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Abstract Copy number variation through gene or chromosome amplification provides a route

for rapid phenotypic variation and supports the long-term evolution of gene functions. Although

the evolutionary importance of copy-number variation is known, little is understood about how

genetic background influences its tolerance. Here, we measured fitness costs of over 4000

overexpressed genes in 15 Saccharomyces cerevisiae strains representing different lineages, to

explore natural variation in tolerating gene overexpression (OE). Strain-specific effects dominated

the fitness costs of gene OE. We report global differences in the consequences of gene OE,

independent of the amplified gene, as well as gene-specific effects that were dependent on the

genetic background. Natural variation in the response to gene OE could be explained by several

models, including strain-specific physiological differences, resource limitations, and regulatory

sensitivities. This work provides new insight on how genetic background influences tolerance to

gene amplification and the evolutionary trajectories accessible to different backgrounds.

Introduction
Genetic variation that underlies phenotypic differences provides the material on which evolutionary

selection acts. This variation includes single-nucleotide polymorphisms (SNPs), insertions and small

deletions, and other structural rearrangements. DNA copy number variants (CNVs) can also serve as

a powerful source of variation. CNVs span small tandem duplication of one or few genes to large

segmental duplication and even chromosomal aneuploidy that amplifies many genes together

(Hastings et al., 2009; Levasseur and Pontarotti, 2011). Although most duplications are likely lost

shortly after creation (Ohno, 1970; Lynch and Conery, 2000; Voordeckers and Verstrepen, 2015),

the functional redundancy afforded by gene duplication can support the long-term evolution of new

functions (neofunctionalization) or a division of functional labor among the duplicated genes (sub-

functionalization) (Graur and Wh, 2000). Neutral or nearly neutral variants can accumulate over time

in a population, and this standing variation can accelerate evolution when organisms encounter a

new environment (Hermisson and Pennings, 2005; Przeworski et al., 2005; Barrett and Schluter,

2008; Zheng et al., 2020). But CNVs can also produce immediate changes in cellular fitness due to

the effective increase in gene expression, at least for some genes (Kondrashov, 2012). For example,

yeast cultures challenged by low glucose, sulfate, or nitrogen levels benefit from amplifying genes

encoding transporters of glucose (HXT6/7), sulfate (SUL1), and amino acids (GAP1) (Brown et al.,

1998; Gresham et al., 2008; Gresham et al., 2010; Sanchez et al., 2017). A genome-wide study in

Escherichia coli showed that 115 amplified genes, including efflux pumps/transporters, regulatory
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genes, and prophage genes, increased tolerance to numerous antibiotics and toxins when overex-

pressed (Soo et al., 2011). Consistently, amplification of transporters and resistance genes is an

early event in the bacterial evolution of antibiotic resistance (Sandegren and Andersson, 2009). Fur-

thermore, whole-chromosome duplication in human fungal pathogens can produce immediate resis-

tance to anti-fungal agents, due to overexpression (OE) of drug efflux pumps and their regulators

(Selmecki et al., 2006; Sionov et al., 2010; Ni et al., 2013; Berman and Krysan, 2020), and gene

amplifications often underlies chemoresistance in cancer cells (Yasui et al., 2004; Mishra and

Whetstine, 2016). These examples illustrate the importance of gene duplication in rapid phenotypic

change, especially in response to drugs and environmental stresses where tolerant individuals can

rapidly emerge.

While the potential evolutionary benefits afforded by gene amplification are well known, there is

also a significant fitness cost (Adler et al., 2014; Moriya, 2015). The costs and consequences of

gene OE are perhaps best studied in Saccharomyces cerevisiae. Protein overproduction can cause a

shortage of resources, including nucleotides required for additional DNA synthesis, nucleosides con-

sumed by transcriptional burden, and amino acids and ATP required for translation (Wagner, 2007).

Which resources become limiting can depend on the environment: for example, transcription was

shown to be limiting in yeast grown during phosphate starvation, whereas translation is likely limiting

when cells are grown in minimal media with low amino acid availability (Kafri et al., 2016; Metzl-

Raz et al., 2017; Metzl-Raz et al., 2020). Other cellular processes can become taxed as well. Sev-

eral studies used the yeast gene-deletion library to investigate genes and processes required to

accommodate OE of specific proteins such as GFP (Farkas et al., 2018; Kintaka et al., 2020).

Although results varied somewhat by which protein was overproduced, collectively these studies

showed that gene OE can put a burden on mRNA and protein export systems, protein folding chap-

erones, and protein degradation machinery.

Cells are also impacted by OE of specific genes and functional classes. Several studies have quan-

tified the fitness consequences of gene-OE libraries in laboratory strains of budding yeast S. cerevi-

siae to reveal fitness consequences across many OE genes (Sopko et al., 2006; Ho et al., 2009;

Magtanong et al., 2011; Makanae et al., 2013). Deleterious OE genes are enriched for those

encoding proteins in multi-subunit complexes such as the ribosome. One model to explain this

enrichment is that perturbing stoichiometric balances will perturb complex assembly and function

(Papp et al., 2003; Veitia et al., 2008; Birchler and Veitia, 2012; Moriya, 2015). Cells have mecha-

nisms to control the dosage of some of these proteins, yet high-copy OE can still overwhelm these

mechanisms in the cell (Li et al., 1995; Li et al., 1996; Fewell and Woolford, 1999; Hose et al.,

2015; Ascencio et al., 2021). Protein OE can also force promiscuous interactions, perturbing pro-

tein interaction networks. Proteins with intrinsically disordered regions (IDRs) are particularly suscep-

tible to promiscuous interactions with other proteins, and deleterious OE genes are enriched for

those with IDRs (Gsponer et al., 2008; Vavouri et al., 2009; Ma et al., 2010; Chakrabortee et al.,

2016). In fact, proteins encoded by gene duplicates fixed in several species are under-enriched for

those with IDRs (Banerjee et al., 2017), suggesting the impact on long-term evolution. Finally, OE

of transcription factors, kinases, and other regulators can trigger broad downstream effects that in

turn amplify the expression of other downstream proteins, further taxing proteostasis but potentially

also producing phenotypes that could be beneficial (Sharifpoor et al., 2012; Moriya, 2015;

Youn et al., 2017). Ultimately, the fitness benefit of gene OE must outweigh the fitness costs in a

given environment in order for the duplication to be beneficial to the cell.

Although the evolutionary importance of gene duplication has long been appreciated, little is

known about natural variation in the tolerance of duplication of specific genes. Variation in the cost

of a gene’s duplication could have a significant influence on evolutionary trajectories that are accessi-

ble to different individuals. Anecdotal evidence shows that different individuals can vary widely in

their response to OE of specific genes. For example, prior results from our lab showed that S. cerevi-

siae strains from different genetic lineages have unique fitness responses to overexpressed genes

when strains are grown in the presence of toxins (Sardi et al., 2016). A major unanswered question

is the degree to which reported trends in the fitness consequences of gene OE vary across natural

isolates beyond lab strains and how natural variation influences the response to gene OE.

To investigate these questions, we expressed the same high-copy gene OE library applied previ-

ously to laboratory S. cerevisiae strains, in 15 different yeast isolates together representing four line-

ages and several admixed strains, to explore the variation in tolerance to gene OE. Our results
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distinguish universal effects common to many studied strains versus strain-specific effects, including

global responses independent of the OE gene as well as gene-specific sensitivities. We present evi-

dence for several general models explaining strain-specific variation in the response to gene OE.

These results raise important implications for the accessibility of evolutionary trajectories afforded

by gene OE depending on genetic background.

Results

Overview
We chose 15 genetically diverse S. cerevisiae strains for analysis, including strains from four defined

genetic lineages (including European Wine, North American Oak, Asian, and West African), one

commonly used lab strain (BY4743), and three strains that represent recently admixed ‘mosaic’

strains. These isolates were collected from diverse environments including soil, vineyards, sake pro-

duction, sewage, and clinical samples (Capriotti, 1955; Gerke et al., 2006; Kurtzman, 1986;

McCullough et al., 1998; Sniegowski et al., 2002; Strope et al., 2015; Supplementary file 1). In

addition to genetic diversity, these strains display extensive phenotype variation, for example, in

nitrogen and carbon utilization (Warringer et al., 2011), nutrient requirements (Liti et al., 2009;

Warringer et al., 2011), and stress tolerance (Kvitek et al., 2008; Liti et al., 2009; Will et al.,

2010; Warringer et al., 2011; Strope et al., 2015; Zheng and Wang, 2015; Sardi et al., 2016;

Sardi et al., 2018).

Each strain was transformed with the MoBY 2.0 library that includes ~4900 open reading frames

(ORFs) with their native upstream and downstream sequences, cloned into a high-copy 2-mm repli-

cating plasmid (Ho et al., 2009; Magtanong et al., 2011). We chose the high-copy expression sys-

tem to expose gene-specific fitness differences that may be too subtle to score when genes are

merely duplicated. Although the lab strain replicates the empty vector at ~11 copies per haploid

genome, most other strains maintain ~2–5 copies per haploid genome (see Figure 2—figure supple-

ment 2). All strains were readily transformed with the library and grew at expected growth rates in

selective media, indicating that all strains could maintain the plasmid. An aliquot of each

library transformed culture was collected before and after 10 generations of competitive growth,

and relative plasmid abundance was scored by quantitative sequencing of plasmid barcodes to mea-

sure changes in plasmid abundance in the population, in biological triplicate (Figure 1A, see

Materials and methods).

Barcode abundance was normalized to the total number of reads per sample, thus producing a

fitness score relative to the total set of genes expressed in each strain and accounting for strain-spe-

cific differences in library expression. We measured the log2(fold change) in relative barcode abun-

dance after 10 generations of competitive growth, which we refer to as the relative fitness score.

Genes that are detrimental when overexpressed will drop in frequency in the population because of

reduced cell growth or because cells suppress the abundance of toxic plasmids (Makanae et al.,

2013), both of which we interpret as a relative fitness defect. In contrast, beneficial plasmids will rise

in frequency in the population over time. We focus on genes with a significant fitness effect when

OE at a false discovery rate (FDR)<5% (see Materials and methods, Supplementary file 4).

We first validated our results by comparing fitness effects measured in lab strain BY4743 to a pre-

vious study using a similar library of yeast genes expressed from their native promoters in a similar

strain background (Makanae et al., 2013). There was highly significant overlap between the 851

genes, we identified that produce a defect upon OE and previous results of Makanae et al. (p=8

�10�45, Hypergeometric test) despite differences in media and experimental conditions

(Makanae et al., 2013). Deleterious OE genes identified in both studies were enriched for genes

involved in translation, including ribosomal proteins and essential genes, and a largely overlapping

group of genes repressed as part of the yeast Environmental Stress Response (Gasch et al., 2000)

(p<1.4�10�10, Hypergeometric test). Thus, our approach is robust to replication and comparable to

previous studies, validating our methods.

We next quantified the library effects across strains (Figure 1B). We identified 4064 genes whose

OE produced a reproducible fitness effect in at least one strain (FDR<0.05), with a median of 1726

genes per strain. However, there was a wide range in the number of consequential genes

(Figure 2A). Mosaic strain Y2209 was affected by 635 OE genes, whereas Y12 (isolated from African
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palm wine but genotypically similar to Asian strains) was affected by 3060 OE genes. (We note that

the low number of genes identified in YPS606 may be influenced by reduced statistical power since

only duplicates of that strain were analyzed, and the lower abundance of the 2-mm plasmid in the

case of YJM1592 and YJM978.) Most significant OE genes were detrimental, although there were

some differences across strains. For example, whereas roughly half of the significant OE genes in the

lab strain BY4743 caused a defect, over 95% of significant OE genes in the Y12 strain were detrimen-

tal (Figure 2—figure supplement 1).

In addition to the variable number of OE genes with fitness consequences, strains also varied in

the severity of the defects (Figure 2B). While the median fitness cost of deleterious OE genes was

not correlated overall with the number of deleterious genes per strain, strains with the most deleteri-

ous genes (NCYC3290, YJM1389, and Y12) did show an expanded range of fitness costs, with more

genes showing very strong deleterious effects compared to other strains (Figure 2B). Importantly,

there was no correlation between the number of deleterious OE genes and Moby 2.0 copy number

maintained in the strains (Figure 2—figure supplement 2A), as expected since our normalization

procedure reflects gene fitness effects relative to the overall library in that strain. Most significant

genes produced fitness effects in only a subset of strains (Figure 2C), even though results were

highly reproducible within strain replicates, with over half the 4064 significant genes producing a

Figure 1. Overview of experiment and results. (A) Isolates transformed with the MoBY 2.0 overexpression library were grown competitively and changes

in plasmid abundance were quantified, see Materials and methods for details. (B) Heat map of hierarchically clustered log2(relative fitness scores) for

4064 genes (rows) measured in 15 strains in biological triplicate (columns) after 10 generations of growth. Strain labels are colored according to lineage.

Blue and yellow colors represent plasmids that become enriched or depleted in frequency to indicate fitness defects or benefits, respectively,

according to the key. Some barcodes with missing values after growth were inferred (see Materials and methods); those that are significant are

indicated as an orange box in the heat map. A source data file is included (see Figure 1—source data 1: Hierarchical clustered fitness scores).

The online version of this article includes the following source data for figure 1:

Source data 1. Hierarchical clustered fitness scores.
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defect in only four or fewer strains. Together, these results highlight that different strains respond

differently to gene OE, on both broad and gene-specific scales.

Genes whose overexpression is deleterious across many strains are
functionally related
Before investigating strain-specific effects, we first characterized genes producing a defect in many

strains (Figure 3). There were 431 OE genes that produced a significant defect in at least 66% of

strains (FDR<0.05), and we refer to these as ‘commonly deleterious’ OE genes. This set was heavily

enriched for genes involved in translation including ribosomal proteins, ribosome biogenesis factors,

and other genes repressed during stress in the Environmental Stress Response. The group was also

enriched for genes encoding helicases and ATP binding proteins, mitosis regulators, proteins that

Figure 2. Strain backgrounds display a wide range of fitness effects. (A) The number of deleterious genes in each strain (FDR<0.05), colored by lineage

as in Figure 1B. The number of deleterious and beneficial genes in each strain (FDR<0.05) are shown in Figure 2—figure supplement 1. The number

of deleterious genes per strain is not related to 2-mm abundance (see Figure 2—figure supplement 2). (B) The distributions of log2 (relative fitness

scores) for genes identified as deleterious in each strain. Imputed ratios were not included. The strains are ordered based on the number of fitness

defects from smallest to largest (left to right); YPS606 (asterisk) likely had lower statistical power due to analysis of only duplicates. (C) Deleterious

genes were binned according to the number of strains in which the gene had a deleterious fitness effect (x-axis). Commonly deleterious genes were

defined as a set of 431 genes with a deleterious effect in �10 strains.

The online version of this article includes the following figure supplement(s) for figure 2:

Figure supplement 1. Number of significant genes across strains.

Figure supplement 2. The number of deleterious genes per strain is not related to 2-mm abundance.
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localize to the nucleus, and essential proteins (p<1E�4, Hypergeometric test). All of these categories

remained significant if genes involved in translation were removed from the analysis (see

Materials and methods), demonstrating that the enrichments are not due to overlap with translation

factors.

The Balance Hypothesis (Birchler and Veitia, 2012) posits that genes encoding proteins in multi-

subunit complexes or with many protein-protein interactions cause stoichiometric imbalances and

thus toxicity when overexpressed. Indeed, we found that commonly deleterious genes had more

protein interactions (Oughtred et al., 2021) (p=4.0�10�69, Wilcoxon test) and included more pro-

teins that form complexes as defined by Pu et al., 2009 (p=6.6�10�12, Hypergeometric test) com-

pared to all other genes measured in at least one strain. This confirms the result of Makanae et al.

who also found that dosage-sensitive genes in the lab strain are enriched for proteins with many

interactions and proteins in complexes (Makanae et al., 2013). Translation factors accounted for

163/431 (~38%) of the commonly deleterious genes and are known to participate in many interac-

tions, raising the possibility that this functional group is driving the result. Even after removing genes

involved in translation from consideration (see Supplementary file 2), the remaining commonly dele-

terious genes were still enriched for complex members and proteins with many physical interactions,

strongly suggesting these features as driving factors in toxicity. We also noted that common delete-

rious OE genes contain a higher proportion of disordered proteins (as estimated by median IUPRED

scores for each protein; Mészáros et al., 2018) than other genes measured in the experiment

(p<4.7�10�12, Wilcoxon test), which is consistent with other analyses of deleterious OE genes

(Vavouri et al., 2009; Ma et al., 2010).

Figure 3. Commonly deleterious genes affect many strains but to different degrees. (A) Heat map of log2 (relative fitness scores) as shown in Figure 1B

but for 431 commonly deleterious genes. (B) The distribution of the log2 (relative fitness scores) (taking the replicate average for each gene) for 431

commonly deleterious genes are plotted. Imputed scores were not included. The strains are ordered based on the total number of deleterious genes,

from smallest to largest (left to right). A source data file is included (see Figure 3—source data 1).

The online version of this article includes the following source data for figure 3:

Source data 1. Hierarchical clustered commonly deleterious genes fitness scores.
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Another hypothesis for dosage sensitivity is that already abundant proteins emerging from genes

and transcripts that are highly transcribed and/or translated may be more subject to aggregation if

further overexpressed. While the total set of common genes is expressed at higher mRNA and pro-

tein abundance, this trend was driven by translation factors and was not significant when translation

factors were removed from the analysis. Thus, while high abundance of translation factors could con-

tribute to their dosage effects, high expression alone is not a predictor of OE toxicity for other

genes. Together, our work suggests that the propensity to disrupt protein interaction networks is

likely a driving factor in OE gene toxicity.

Strain-specific responses to library overexpression may reflect global
differences in resource allocation
Although we identified a common set of deleterious OE genes, strains clearly varied in their

response to the library, in multiple distinct ways. Even for commonly deleterious genes, isolates var-

ied in the severity of their responsiveness (Figure 3). In general, strains with a larger number of dele-

terious OE genes displayed more severe median relative fitness costs in response to common-gene

OE than strains with fewer deleterious OE genes—the exception was North American oak-soil strains

that showed aberrantly high fitness costs of common-gene OE even though they were not the most

sensitive in terms of number of deleterious-gene effects (Figure 3B, purple boxes). These differen-

ces cannot be explained by gross differences in gene-OE levels, since strains with comparable Moby

2.0 copy numbers showed vastly different responses. For example, BC187 and YPS128 carry compa-

rable plasmid copy numbers (Figure 2—figure supplement 2A), yet YPS128 is much more sensitive

to commonly deleterious genes than BC187. Instead, these data suggest that some strains are more

sensitive to gene amplification, even for OE genes that are commonly deleterious across many

strains.

Several possibilities could explain these results. One is that cells have different capacities for tol-

erating protein overproduction, regardless of the OE gene. To test this, we measured growth rates

in response to OE of a non-native yeast protein, GFP, expressed from the highly active TEF1 pro-

moter on a low-copy CEN vector. Strains with the most deleterious OE genes in fact did not show

higher sensitivity to GFP overexpression; however, three of the four North American oak-soil strains

did, as indicated by significantly slower doubling times (Figure 4A). The reduced growth was not

due to excessive GFP production as the oak strains express GFP at levels comparable to other

strains tested (Figure 4—figure supplement 1A). One possibility is that these strains have reduced

capacity to tolerate high protein production due to general amino acid shortage. To test, we mea-

sured growth rates during GFP OE when strains were grown in synthetic media with and without

amino acids; however, growth rates of the oak strains as a group were not different than other

strains, all of which grew comparably slower in the absence of amino acids (Figure 4B). The sensitiv-

ity of all strains to amino acid shortage is consistent with previous reports in the lab strain

(Farkas et al., 2018). However, the degree of sensitivity to amino acid shortage did not correlate

with the overall number of deleterious genes per strain, indicating that this is unlikely a driving factor

explaining strain-specific effects.

Another possibility is that strains vary in the burden of protein overproduction in the context of

the 2-mm plasmid, which may create a different type of stress on some strains. There was no overall

correlation between the number of deleterious OE genes and the abundance of the strain’s native 2-

mm plasmid (p>0.14) (although some strains with very low native 2-mm abundance also had a high

number of deleterious genes [Figure 2—figure supplement 2B]). There was also no correlation

between deleterious gene number and Moby 2.0 copy number. Nonetheless, we wondered if some

strains may be more sensitive to the burden of the Moby 2.0 plasmid.

To test this, we measured growth rates of strains with and without the Moby 2.0 empty vector.

Although many strains grew slower when expressing the empty vector under selection, some strains

were more significantly affected (Figure 4C). While none of the tests passed an FDR<0.05, the trend

was consistent across replicates for most strains. Indeed, the number of deleterious OE genes was

correlated with the percent decrease in growth rate when strains expressed the empty Moby 2.0

vector (r=0.7, p=0.005, Figure 4D). Interestingly, strains with the greatest sensitivity to the empty

Moby 2.0 vector were not the same as those most sensitive to GFP overproduction, revealing sepa-

rable effects. Thus, the added stress of DNA/Moby 2.0 overproduction may render some strains

more sensitive to gene OE (see Discussion).
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Figure 4. Strains show different sensitivities to protein and DNA expression. (A) The average and standard deviation (n=3) of doubling times for strains

containing a CEN empty vector (light gray) or CEN vector expressing GFP from the TEF1 promoter (purple). Asterisk indicates FDR<0.005 and plus sign

indicates FDR<0.07, paired t-tests. Western blot analysis of strains expressing the GFP vector is shown in Figure 4—figure supplement 1. (B) Doubling

times of GFP-expressing strains from (A) grown in synthetic medium without amino acids relative to synthetic-complete medium (n=3). All strains grow

significantly slower without amino acids (asterisk; FDR<0.05). (C) Average and standard deviation of doubling times for each strain carrying the Moby

2.0 empty vector grown in selection (blue) or with no vector and grown in the absence of selection (gray) (n=3). A plus sign indicates FDR<0.1, one-

tailed t-test. (D) Number of deleterious genes per strain (y-axis) compared to the % decrease in growth rate for each strain carrying the Moby 2.0 empty

vector (x-axis) as measured in (C). There is a positive correlation between the number of deleterious OE genes and % decrease in doubling time in

response to the vector (r=0.7, p=0.005, excluding YPS606). FDR, false discovery rate.

The online version of this article includes the following source data and figure supplement(s) for figure 4:

Figure supplement 1. Western blot analysis of anti-GFP (red) and anti-PGK1 loading control (green) in strains carrying to GFP plasmid, grown to log
phase in SC.

Figure supplement 1—source data 1. Raw blot detecting anti-PGK1 in samples 1–13.

Figure supplement 1—source data 2. Raw blot detecting anti-PGK1 in samples 14–16.

Figure supplement 1—source data 3. Raw blot detecting anti-GFP in samples 1–13.

Figure supplement 1—source data 4. Raw blot detecting anti-GFP in samples 14–16.

Figure supplement 1—source data 5. Uncropped Western blot images for all samples.
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Strain-specific responses to specific genes implicate models for variable
OE tolerance
In addition to gene-independent differences in tolerating overproduction, strains also varied in their

response to specific OE genes. Most overexpressed genes produced a relative fitness effect in a

small number of strains, suggesting the widespread influence of genetic background (Figure 2C). To

further investigate, we identified genes whose OE produced a significant fitness effect in each strain

and not more than two others, which we defined as ‘strain-specific’ gene lists. The lists ranged from

41 genes in the Y2209 strain to 1763 genes in the Y12 strain (Figure 5A). It is important to note that

some of these effects in strains overly sensitive to the empty vector could still reflect generalized

strain sensitivities. For example, 60% of the deleterious genes identified by our criteria as ‘strain-spe-

cific’ in Y12 were shared with another of the top four strains most sensitive to the empty vector

(DVBPG1373, YJM1592, YPS163, and YJM1389, Figure 4D). Thus, some of the identified genes may

be deleterious if OE in other strains growing in suboptimal or stressful conditions.

Next, we investigated functional or biophysical features enriched in each strain’s list, which might

implicate strain-specific constraints in tolerating gene OE. We compared, separately, genes that

were specifically beneficial or detrimental in a given strain to a list of genes in that strain that were

well-measured but produced no effect on fitness (FDR>0.1, see Materials and methods). To interpret

the results, we also measured strain-specific gene expression differences through triplicated RNA-

seq transcriptomic experiments (Supplementary file 5) to explore connections between native gene

expression and the fitness consequences of gene OE.

Among the many sets of functional and biophysical enrichments (see Supplementary file 6), sev-

eral themes emerged that suggest models for strain-specific responses to gene OE. The first model

may be particular to our experimental design, in which the S288c allele is expressed in the library.

Beneficial OE genes in BC187 and Y7568 harbored an overabundance of nonsynonymous SNPs

between the overexpressed S288c allele and the strains’ native allele (p<0.0009, Wilcoxon test). One

possibility is that the S288c allele may complement deleterious SNPs accumulated in those strains.

For two other strains, YJM1273 and Y7568, deleterious OE genes showed a higher proportion of

amino acid differences between native and expressed alleles (p<2�10�4, Wilcoxon test). Here, allelic

conflict could explain strain-specific sensitivity to the S288c allele, if the focal strain evolved its own

polymorphisms. These strains did not show higher genetic distances overall from S288c, raising the

possibility that the high rate of allelic differences may reflect genes under accelerated evolution.

Figure 5. Strain-specific responses to gene OE. (A) The number of strain-specific genes that were deleterious (blue) or beneficial (yellow) are shown for

each strain. (Note: YPS606 was not included due to low statistical power of duplicate replicates.) (B) Average and standard deviation of doubling times

in denoted strains overexpressing COS1 or MAL32, relative to the growth rate of each strain carrying the empty vector, when strains were grown in

synthetic complete medium (blue) or medium lacking tryptophan (orange) (n=3). Asterisk indicates slower relative growth in tryptophan-minus media

(p<0.05, one-tailed paired t-test).
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A second model explaining strain-specific gene OE effects is one in which the unique physiology

of a strain causes a unique response to gene OE. This model is supported by functional enrichments

for strain-specific OE gene lists, especially when those functions relate to differentially expressed

genes in the same strains (Supplementary file 7). There were several functional categories that were

enriched for multiple strain-specific lists. For example, OE genes beneficial to DBVPG1373 or Y12

were enriched for genes involved in the mitotic cell cycle (p<0.0004, Hypergeometric test). Both

strains showed differential gene expression of cell-cycle genes: G2/M genes were expressed signifi-

cantly lower in both strains and, in the case of DBVPG1373, S-phase genes were expressed signifi-

cantly higher, raising the possibility of underlying differences in the strains’ cell-cycle regulation or

timing. Another recurring example is reflected in nuclear-encoded mitochondrial genes. Beneficial

OE genes affecting BC187 and Y389 were enriched for mitochondrial functions including respiration

and cytochrome complex assembly, respectively; both strains showed altered expression of genes

related to mitochondria. In contrast, genes whose OE was deleterious to Y12 were enriched for

those encoding proteins in the mitochondrial matrix, and this functional category was enriched

among genes expressed higher in Y12. Notably, genes related to mitochondrial function were also

deleterious in a number of other strains sensitive to the empty vector (Figure 4D), raising the possi-

bility that these genes may be generally deleterious in suboptimal or stressful conditions (or con-

versely that strains with inherent differences in mitochondrial function, suggested by the differential

expression in the native strains, are sensitive to the vector). Although the exact connections in these

cases will require experimentation to elucidate, that related functional categories are associated

with a strain’s unique gene-OE susceptibilities and their unique expression differences points to

physiological differences that could influence strain responses (see Discussion).

A third model is a specific example of physiological differences—strain-specific resource limita-

tion. OE genes deleterious to vineyard strain DBVPG1373 encode proteins with a higher proportion

of tryptophan compared to inconsequential genes (p=8.1�10�5, Wilcoxon test). That the encoded

proteins are related by their composition hinted that limited tryptophan availability in this strain

could sensitize cells to proteins high in tryptophan content. Interestingly, transcriptomic profiling

revealed that genes repressed in this strain are enriched for genes encoding aromatic amino acid

biosynthesis proteins (p=4.1�10�6, Hypergeometric test), and other amino acids. Tryptophan is a

precursor for de novo synthesis of NAD+, and other genes in this pathway (BNA1, 4, 6, and 7) as

well as genes in the nicotinic acid/nicotinamide salvage pathway (NTP1, NRK1, and TRP2) were also

repressed in DBVPG1373. Together, these data raised the possibility that DBVPG1373 is sensitive to

conditions that deplete tryptophan from the cell. One prediction is that DBVPG1373, but not other

strains, should be especially sensitive to OE of tryptophan-containing proteins when grown in trypto-

phan-limiting media. To test this, we compared growth rates of DBVPG1373 and control strains

BC187 and YPS128 overexpressing tryptophan-enriched genes COS1 (3.9% tryptophan) or MAL32

(3.4% tryptophan) in synthetic media with and without tryptophan. DBVPG1373 expressing Moby

2.0 vectors grew especially poorly in synthetic media compared to the other strains, perhaps obscur-

ing the deleterious effects of COS1 and MAL32 OE (Figure 5B). Nonetheless, when overexpressing

the genes, DBVPG1373 was reproducibly more sensitive in the absence of tryptophan (p�0.05, one-

tailed paired t-test), whereas the other strains were not. It is possible that this strain is more sensitive

to any OE genes under these conditions, if the cellular system is taxed in the absence of tryptophan.

Nonetheless, these results support the model that strains can vary in resource limitation (see

Discussion).

A final model is that OE of regulators can perturb networks of downstream proteins, and strains

sensitive to those networks will be overly sensitive to OE of the regulators. One possible example is

seen in mosaic strain Y7568, whose deleterious OE gene list is enriched for DNA binding proteins

(p=1.8�10�4, Hypergeometric test), including site-specific transcription factors (Flo8, War1, Pho2,

Pdr1, Pdr8, and Hcm1). Collectively, the combined set of these factors’ targets is heavily enriched

for genes encoding plasma membrane-localized proteins including drug and other transporters

(p=5.7�10�5). Remarkably, the list of OE genes that are deleterious in Y7568 is also enriched for

genes encoding plasma membrane proteins (p=1.8�10�4). Although not enriched above chance, 9%

of the deleterious OE genes in Y7568 are direct targets of one of the six factors above

(Monteiro et al., 2020). These connections give support to the model that OE of regulators can be

deleterious via OE of downstream toxic genes, and that the effects can be strain-specific.
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Genes highly beneficial to some strains may relate to 2-mm replication
We identified a unique cluster of 21 genes whose OE was strongly beneficial in over half (60%) of

the strains, but notably not the lab strain. Although not enriched for any specific functions, the group

included multiple genes involved in ribosome biogenesis/function (RRP6, RRP7, LOC1, RPL35B, and

DOM34). Interestingly, over half the genes are located next to a centromere, and on closer inspec-

tion the plasmids would have cloned the centromere in the genes’ upstream regions. This was inter-

esting because 2-mm segregation is closely coupled with chromosome segregation (Liu et al., 2014;

Mehta et al., 2002). Past work showed that cloning centromeric sequences onto a 2-mm replicating

plasmid reduces copy number to that of chromosome levels (Apostol and Greer, 1988). This raised

the possibility that CEN sequences rather than the cloned genes could influence fitness effects in the

cell, at least for a subset of these genes.

We selected two plasmids from the beneficial gene cluster that encode ERG26 (involved in ergos-

terol biosynthesis) or LOC1 (involved in mRNA localization and also ribosome biogenesis) and the

adjacent CEN encompassed in their upstream regions. Oak-soil strain YPS128 carrying the ERG26 or

LOC1 plasmids grew faster than the empty vector control, confirming the fitness benefit to this strain

(Figure 6A). If the reduced copy number and growth benefit afforded to YPS128 is due only to the

cloned CEN, then deleting the entire ORF or the start codon should retain the benefits provided by

the CEN that remains on the plasmid. We generated derivatives of each plasmid in which the ORF

(but not upstream sequence) was deleted or the start codon replaced with a stop codon (M*).

Although the plasmid in which ERG26 was deleted showed some benefits, the other mutants did

not, even though the ERG26 M* variant retained lower copy number (Figure 6). Thus, although half

the plasmids in this cluster had cloned the CEN, the gene product may still be important. While

future research will be required to disentangle why these plasmids provide a benefit, these results

are yet another example in which strains respond differently to the same experimental environment.

Figure 6. Highly beneficial genes may relate to 2-mm replication. (A) Average and standard deviation of doubling times of strain YPS128 carrying

ERG26 or LOC1 Moby 2.0 vectors relative to the empty vector (n=5), or vectors in which the gene portion was deleted (D) or the start codon was

mutated (M*). Asterisk indicates significantly faster growth rate versus the empty-vector control (p<0.05, paired t-test). (B) Abundance of Moby 2.0

vectors was adjusted relative to a CEN vector (see Materials and methods, n=5 except for LOC1 in which n=3).
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Discussion
Our work shows that genetic background has a profound influence on how cells respond to gene

OE. Out of the ~4000 genes whose OE impacted fitness in at least one isolate, only ~12% influenced

fitness in 10 or more of the 15 strains. A hallmark of the 431 commonly deleterious OE genes is their

potential to perturb protein-interaction networks, either because the proteins naturally display many

connections or because their biophysical properties may force promiscuous interactions when over-

expressed (Gsponer et al., 2008; Vavouri et al., 2009; Ma et al., 2010; Chakrabortee et al.,

2016). But even for commonly deleterious genes, strains varied in the cost incurred by their OE. We

suggest two main classes for strain-specific effects. One is general responses that may be indepen-

dent of the overexpressed gene. For example, some strains became sensitized to gene OE in the

context of the high-copy plasmid: those with greater sensitivity to the empty vector (independent of

the vector copy number) showed proportionately more deleterious OE genes and with greater fit-

ness costs. Whether this limitation is due to the burden of extra DNA or something related to the

stress of 2-mm replication is not clear; nonetheless, the result unmasks strain-specific vulnerabilities

that have a broad impact. We note that many of the genes scored as deleterious in these sensitive

strains may cause fitness defects in other strains grown in suboptimal or stressful conditions. The sec-

ond class of strain-specific effects pertains to gene-specific responses. Our results suggest several

explanatory models, including strain-specific physiological differences, strain-specific resource limita-

tion, and unique sensitivities to network perturbation by regulator amplification.

The implications of our study are several-fold. The first is that strains may have differential access

to evolutionary trajectories if the cost of gene duplication varies across individuals. CNVs can pro-

duce immediate phenotypic gains for genes not subject to dosage control (Zhang et al., 2009; Kon-

drashov, 2012; Hose et al., 2015), but they can also produce standing genetic variation on which

selection can later act. This standing variation is important for the long-term functional evolution

(Ohno, 1970; Graur and Wh, 2000) and it can also accelerate evolution when selective pressures

change (Zheng et al., 2020). If the cost of gene duplication, or simply increasing expression from a

single-copy gene, is higher in some backgrounds, then those strains may be less likely to evolve

through CNV mechanisms. An extreme example is whole-chromosomal aneuploidy, which is a potent

mode of rapid evolution that is prevalent in some genetic backgrounds yet poorly tolerated in others

(Torres et al., 2007; Gallone et al., 2018; Hose et al., 2020; Scopel et al., 2021). Differences in

aneuploidy tolerance could be heavily influenced by different gene-specific sensitivities across

strains. Consistent with the notion that these differences can affect evolutionary trajectories, several

studies have found that different fungal strains evolve through different mechanisms when exposed

to the same laboratory selections, where some genetic backgrounds leverage aneuploidy, poly-

ploidy, and CNV while others do not (Filteau et al., 2015; Gerstein and Berman, 2020; Tung et al.,

2021).

Another implication of our work is the interplay between gene OE, genetic background, and envi-

ronment. Past work has shown that the cost of gene OE in a single strain can vary with nutrient limi-

tation (Wagner, 2005; Kafri et al., 2016; Frumkin et al., 2017; Farkas et al., 2018; Kintaka et al.,

2020). We propose that variation in environmental responses will further reveal variation in gene OE

differences across strains, as hinted at by our studies. For example, strain Y7568 showed little sensi-

tivity to GFP OE—unless amino acids were removed from the media in which case it grew among

the worst across strains (Figure 4). The sensitivity of vineyard strain DBVPG1373 to tryptophan-con-

taining proteins was exacerbated by tryptophan depletion, an environment that produced little

added effect on other strains. Even the sensitivity to the Moby 2.0 empty vector may have unmasked

strain sensitivities that are not evident if those strains are grown in other environments. Understand-

ing gene-by-environment interactions is among the greatest challenges in genetics. Understanding

how this interplay influences evolutionary potential is even more complicated but beginning to

emerge through experimental studies (Filteau et al., 2015; Tung et al., 2021).

The results of our work also have broad application, from microbial engineering to human health.

Many industrial processes use gene OE to improve microbial traits (Keasling, 1999; Xie and Fusse-

negger, 2018). Understanding (and ultimately predicting) how the response to engineering strate-

gies will vary across host strains could accelerate engineering efforts (Steensels et al., 2014;

Sardi and Gasch, 2017; Sardi and Gasch, 2018). Interpreting functional variants, from SNPs to

CNVs, is also a major goal in human genetics and precision medicine. While already a colossal goal,
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incorporating genetic background interactions in such predictions will be fundamental. Elucidating

mechanistic underpinnings in model organisms will continue to pave the way toward deeper

understanding.

Materials and methods

Key resources table

Reagent type
(species) or
resource Designation

Source or
reference Identifiers

Additional
information

Gene (kanr) kanr Yeast knockout
Collection;
Horizon Discovery

kanMX

Strain, strain
background
(Saccharomyces
cerevisiae)

BY4743 MATa/a
his3D1/his3D1
leu2D0/leu2D0
LYS2/lys2D0
met15D0/MET15
ura3D0/ura3D0

ATCC BY4743

Strain, strain
background
(S.
cerevisiae)

BC187 Gerke et al., 2006,
doi: 10.1534/
genetics.
106.058453

BC187

Strain, strain
background
(S.
cerevisiae)

DBVPG1373 Capriotti, 1955 DBVPG1373

Strain, strain
background
(S.
cerevisiae)

NCYC3290 Bili wine, Liti et al.,
2009,
doi: 10.1038/
nature07743

NCYC3290

Strain, strain
background
(S.
cerevisiae)

Y12 Palm wine, C.
Kurtzman
and the ARS culture
collection

Y12

Strain, strain
background
(S.
cerevisiae)

Y2209 Lepidopterous
sample,
C. Kurtzman and the
ARS culture
collection

Y2209

Strain, strain
background
(S.
cerevisiae)

Y389 Mushrooms, C.
Kurtzman
and the ARS culture
collection

Y389

Strain, strain
background
(S.
cerevisiae)

Y7568 Papaya, C.
Kurtzman
and the ARS culture
collection

Y7568

Strain, strain
background
(S.
cerevisiae)

YJM1273 Sniegowski et al.,
2002.
doi: 10.1111/j.1567–
1364.2002.tb00048.x

YJM1273

Strain, strain
background
(S.
cerevisiae)

YJM1389 Strope et al., 2015
doi: 10.1101/gr.
185538.114

YJM1389

Strain, strain
background
(S.
cerevisiae)

YJM1592 Strope et al., 2015
doi: 10.1101/gr.
185538.114

YJM1592

Continued on next page
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Continued

Reagent type
(species) or
resource Designation

Source or
reference Identifiers

Additional
information

Strain, strain
background
(S.
cerevisiae)

YJM978 Human, clinical,
Strope et al., 2015
doi: 10.1101/gr.
185538.114

YJM978

Strain, strain
background
(S.
cerevisiae)

YPS128 Sniegowski et al.,
2002.
doi: 10.1111/j.1567–
1364.2002.tb00048.x

YPS128

Strain, strain
background
(S.
cerevisiae)

YPS163 Sniegowski et al.,
2002.
doi: 10.1111/j.1567–
1364.2002.tb00048.x

YPS163

Strain, strain
background
(S.
cerevisiae)

YPS606 Oak tree bark,
Sniegowski et al.,
2002.
doi: 10.1111/j.1567–
1364.2002.tb00048.x

YPS606

Antibody Rabbit anti-GFP
(Rabbit polyclonal)

Abcam Abcam Cat# ab290,
RRID:AB_303395

(1:2000)

Antibody Mouse anti-PGK1
(Mouse monoclonal)

Abcam Abcam Cat#
ab113687,
RRID:AB_10861977

(1:1000)

Recombinant
DNA reagent

Moby 2.0 yeast gene
overexpression
library

Magtanong et al.,
2011.
doi: 10.1038/nbt.
1855

Recombinant
DNA reagent

pPKI Hose et al., 2020
DOI: 10.7554/eLife.
52063

AGB185 CEN plasmid with the
natMX selection marker

Recombinant
DNA reagent

pJH2 This study AGB91 pKI’s NAT cassette
was replaced with
the KAN cassette

Recombinant
DNA reagent

pJH3 This study AGB92 GFP was digested out
of pJH2 to obtain pJH3;
this was used as the CEN
empty vector control

Recombinant
DNA reagent

pJH2_TEFprom-
GFP-ADH1term

This study In BY4741 under
AGY1566

pJH2 plasmid with TEF
promoter and ADH1
terminator sewn together
with GFP

Recombinant
DNA reagent

MoBY 2.0 Empty
Vector Control

Magtanong et al.,
2011.
doi: 10.1038/nbt.
1855

AGB181

Recombinant
DNA reagent

ERG26D This study AGY1672 Strain expressing plasmid
from Moby 2.0 with
ERG26 coding sequence
deleted

Recombinant
DNA reagent

ERG26 M* This study AGY1673 Strain expressing ERG26
plasmid from Moby 2.0
with start codon replaced
with a stop codon

Recombinant
DNA reagent

LOC1D This study AGY1674 Strain expressing
plasmid from Moby
2.0 with LOC1 coding
sequence deleted

Continued on next page
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Continued

Reagent type
(species) or
resource Designation

Source or
reference Identifiers

Additional
information

Recombinant
DNA reagent

LOC1 M* This study AGY1675 Strain expressing LOC1
plasmid from Moby 2.0
with start codon
replaced with a stop codon

Chemical
compound,
drug

G418 (G-418 Disulfate) RPI RPI SKU G64000 CAS #108321-42-2

Strains and growth conditions
Strains used in this study are listed in Supplementary file 1. Unless otherwise indicated, strains were

grown in rich YPD medium (10 g/L yeast extract, 20 g/L peptone, 20 g/L dextrose) in shake flasks at

30˚C. Each strain was transformed with a pool of the molecular barcoded yeast ORF library (MoBY

2.0) containing 4871 pooled high copy number barcoded plasmids (Ho et al., 2009;

Magtanong et al., 2011). At least 25,000 transformants were scraped from agar plates for fivefold

replication of the library, and frozen stocks were made. All OE experiments were done in liquid YPD

medium with G418 (200 mg/L) added for plasmid selection. Experiments interrogating single genes

were performed via culture growths of yeast strains transformed with plasmids of interest, grown for

10 generations in YPD medium supplemented with G418 in shake flasks or test tubes at 30˚C with

shaking.

Moby 2.0 competitive growth
The competition experiments were performed as previously described (Ho et al., 2009;

Magtanong et al., 2011; Piotrowski Jeff and Simpkins, 2015). Briefly, frozen glycerol stocks of

library transformed cells were thawed into 100 ml of liquid YPD with G418 (200 mg/L) at a starting

OD600 of 0.05. The remaining cells from the frozen stocks were pelleted by centrifugation and repre-

sented the starting pool (generation 0) for each strain. After precisely five generations, each pooled

culture was diluted to an OD600 of 0.05 in fresh YPD containing G418, to maintain cells in log phase.

At 10 generations, cells were harvested and cell pellets were stored at �80˚C.

Library construction, sequencing, and analysis
Plasmids were recovered from each pool using QIAprep spin miniprep kits (Qiagen, Hilden, Ger-

many) after pretreatment with 1 ml R-Zymolyase (Zymo Research, Irvine, CA) and ~100 ml of glass

beads, with vortexing for 5 min. Plasmid barcodes were amplified using primers containing Illumina

multiplex adaptors as described in Magtanong et al., 2011; Piotrowski Jeff and Simpkins, 2015.

Barcodes from three biological replicates pooled and split across three lanes on an Illumina HiSeq

Rapid Run with single end 100 bp reads. Sequencing generated a median of 7,570,975 reads per

barcode. Read data are available in the Short Read Archive under accession number GSE171586.

Moby normalization and analyses
We experimented with several normalization strategies, including TMM in the edgeR package

(Robinson et al., 2010; McCarthy et al., 2012) and simple library size normalization, in which bar-

code reads were divided by the total barcode read count in the sample, multiplied by 1 million to

rescale for edgeR analysis. The latter provided the most robust procedure with the fewest assump-

tions. To recapture genes that were clearly present in the starting pool but completely absent after

10 generation growth, we performed a data imputation: genes with at least 20 normalized read

counts (>5th percentile of normalized reads) in all three replicates of the starting pool but missing

reads from the end-point analysis received a pseudocount of 1 added to the barcode reads at 10

generations. Measured and imputed data were analyzed using edgeR version 3.22.1, using a linear

model with generation (0 or 10) as a factor. Genes whose barcodes were significantly different after

10 generations of growth in each strain at an FDR<0.05 were taken as significant (Benjamini and

Hochberg, 1995). Fitness scores were calculated by taking the ratio of normalized reads at
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generation 10 divided by reads at generation 0 (Supplementary file 4). Hierarchical clustering was

performed on the log2(fold change) in normalized fitness scores using Cluster 3.0 (Eisen et al.,

1998) and visualized using Java TreeView (Saldanha, 2004). We considered if differences in statisti-

cal power could explain differences in the number of significant genes. Figure 1B shows that the

biological replicates were highly reproducible. The mean correlation among replicates per strain was

generally high (0.74–0.89), aside of three triplicated strains (Y2209, YJM1592, and YJM978). The cor-

relation was lower for these strains (0.55–0.65) even though their replicates agreed well (Figure 1B);

the apparently lower correlation is almost certainly driven by noise in the nearly negligible fitness

changes (i.e., log2 values close to 0). Strains with nearly identical correlation across replicates

showed very different numbers of significant genes (e.g., Y12 and YJM1273). Thus, differences in sta-

tistical power cannot explain the differences in significant genes across strains.

Functional and biophysical enrichments were assessed using Wilcoxon rank-sum tests for continu-

ous data (e.g., gene length, # of SNPs, and % amino acid content) and Hypergeometric tests for cat-

egorical terms, taking as the background data set the total number of measured genes (except for

strain-specific gene lists, in which the background data set was a list of insignificant genes in that

strain with FDR>0.1 and measured in at least two of the biological replicates). Because gene lists are

heavily overlapping, standard FDR calculations over-correct p-values. We therefore took a stringent

p-value of 5 �10�4 as significant, but also cite FDR significance in data files. Genes involved in trans-

lation that were removed from several analyses are listed in Supplementary file 2. Functional and

biophysical enrichments are available in Supplementary file 6. The background gene lists used for

enrichments are available in Supplementary file 8.

Determining copy number using quantitative PCR
We measured Moby 2.0 plasmid copy numbers in strains grown 10 generations in log-phase as

described above. Plasmid DNA was extracted from frozen cell pellets using phenol/chloroform and

ethanol precipitation, which recovers both plasmid and genomic DNA. Quantitative

PCR experiments were conducted using a Roche LightCycler 480 II and Roche LightCycler 480 SYBR

Green I Master SYBR-Green (Bio-Rad, Hercules, CA). Primers were designed to detect the KAN-MX

resistance gene located on plasmids and genomic TUB1 (control) (Supplementary file 3). CT values

for each sample were measured in technical triplicate with all experiments done in greater than three

biological replicates. The CT values for KAN were internally normalized to TUB1 expressed from the

genome and under an extreme constraint on copy number. KAN/TUB1 ratios measured for each iso-

late carrying the 2-mm plasmid were adjusted to BY4743 KAN/TUB1 ratios measured as an internal

control in each experiment. Data were scaled to BY4743 values, which were adjusted relative to a

KAN-MX marked CEN copy number measured in BY4743 (in the same way outlined above for Moby

2.0 plasmids).

2-mm copy number analysis
We determined the native copy number of the 2-mm gene, REP1, using publicly available DNA

sequencing data for each strain (Bergström et al., 2014; Hose et al., 2015; Strope et al., 2015).

(Note: BY4741 sequence was used instead of BY4743.) We mapped the sequencing data for each

strain to a S. cerevisiae genome using BWA-MEM (version 0.7.12-r1039; Li and Durbin, 2010).

Summed read counts for each gene were calculated by HT-Seq (version 0.6.0; Anders et al., 2015).

Read counts were normalized using RPKM.

Cloning
To express GFP, 343 bp upstream of TEF1 (TEFPROM) was PCR amplified and sewn to a PCR product

capturing the GFP ORF and ADH1 terminator (ADH1TERM) taken from the Yeast GFP Clone Collec-

tion (Thermo Fischer Scientific). PCR product was transformed into yeast with linearized Moby 1.0

empty vector (Ho et al., 2009) and homologous recombinants were selected and verified by

sequencing.

Moby 2.0 plasmids expressing ERG26 and LOC1 were isolated from E. coli using a Qiagen Spin

Miniprep Kit. ERG26 AND LOC1 deletions were generated by site-directed mutagenesis. The first

methionine codon of each ORF was mutated to TAG using quick-change cloning (Wang and Mal-

colm, 1999). All constructs were verified with Sanger sequencing.
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Western blot analysis
Yeast strains were grown in synthetic complete media to log phase (OD600 ~0.4). CEN-GFP was

monitored by Western blot analysis, loading OD-normalized cells in sample buffer and using rabbit

anti-GFP (Abcam) and mouse anti-PGK1 (Abcam) as a loading control, and imaging on the Licor

Odyssey Infrared Imager.

Transcriptome profiling (RNA-Seq) and analysis
Yeast strains described in Supplementary file 1 were grown in biological triplicate in rich YPD

medium with G418 at 30˚C with shaking, for three generations to an OD600 ~0.5. Cultures were pel-

leted by centrifugation and flash frozen with liquid nitrogen and maintained at �80˚C until RNA

extraction. Total RNA was extracted by hot phenol lysis (Gasch, 2002), digested with Turbo DNase

(Invitrogen) for 30 min at 37˚C, and precipitated with 5 M lithium acetate for 30 min at �20˚C. rRNA

depletion was performed using the Ribo-Zero (Yeast) rRNA Removal Kit (Illumina, San Diego, CA)

and libraries were generated according to the TruSeq Stranded Total RNA sample preparation guide

(revision E). cDNA synthesis was performed using fragment prime finish mix (Illumina, San Diego,

CA) and purified using Agencourt AMPure XP beads (Beckman Coulter, Indianapolis, IN). Illumina

adaptors were ligated to DNA using PCR (10 cycles). The samples were pooled, resplit, and run

across three lanes on an Illumina HiSeq 2500 sequencer, generating single-end 100 bp reads, with

~7,494,848 reads per sample. Data are available in GEO accession number GSE171585 and

supplementary file 5.

Reads were processed using Trimmomatic version 0.3 (Bolger et al., 2014), and mapped to the

S288c reference genome (version R64-1-1) with BWA-MEM (version 0.7.12-r1039; Li and Durbin,

2010). Read counts for each gene were calculated by HT-Seq (version 0.6.0; Anders et al., 2015).

Differentially expressed genes were identified by edgeR (Robinson et al., 2010) using a linear model

with strain background as a factor and paired replicates, identifying genes differentially expressed in

each strain relative to the average of all strains using an FDR cutoff of 0.05 (Benjamini and Hoch-

berg, 1995). Hierarchical clustering was performed by Cluster 3.0 (Eisen et al., 1998) and visualized

using Java TreeView (Saldanha, 2004). There was a total of 4802 genes that were significant in at

least one strain.
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