We proved the concept that a novel webcam-based technology
can accurately evaluate bradykinesia, the single core feature that
allows the diagnosis of parkinsonism, in a remote setting, using
artificial intelligence. This method has an accuracy performance
that could complement the usual diagnostic process performed
by the experienced movement disorders specialists and could be
easily expanded to other disease manifestations. Our results need
to be confirmed in the larger studies, such as patients with other
forms of parkinsonism, age groups, and disease status.
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Supplementary Figure 1 | Landmarks extracted for every hand by OpePose.

Supplementary Table 1 | Model performance training for Parkinson’s disease

(PD) classification. Classification results of the combined right and left motor

features for PD classification prediction. The training of the model was made using

three classifiers: Logistic regression (LR), Gaussian Naïve-Bayes (NB), and

Random Forest (RF). Features with cross-validation AUC > 0.6 are highlighted in

bold. Units: normalized amplitude [0–1] for finger tapping and hand movements;

amplitude (degrees) for pronation supination for amplitude features. Time (frames),

for speed in all tasks. AUC, cross-validation area under curve;

ACC, accuracy.

Supplementary Table 2 | Model performance training for PD classification in

men. Classification results of the combined right and left motor features for PD

classification prediction. The training was made using three classifiers: LR, NB,

and RF. The features with cross-validation AUC > 0.6 are highlighted in bold.

Units: normalized amplitude [0–1] for finger tapping and hand movements;

amplitude (degrees) for pronation supination for the amplitude features. Time

(frames), for speed in all tasks. AUC, cross-validation area under curve;

ACC, accuracy.
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