
Dental pathologies in lamniform and
carcharhiniform sharks with comments on
the classification and homology of double
tooth pathologies in vertebrates
Harrison S. Miller1,2, Haviv M. Avrahami1,2 and Lindsay E. Zanno1,2

1 Department of Biological Sciences, North Carolina State University, Raleigh,
North Carolina, United States

2 North Carolina Museum of Natural Sciences, Raleigh, North Carolina, United States

ABSTRACT
Double tooth pathologies are important indicators of trauma, disease, diet, and
feeding biomechanics, and are widely documented in mammals. However, diagnosis
of double tooth pathologies in extinct non-mammalian vertebrates is complicated by
several compounding factors including: a lack of shared terminology reflecting
shared etiology, inconsistencies in definitions and key features within and outside of
mammals (e.g., gemination, fusion, twinning, concrescence); differences in tooth
morphology, heterodonty, regeneration, and implantation between mammals and
non-mammalian vertebrates; and the unmet need for diagnostic criteria that can be
applied to isolated teeth, which are common in the fossil record. Here we report on
double tooth pathologies in the lamniform and carcharhiniform Cenozoic sharks
Otodus megalodon (NCSM 33639) and Carcharhinus leucas (NCSM 33640, 33641).
All three teeth bear a singular bifid crown with mirrored halves and abnormal
internal microstructure—a single, bifurcating pulp cavity in C. leucas and a more
than tripling of vessels in O. megalodon (from two to seven main ascending canals).
We identify these abnormalities as likely examples of gemination due to their
symmetry, which rules out fusion of tooth buds in one tooth file in different
developmental stages in polyphyodont taxa; however, we note that incomplete forms
of mesiodistal tooth fusion can be morphologically indistinguishable from
gemination, and thus fusion cannot be rejected. We further compile and recategorize,
when possible, the diversity of tooth pathologies in sharks. The identification of
double tooth pathologies in O. megalodon and C. leucas has paleobiological
implications. Such pathologies in sharks are largely hypothesized to stem from
trauma to developing tooth buds. Carcharhinus leucas is known to feed on prey
documented to cause feeding-related oral traumas (e.g., rays, sawfish, spiny fish, and
sea urchins). However, O. megalodon, is considered to have largely fed on marine
mammals, and perhaps turtles and/or fish, raising the possibility that the dietary
diversity of this species is, as of yet, underappreciated. The genetic underpinnings of
tooth morphogenesis and regeneration is highly conserved throughout vertebrate
evolution, suggesting a homologous framework can be established. However, more
research is needed to link developmental, paleobiological, and/or paleoenvironmental
factors to gemination/fusion in polyphyodont taxa. We argue that the definitions and
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diagnostic criteria for dental pathologies in vertebrates require standardization in order
to advance macroevolutionary studies of feeding trauma in deep time.

Subjects Marine Biology, Paleontology, Zoology, Anatomy and Physiology, Pathology
Keywords Shark, Tooth, Double tooth, Chondrichthyan, Otodus megalodon, Carcharhinus leucas,
Lamniformes, Carcharhiniformes, Dentition, Pathology

INTRODUCTION
A wide array of dental pathologies have been reported across multiple vertebrate clades, in
both extant (Aalderink et al., 2015; Crossley et al., 1998; Jett et al., 2017; Jones & Franklin,
2006; Scarpetta & Bell, 2020; Shen et al., 2011; Winer et al., 2016b; Winer, Liong &
Verstraete, 2013) and extinct taxa (Candeiro & Tanke, 2008; Jäger, Cifelli & Martin, 2020;
Kirillova, 2009; Matthias, McWhinney & Carpenter, 2016; Reisz et al., 2011; Xing et al.,
2013). In particular, a category of dental pathologies known as tooth doubling, or connate
teeth, is well documented in extant mammalian clades, especially humans (Agnihotri,
Marwah & Goel, 2007; Camargo, Aritaa & Watanabe, 2016; Cetinbas et al., 2007; Ertaş
et al., 2014; Guler et al., 2013; Hülsmann, Bahr & Grohmann, 1997; Hunasgi et al., 2017;
Jain, Yeluri & Munshi, 2014; Kamura, 2019; Knežević et al., 2002; Mahendra et al., 2014;
Sharma et al., 2015; Shokri, Baharvand & Mortazavi, 2013; Syed et al., 2016; Tasa, 1998;
Tsesis et al., 2003).

Double tooth pathologies occur when either a single tooth splits into two teeth
(gemination and twinning; Lucas & Schoch, 1987; Fig. 1A) or when two or more teeth
merge (fusion and concrescence; Lucas & Schoch, 1987; Figs. 1B–1D). These pathologies
are not mutually exclusive, and although rare, can occur in tandem. Specifically, there are
documentations of fusion and concrescence co-occurring in humans (Aldred, Gordon &
Talacko, 2011; Syed et al., 2016) and felines (Verstraete et al., 1996).

Gemination (Fig. 1A) is the result of a partial division of a single tooth bud (Lucas &
Schoch, 1987). It is the most commonly reported double tooth pathology with a wide
representation across terrestrial and marine mammals, including extant representatives of
Hominidae (Agnihotri, Marwah & Goel, 2007; Camargo, Aritaa & Watanabe, 2016; Ertaş
et al., 2014; Jain, Yeluri & Munshi, 2014; Knežević et al., 2002; Mahendra et al., 2014;
Sharma et al., 2015; Shokri, Baharvand & Mortazavi, 2013; Tasa, 1998; Tsesis et al., 2003),
Pinnipedia (Abbott & Verstraete, 2005; Kahle et al., 2018), Felidae (Aghashani et al., 2016;
Gomerčić et al., 2009; Mestrinho et al., 2018), Ursidae (Clark et al., 2017), Cercopithecidae
(Colyer, 1928), Equidae (Easley, 2006), Talpidae (Feldhamer & Towery, 2010; Kawada
et al., 2006; Kawada et al., 2011), Canidae (Gisburne & Feldhamer, 2005;Hitchin &Morris,
1966), Mustelidae (Hauer, 2002), Cetacea (Loch et al., 2011; Norton, 2009), and Muridae
(Sofaer, 1969). Gemination is also reported in the extinct taxa Coryphodontidae (Lucas &
Schoch, 1987), Condylarthra (Rose & Smith, 1979), andMammuthus (Burns, Baker & Mol,
2003).

Twinning (also referred to as schizodontia) (Fig. 1B) is identified as two mirrored teeth
occupying a single tooth position and is thought to be caused by the complete cleavage of a
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single tooth bud (essentially complete gemination of the tooth) (Lucas & Schoch, 1987).
It has been reported in Hominidae (Hunasgi et al., 2017; Sharma et al., 2015), Canidae
(Fine, 1964), and Condylarthra (Rose & Smith, 1979).

Fusion (also referred to as synodontia) (Fig. 1C) occurs when teeth are united by their
dentine and/or enamel due to the complete or incomplete union of two or more tooth buds
during development (Lucas & Schoch, 1987). Fusion has been reported in Hominidae
(Cetinbas et al., 2007; Guler et al., 2013; Hülsmann, Bahr & Grohmann, 1997; Kamura,
2019; Syed et al., 2016), Pinnipedia (Winer et al., 2016a), and Felidae (Verstraete et al.,
1996). However, in some of these cases, a more general definition of fusion is used that
includes concrescence, therefore in the literature it can be difficult to discriminate between
reports of these conditions (e.g., Cetinbas et al., 2007; Hülsmann, Bahr & Grohmann,
1997). In other cases, tooth doubling is reported without discrimination between fusion or
gemination, so the exact condition is unclear (Tsesis et al., 2003).

Concrescence (Fig. 1D) occurs when the roots of two or more teeth are united by
cementum or dentine after complete morphogenesis (Lucas & Schoch, 1987), whereby the
teeth are complete and conjoined. It has been reported in Hominidae (Kamura, 2019; Syed
et al., 2016), Pinnipedia (Kryukova, 2017), Talpidae (Asahara, Kryukov & Motokawa,
2011), Muridae (Peterková et al., 2000), Felidae (Verstraete et al., 1996), and Equidae
(Spasskaya, 2014).

The etiological factors that contribute to these pathologies are not well known and likely
vary across vertebrate clades, but several have been suggested including vitamin deficiency,
hormonal irregularities, infection, inflammation of surrounding tissues, genetic
predispositions, hereditary or congenital diseases, nutritional deficiency, local traumas,
ionizing radiation, endocrine influences, environmental factors, space restriction during
development, and excessive occlusal force (Guler et al., 2013; Hunasgi et al., 2017;
Mahendra et al., 2014; Syed et al., 2016). These etiological factors have been cited as

Figure 1 Idealized expressions of double tooth pathologies of stylized mammalian incisor teeth in lingual view. Illustrations of mammalian
incisor teeth showing no pathology, gemination, twinning, fusion, and concrescence. Note that there is a spectrum of manifestations of these
pathologies and that gemination, fusion, and concrescence can overlap in morphology depending on their stage of development.

Full-size DOI: 10.7717/peerj.12775/fig-1
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contributing factors in other tooth pathologies as well. For example, trauma, aberrant
tooth replacement, and genetic expression have been proposed to cause split carinae
(termed cutting edges in Chondrichthyes) (Welsh, Boyd & Spearing, 2020)—a tooth
pathology wherein the serrated cutting surface of the tooth bifurcates abnormally. This
pathology is reported in extinct taxa such as theropod dinosaurs (Tyrannosauridae,
Erickson, 1995; Paraves, Fiorillo & Gangloff, 2001; Han et al., 2011; and
Carcharodontosauridae, Candeiro & Tanke, 2008), mammals (Nimravidae,Welsh, Boyd &
Spearing, 2020), and fish (Otodus megalodon, Itano, 2013).

Although tooth doubling is widely reported in extinct taxa, the currently accepted
subtypes of double tooth pathologies that utilize a developmental framework were
categorized based on a mammalian model (Pindborg, 1970). Discriminating among
different types of double tooth pathologies is difficult in the absence of developmental data
and/or preservation of complete dentition (More & Tailor, 2012; Patil et al., 2013;
Camargo, Aritaa & Watanabe, 2016). Given that the majority of pathological fossil shark
teeth are recovered as isolated elements (Martínez-Pérez et al., 2018; Becker, Chamberlain
& Stoffer, 2000) and that the morphology of the dentition of sharks and mammals differ,
refined diagnoses of double tooth pathologies in shark teeth based on developmental
history are lacking. Double tooth pathologies including those simply described as bicuspid
and/or coalescent teeth have been reported in chondrichthyans (Leonodus carlsi (Botella,
2006; Botella, Valenzuela-Ríos & Martínez-Pérez, 2009), Batoidea (Becker, Chamberlain &
Stoffer, 2000; Delpiani, Figueroa & Mabragaña, 2012; Romer, 1942), Chlamydoselachidae
(Gudger, 1937), Heterodontidae (Gudger, 1937), Carcharhiniformes (Balbino & Antunes,
2007; Becker, Chamberlain & Stoffer, 2000; Gudger, 1937), and Lamniformes (Agassiz, 1843;
Balbino & Antunes, 2007; Becker, Chamberlain & Stoffer, 2000; Boessenecker, 2016; Cappetta
& Case, 1975; Davis, 1890; Hubbell, 1996; Itano, 2013; Roemer, 1849; Shimada, 1997;
Vuuren et al., 2015)). In the absence of a developmental diagnosis, questions remain about
the commonality, homology, and phylogenetic distribution of the various types of tooth
doubling in the fossil record, as well as the equivalence of these pathologies between
mammals and chondrichthyans.

Here we describe double tooth pathologies in the lamniform Otodus megalodon and the
carcharhiniform Carcharhinus leucas, two Cenozoic shark species that vastly differ in
ecology and tooth morphology. C. leucas, commonly known as the bull shark, evolved
during the Miocene (Matich & Heithaus, 2012). It is a widely distributed coastal predator
found in tropical, subtropical, and temperate ecosystems and is a highly efficient
osmoregulator that can travel between fresh and marine waters and respond to sudden
changes in salinity with minimal metabolic costs (Matich & Heithaus, 2012).
The maximum body size of C. leucas has been reported to be in the range of 2.85–3.27 m
(Habegger et al., 2012; Hoarau et al., 2021). Most carcharhiniforms, including C. leucas,
exhibit the orthodont tooth histotype (i.e., they have hollow pulp cavities), the second most
common histotype in sharks (Jambura et al., 2020; Moyer, Riccio & Bemis, 2015).

O. megalodon was a much larger shark, estimated to reach maximum body sizes
in the range of 14.2–18 m (Pimiento & Balk, 2015; Shimada, 2019) and was a globally
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distributed apex predator of marine ecosystems for as many as 14 million years.
O. megalodon appears in the fossil record around the middle Miocene (15.9 Ma) (Pimiento
& Clements, 2014), but there are varying opinions on when it went extinct. Some
suggest that O. megalodon went extinct near the Pliocene/Pleistocene boundary (2.6 Ma)
(Pimiento & Clements, 2014), whereas others propose a much earlier extinction around the
end of the early Pliocene (3.6 Ma) suggesting that specimens found in a locality dated
later than this have been reworked (Boessenecker et al., 2019). Lamniforms, such as
O. megalodon exhibit osteodont dentition (their pulp cavities are filled with osteodentine),
a histotype so far known to be exclusive to this group (Jambura et al., 2020; Moyer,
Riccio & Bemis, 2015).

In order to determine whether gemination, fusion, twinning, concrescence, or some
combination can be substantiated in these teeth, we describe their gross and internal
morphology using nano-CT imaging. We then examine the morphological evidence for
the formation of each pathological tooth. Identifying the types of tooth pathologies and
their distribution among vertebrate clades can provide important paleobiological
information on tooth developmental anomalies, and injuries, with potential implications
for behavior, such as feeding traumas in selachians.

MATERIALS AND METHODS
Specimens
Our figured specimen sample consists of six Cenozoic shark teeth, representing
pathological and non-pathological examples of two species–Otodus megalodon and
Carcharhinus leucas. We examined three C. leucas teeth, two with a double tooth
pathology (NCSM 33640 and NCSM 33641) and four non-pathological examples (NCSM
34038) as well as >700 non-pathological Carcharhinus sp. teeth from the NCSM
collections. For O. megalodon, we studied one pathological tooth (NCSM 33639), two
non-pathological teeth (NCSM 9545 and NCSM 14984), and examined over >200
non-pathological O. megalodon teeth from the NCSM collections. NCSM 33640 and
NCSM 33641 were collected at Venice Beach, Sarasota County, Florida. NCSM 34038 and
NCSM 9545 were collected from the Pliocene Yorktown Formation. NCSM 33639 was
collected 72.42 km off the coast of Wrightsville Beach, New Hanover County, North
Carolina. NCSM 14984 was collected from the Pliocene Bear Bluff Formation at an annex
off of SR-1700, 2.59 km south of the center of Elizabethtown, Bladen County, North
Carolina.

Taxonomy and terminology
Here we follow Jambura et al. (2019) and Shimada (2019) in placing O. megalodon within
the genus Otodus and subclade Otodontidae. Some authors propose alternative
genus-species combinations, such as Carcharodon megalodon or Carcharocles megalodon
(e.g. Cappetta, 1987; Purdy et al., 2001; Pimiento, 2010; Boessenecker, 2016). This ongoing
taxonomic debate does not affect our results. We follow Cappetta (2012) and Shimada
(2002) for dental terminology including the labial (external) and lingual (internal) face,
distal (further from the mid-point of the jaw) and mesial side (closer to the midpoint of the
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jaw), anterior (closer to the front of the jaw) and posterior (closer to the back of the jaw)
position, root (anchors the tooth to the jaw), neck (borderline between root and crown),
crown (cap composed of dentine and enameloid that is attached to the root), cusp (sharp
point formed by the tip of the crown), apex (tip of the crown), cutting edge (smooth or
serrated edge of the crown), serrations (individual sharp points along the cutting edge),
basal ledge (distinct ledge seen on the labial side at the base of the crown), central foramen
(distinct vascular opening on the lingual side of the tooth), nutrient groove (vascular
groove in the root leading to central foramen). We followMartínez-Pérez et al. (2018) and
Ivanov & Nilov (2016) for vascular terminology (e.g., main ascending, secondary
ascending, secondary horizontal canals, small horizontal, small vertical (or ascending),
large longitudinal (or semicircular), and small branching secondary canals) and Pindborg
(1970) for the definitions of double tooth pathology types.

Gross morphological data
All teeth were photographed using either a DSLR camera, in conjunction with image
stacking operations in Adobe Photoshop, or a Keyence VHX-1000E image stacking
microscope. Linear, angular, and serration density measurements were collected using
digital calipers, or a Keyence VHX-1000E image stacking microscope and ImageJ 1.53e
(Rasband & Image, 2011). Measurement standards are illustrated in Fig. 2 and include:
Crown Height (CH), Mesial Crown Length (MECL), Distal Crown Length (DCL),
Mid-Crown Length (MICL), Basal Crown Length (BCL), Mid-Crown Width (MCW),
Basal Crown Width (BCW), Neck Height (NH), Root Height (RH), Root Length (RL),
Root Width (RW), Labial Pathology Length (LAPL), Lingual Pathology Length (LIPL),
Mesiocentral Serration Density (MC), Distocentral Serration Density (SC), Left Lateral
Crown Length in Lingual View (LLCL), Right Lateral Crown Length in Lingual View
(RLCL), Left Lateral Serration Density in Lingual View (LLSD), and Right Lateral Serration
Density in Lingual View (RLSD). CH, MECL, and DCL were modified fromWhitenack &
Motta (2010), MICL, BCL, MCW, BCW, MC, and DC were modified from Hendrickx,
Mateus & Araújo (2015), and NH, RH, RL, RW. LAPL, LIPL, LLCL, RLCL, LLDD, and
RLDD were created for this study. Mesiocentral, distocentral, left lateral, and right lateral
serration density measurements were measured along the cutting edge where visible, then
mean and variance was taken.

Nano-CT imaging and segmentation
The internal morphology and structure of the C. leucas teeth NCSM 33640, NCSM 33641,
and NCSM 34038 and the O. megalodon teeth NCSM 9545 and NCSM 33639 were
investigated using the ZEISS Xradia 510 Versa X-ray microscope located in the Analytical
Instrumentation Facility at North Carolina State University using the following scanning
protocol, 160 kV and 63 µA. The CT images were captured using a voxel size of 26.92 mm
and image dimensions of 1,024 px × 1,004 px. CT data was segmented by hand without the
use of algorithms, and 3D models were produced using the software Avizo Lite 9.0
(Thermo Fisher Scientific, 2018). All micro-CT data and 3Dmodels produced for this study
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are available in the MorphoSource repository, under project P367889 at https://www.
morphosource.org.

RESULTS
Otodus megalodon
We compiled the diagnostic characteristics previously published in Purdy et al. (2001),
Pimiento (2010), and Boessenecker (2016) to refer NCSM 9545, 14984, and 33639 to the
otodontid (megatoothed) shark O. megalodon. Our referral is based on: large size (crown
height 107.59–91.10 mm, Table 1); a large chevron-shaped neck bearing thin enameloid
(Pimiento, 2010; Boessenecker, 2016); fine serrations (0.75–1.47 serrations per mm on
left lateral cutting edge in lingual view; Table 1) (Pimiento, 2010; Boessenecker, 2016); a
convex lingual face (Pimiento, 2010), a slightly convex to flat labial face (Pimiento, 2010),
and absence of cusplets on large teeth (Purdy et al., 2001). All teeth are highly symmetrical
(Fig. 3) suggesting they represent anterior teeth (Purdy et al., 2001), this combined with
the large, broad nature of the teeth suggests they were located in the upper jaw (Smith et al.,
2018). However, due to the highly symmetrical nature of the tooth, we are unable to
determine if the tooth derives from the left or right side of the upper jaw, thus we use the
terms “left lateral/right lateral” in place of “mesial/distal.”

The pathological O. megalodon tooth, NCSM 33639 (Fig. 3) is the largest in our sample
with a crown height of 107.59 mm and a basal crown length of 108.37 mm. Cutting edges
are dull and abraded, but where preserved, the mean value of individual serrations is
1.45 per mm on the left lateral cutting edge in lingual view and 1.76 per mm on the right
lateral cutting edge in lingual view (Table 1; Fig. 3D). In lingual view, the crown is split
medially from the apex to the neck forming two discrete cusps (Fig. 3A). Whereas in labial

Figure 2 Anatomical abbreviations. All linear measurements used for analysis of the external mor-
phology of the specimens. (A) (NSCM 33639: O. megalodon; lingual view) NH, Neck Height; RH, Root
Height; RL, Root Length; LIPL, Lingual Pathology Length; LLCL, Left Lateral Crown Length in Lingual
View; and RLCL, Right Lateral Crown Length in Lingual View. (B) (NCSM 33639; O. megalodon labial
view) CH, Crown Height; MICL, Mid-Crown Length; BCL, Basal Crown Length; and LAPL, Labial
Pathology Length; LLSD, Left Lateral Serration Density; and RLSD, Right Lateral Serration Density.
(C) (NCSM 33639; O. megalodon; lateral view) MCW, Mid-Crown Width; BCW, Basal Crown Width;
and RW, Root Width. (D) (NCSM 33640; C. leucas; lingual view) MECL, Mesial Crown Length; DCL,
Distal Crown Length; MC, Mesiocentral Serration Density; and DC, Distocentral Serration Density.

Full-size DOI: 10.7717/peerj.12775/fig-2
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Figure 3 External morphology of Otodus megalodon teeth. Pathological O. megalodon tooth NCSM 33639 in (A) lingual, (B) labial, and
(C) occlusal views. (D) Enlarged view of the pathology and serrations. Non-pathological O. megalodon tooth NCSM 9545 in (E) lingual, (F) labial,
and (G) occlusal views. (H) Enlarged view of the lack of pathology and serrations. Non-pathological O. megalodon tooth NCSM 14984 in (I) lingual,
(J) labial, and (K) occlusal views. (L) Enlarged view of the normal apex and serrations of non-pathological O. megalodon tooth NCSM 14984. Scale
bar equals 5 cm for views A–C, E–G, & I–K and 1 cm for view D, H, & L. Full-size DOI: 10.7717/peerj.12775/fig-3
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view, the division appears incompletely developed, expressed as a shallower groove and
restricted to the crown tip (Fig. 3B). The tip of the left lateral cusp in lingual view is slightly
more extensive and overlaps the right lateral cusp in lingual view (Fig. 3D). The left lateral
cusp in lingual view is slightly taller and mesiodistally longer than the right lateral cusp in
lingual view. The basal ledge is fairly pronounced compared to other O. megalodon teeth in
our study sample.

In our sample of both pathological and non-pathological O. megalodon teeth the labial
surface of the root is broadly flat or concave slightly, and the lingual surface is broadly
convex. On the non-pathological O. megalodon teeth (NCSM 9545 and 14984) there is a
convex bulge that occurs across the lingual surface of the root, immediately basal to the
neck. This bulge is a prominent feature in the majority of the O. megalodon teeth we

Table 1 Anatomical measurements.

Specimen number NCSM 33639 NCSM 9545 NCSM 14984 NCSM
34038

NCSM
33641

NCSM
33640

Species O. megalodon O. megalodon O. megalodon C. leucas C. leucas C. leucas

Crown Height (CH) 107.59 99.34 91.10 15.12 14.06 13.78

Mesial Crown Length (MECL) – – – 16.89 17.18 16.25

Distal Crown Length (DCL) – – – 13.16 15.21 15.00

Left Lateral Crown Length in Lingual View (LLCLL) 120.22 110.30 97.77 – – –

Right Lateral Crown Length in Lingual View (RLCLL) 114.70 106.12 104.76 – – –

Mid-Crown Length (MICL) 76.42 55.17 50.42 6.44 4.99 9.21

Basal Crown Length (BCL) 108.37 94.66 97.32 15.10 17.51 18.53

Mid-Crown Width (MCW) 18.10 20.96 14.17 2.32 1.52 2.34

Basal Crown Width (BCW) 30.74 15.67 23.60 4.09 4.10 3.09

Neck Height (NH) 26.78 12.63 26.60 1.12 1.90 1.04

Root Height (RH) 41.58 33.42 28.98 6.28 5.81 8.35

Root Length (RL) 113.95 94.70 97.89 15.63 19.86 19.86

Root Width (RW) 29.44 23.98 20.77 3.85 4.33 4.85

Lingual Pathology Length (LIPL) 62.62 0.00 0.00 0.00 5.11 7.51

Labial Pathology Length (LAPL) 13.31 0.00 0.00 0.00 2.98 5.40

Average Mesiocentral Serration Density per mm (MC) – – – 3.41 3.01 3.38

Average Distocentral Serration Density per mm (DC) – – – 3.39 3.24 2.66

Average Left Lateral Serration Density in Lingual View per mm
(LLSD)

1.45 1.47 0.75 – – –

Average Right Lateral Serration Density in Lingual View
per mm (RLSD)

1.76 1.59 1.03 – – –

Mesiocentral Serration Density per mm (MC) Variance – – – 1.93 0.29 0.18

Distocentral Serration Density per mm (DC) Variance – – – 2.43 0.02 0.48

Left Lateral Serration Density in Lingual View per mm (LLSD)
Variance

0.03 0.01 0.02 – – –

Right Lateral Serration Density in Lingual View per mm
(RLSD) Variance

0.06 0.02 0.16 – – –

Note:
Table shows the value measured for each anatomical feature pertaining to the six teeth in the study. All measurements are in cm unless otherwise specified in the table.
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examined from the NCSM collections (n = 210), although it is reduced or absent in
some examples (e.g., NCSM 8759 has a flattened surface and NCSM 32010 is slightly
concave in this area). However, on the pathological O. megalodon tooth (NCSM 33639)
there is a distinct concavity in this region bordered mesially and distally by a subtle bulge
(Figs. 3A, 3C).

CT data confirms that in pathological (NCSM 33639) and non-pathological (NCSM
9545) examples ofO. megalodon teeth, the tooth is filled with osteodentine and lacks a pulp
cavity as in other selachians with osteodont dentition (Jambura et al., 2018; Jambura et al.,
2019) (Fig. 4). Previous scans of O. megalodon teeth were noted as not having sufficient

Figure 4 Internal morphology of Otodus megalodon teeth. 3-D model (A–C) and nano-CT scan slice
(D) of pathological O. megalodon tooth NCSM 33639 showing internal structures, primarily the lack of a
pulp cavity, six ascending canals (highlighted in blue), and secondary canals (highlighted in yellow) in
(A) labiolingual, (B) mesiodistal, and (C and D) occlusal views. 3-Dmodel (E–G) and Nano-CT scan slice
(H) of non-pathological O. megalodon tooth NCSM 9545 showing internal structures, primarily the lack
of a pulp cavity, three ascending canals (blue), and secondary canals (yellow) in (E) labiolingual,
(F) mesiodistal, and (G and H) occlusal views. Scale bar equals 5 cm for views A–H. NCSM 14984 not
depicted due to COVID-19 restrictions not allowing for Nano-CT scanning. The dashed line on A and E
corresponds to where the slices shown in D and H were taken, respectively.

Full-size DOI: 10.7717/peerj.12775/fig-4
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resolution (30 µm) to detect the peripheral vascular structure (Jambura et al., 2019). From
our scans (<0.7 mm), we were able to visualize most of the vascular network of these
O. megalodon teeth.

The internal vascular structure of the O. megalodon teeth NCSM 9545 and 33639 is
similar to two of the vascular networks described by Ivanov & Nilov (2016) (Vascular
Systems 2 and 3). Overall, in both teeth, there is a network of small, secondary canals with
large, main ascending canals. The small, secondary canals can be further parsed into four
types (sensu Ivanov & Nilov, 2016): small horizontal, small vertical (or ascending), large
longitudinal (or semicircular), and small branching secondary canals. Ivanov & Nilov
(2016) use this terminology to describe the vascular systems of orthodont shark teeth,
which they note as being more diverse with regard to vascular morphology than osteodont
shark teeth. However, Martínez-Pérez et al. (2018) applied these terms to osteodont shark
teeth, suggesting that they are broadly applicable.

In both our O. megalodon teeth, the main ascending canals extend from the root to the
apex of the crown and have a distinct “L” shape in which the canal starts to hook towards
the lingual face once it approaches the root (Figs. 4B and 4F), as described in Martínez-
Pérez et al. (2018). This is similar to an Early Devonian shark Leonodus carlsi tooth
documented by Martínez-Pérez et al. (2018) that exhibits main ascendant vascular canals
connected at the base of the tooth by a “T”-shape junction and emerging at the base of
the labial and lingual regions. Main ascending canals are also roughly twice the diameter of
all secondary canals. The average diameter of the main ascending and secondary canals of
NCSM 9545 are 369.54 and 184.85 mm, respectively. Whereas, the average diameter of
the main ascending and secondary canals of NCSM 9545 are 347.36 and 166.57 mm,
respectively (Table S1). The longitudinal canals in both teeth are larger than the other
secondary canals, with diameters approximating those of the main ascending canals, but
have a semicircular shape and are constrained to the root. Horizontal and vertical
secondary canals have similar diameters to branching secondary canals but are longer and
more linear.

The pathological O. megalodon tooth (NSCM 33639) differs from the non-pathological
tooth (NCSM 9545) (Fig. 4A) in that the former has more than double the quantity of
main ascending canals (seven) than the latter, which has only two (Fig. 4E). One of these
main ascending canals bifurcates toward the apex of the crown in concordance with the
externally divided crown and may have been affected by the pathology; there is no
bifurcation to this extent seen in NCSM 9545 (Fig. 4). The main ascending canals in NCSM
are more concentrated on one side of the tooth as opposed to NCSM 9545 where they
are concentrated in the middle. There is also more differentiation in the size of the canals
in NCSM 33639; with main ascending canals ranging in diameter from 215.36–753.76 mm
and secondary canals ranging from 107.68–269.20 mm, vs NCSM 9545; with main
ascending canals ranging in diameter from 242.28–511.48 mm and secondary canals
ranging from 134.60–269.20 mm (Table S1).
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Carcharhinus leucas
We compiled the diagnostic characteristics previously published in Purdy et al. (2001) and
Marsili (2006) to refer NCSM 34038, NCSM 33640, and NCSM 33641 to the carcharhinid
shark C. leucas. Our referral is based on: broad, triangular-shaped cusps on upper teeth
and arrow-shaped cusps on lower teeth with serrated lateral cutting edges (Marsili, 2006;
Fig. 5); coarser serration near the base than the apex of the crown (Marsili, 2006; Fig. 5);
straight or slightly wavy mesial cutting edge that is sometimes weakly convex near the tip
of the cusp (Purdy et al., 2001; Fig. 5); concave distal cutting edge (Marsili, 2006; Fig. 5);
convex lingual face of the crown characterized by a well-developed neck-area (Marsili,
2006; Figs. 5B, 5F, 5J); flat labial face of crown (Marsili, 2006; Figs. 5A, 5E, 5I); and high
root characterized by a lingual nutrient groove (Marsili, 2006; Fig. 5). NCSM 34038
and NCSM 33641 are broad and serrated, suggesting they are anterior teeth from the upper
jaw (Smith et al., 2018). NCSM 33640 is long, slender, and dull, suggesting it is an anterior
tooth from the lower jaw (Smith et al., 2018).

The pathological C. leucas tooth, NCSM 33640, exhibits cutting edges that are sharp and
well preserved. Where preserved, the mean value of individual serrations is 3.38 per mm
on the mesial cutting edge and 2.66 on the distal cutting edge (Table 1; Fig. 5D). In lingual
view, the crown is split medially from the apex to the neck forming two discrete cusps
(Fig. 5A). Whereas in labial view, the division appears incompletely developed, expressed
as a shallower groove and restricted to the midpoint of the crown (Fig. 5B). In addition, the
two cusps have been separated mesiodistally, this is the only pathological tooth in the
our sample to exhibit this separation. Due to this separation, the inside edges of each side
of the cusp bear serrations (Fig. 5D). The mesial cusp is taller and mesiodistally shorter
than the distal cusp.

The pathological C. leucas tooth, NCSM 33641, exhibits cutting edges that are fairly
dull. Where preserved, the mean value of individual serrations is 3.01 mm on the mesial
cutting edge and 3.24 mm on the distal cutting edge (Table 1; Fig. 5H). In lingual view, the
crown is split medially from the apex to the neck forming two discrete cusps (Fig. 5E).
Whereas in labial view, the division appears incompletely developed, expressed as a
shallower groove and restricted to the crown tip (Fig. 5F). The mesial cusp is taller and
mesiodistally longer than the distal cusp. Both the mesial and distal cusp exhibit curvature.
However, the distal cusp exhibits mesially directed curvature, whereas the mesial cusp
exhibits distally directed curvature; similar to the rest of the crown, and folds underneath
the distal side.

In our sample of non-pathological C. leucas teeth NCSM 34038 (n = 1) and NCSM
29144 (n = 4), each tooth, except a single poorly preserved tooth, exhibits a fully or
partially preserved nutrient groove. When well-preserved, the nutrient groove begins at the
base of the root along the midline and travels apically halfway up the root before merging
with the central foramen. In the largest and best preserved C. leucas tooth from the NCSM
29144 lot the nutrient groove continues apically from the central foramen as a single
shallow fossa before terminating at the crown enameloid. This single apically directed
midline fossa is also present in well-preserved teeth in the NCSM collections previously
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Figure 5 External morphology of Carcharhinus leucas teeth. Pathological C. leucas tooth NCSM 33640 in (A) lingual, (B) labial, and (C) occlusal views.
(D) Enlarged view of the pathology and serrations. Pathological C. leucas tooth NCSM 33641 in (E) lingual, (F) labial, and (G) occlusal views. (H) Enlarged
view of the pathology and serrations. Non-pathological C. leucas tooth NCSM 34038 in (I) lingual, (J) labial, and (K) occlusal views. (L) Enlarged view of the
normal apex and serrations. For views A, F, and J, the mesial side of the tooth is on the left and the distal is on the right, it is the inverse for views B, E, and I.
Scale bar equals 1 cm for views A–C, E–G, and I–K and 0.5 cm for views D, H, and L. Full-size DOI: 10.7717/peerj.12775/fig-5
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identified only to the genus level as Carcharhinus sp. (n > 700). In both pathological
C. leucas teeth this midline lingual groove is absent, and instead there is an apically
oriented midline ridge, which is paralleled mesially and distally by two subtle grooves.
The ridge is pronounced in NCSM 33647 and the grooves are subtle, whereas in NCSM
33640 the ridge is more faint and the grooves are more prominent.

In our sample (including pathological and non-pathological teeth) CT-scans reveal that,
along with the central foramen, smaller vascular canals open across the external surface of
the root and within the nutrient groove. Internally, the diameter of the central foramen
is distinctly larger than these smaller canals. In the non-pathological tooth NCSM 34038
the central foramen continues as a single canal, traveling apically to open into the pulp
cavity. In pathological tooth NCSM 33640 there is a single large central foramen that is
offset towards the mesial side of the nutrient groove. Internally, this foramen appears to
bifurcate prior to merging with the pulp cavity. Additionally, there are a series of smaller
accessory foramina visible across the external surface of the nutrient groove, one of
which is offset to the distal side and may represent a second central foramen. However,
internally this canal does not appear to maintain a size diameter consistent with the
distinctly larger mesially offset central foramen. It is unclear from the external surface or
internal scans if the other pathological tooth NCSM 33641 houses multiple central
foramen or an internally bifurcating central foramen. Nonetheless, the concavity that
houses the central foramen within the nutrient groove appears slightly mesiodistally
expanded.

Pathological (NCSM 33640 and NCSM 33641) and non-pathological (NCSM 34038)
C. leucas teeth possess hollow pulp cavities (Fig. 6). The non-pathological tooth exhibits a
single, hollow pulp cavity as documented previously (Jambura et al., 2018). This contrasts
with the two pathological teeth examined, which house a bifurcated, single, hollow pulp
cavity.

Variation in pathological teeth
Within our sample of double tooth pathologies in these two species of selachians, we note
differences in the extent of crown splitting, bilateral height and recurvature of the doubled
apices. For example, whereas the length of the lingual pathology is consistent among all
teeth in our sample (extending from the apex of the crown to the neck of the tooth),
the pathology length of the labial aspect varies. Crown splitting is restricted to the crown
tip on NCSM 33639 (O. megalodon) and NCSM 33641 (C. leucas), but is restricted to the
midpoint of the crown on NCSM 33640 (C. leucas). The height of the split apices also
varies with the left lateral side of the cusp being taller on NCSM 33639 (O. megalodon) and
NCSM 33640 (C. leucas), and the right lateral side being taller in NCSM 33641 (C. leucas),
when viewed lingually. Finally, the degree of separation and degree of recurvature
between the split crown apices is variable among our sample. Both apices are tightly
appressed on NCSM 33639 (O. megalodon). The right lateral aspect of NCSM 33641
(C. leucas) folds underneath the left lateral aspect in lingual view, whereas the left lateral
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apex twists over the right lateral apex in lingual view on NCSM 33639. In contrast, the
double apices are widely separated on NCSM 33640 (C. leucas). These differences are likely
idiosyncratic features related to differential timing of gemination or fusion during
development.

Figure 6 Internal morphology of Carcharhinus leucas teeth. 3-Dmodel (A–C) and Nano-CT scan slice
(D) of pathological C. leucas tooth NCSM 33640 showing internal structures, primarily the presence of a
singular, bifurcating pulp cavity in (A) labiolingual, (B) mesiodistal, and (C and D) occlusal views. (E–G)
(NCSM 33641) 3-D model (E–G) and Nano-CT scan slice (H) of pathological C. leucas tooth NCSM
33641 showing internal structures, primarily the presence of a singular, bifurcating pulp cavity in (E)
labiolingual, (F) mesiodistal, and (G and H) occlusal views. A total of 3-D model (I–K) and Nano-CT
scan slice (L) of non-pathological C. leucas tooth NCSM 34038 showing internal structures, primarily the
presence of a singular pulp cavity in (I) labiolingual, (J) mesiodistal, and (K and L) occlusal views. Scale
bar equals 1 cm for views A–L. The dashed lines on A, E, and I correspond to where the slices shown in D,
H, and L were taken, respectively. Full-size DOI: 10.7717/peerj.12775/fig-6
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DISCUSSION
Classification and homology of double tooth pathologies
Dental pathologies in extant and extinct chondrichthyans are well documented and
include a range of abnormalities over a wide phylogenetic distribution (Fig. 7). These
deformations include, but are not limited to, notched, split, and deformed cutting edges,
cracking of enameloid, excessive dentine growth, deformed tooth crowns, and the
development of fossae and perforations (e.g., Hubbell, 1996; Shimada, 1997; Becker,
Chamberlain & Stoffer, 2000; Itano, 2013; Boessenecker, 2016). Specifically, among
Carcharhiniformes and Lamniformes, deformation/rotation/bending/twisting of the tooth,
cutting edge deformation, root deformation, irregularly sized teeth, and irregular tooth
rows have been reported. Some of the pathologies are only documented in a single genus/
species including tooth perforation (Carcharodon, Hubbell, 1996), nutrient groove
deformation (Cretoxyrhina mantelli, Shimada, 1997), and neck deformation (Cretoxyrhina
mantelli, Shimada, 1997).

Double tooth pathologies are also commonly reported in extant and extinct
chondrichthyans. For example, basally conjoined teeth of the Lower Devonian
early-diverging chondrichthyan Leonodus carlsi (Botella, 2006; Botella, Valenzuela-Ríos &
Martínez-Pérez, 2009) are proposed to represent an example of fusion. Whereas,
“bicuspid” and/or “coalescent” teeth and/or indeterminate double tooth abnormalities are
identified in the Carcharhiniform Galeocerdo cuvier (Gudger, 1937, the author; however,
uses the junior synonym Galeocerdo tigrinus named by Müller & Henle, 1837), the
Lamniform Squalicorax pristodontus (Balbino & Antunes, 2007), Rajiformes (Delpiani,
Figueroa & Mabragaña, 2012), and many other species within Carcharhiniformes and
Lamniformes (Agassiz, 1843; Balbino & Antunes, 2007; Becker, Chamberlain & Stoffer,
2000; Boessenecker, 2016; Cappetta & Case, 1975; Davis, 1890; Gudger, 1937;Hubbell, 1996;
Itano, 2013; Roemer, 1849; Shimada, 1997; Vuuren et al., 2015). Various pathologies have
been reported in O.megalodon specifically (e.g., Renz, 2002); however, these specimens are
not housed in public repositories.

We find multiple features point to gemination and/or fusion as the most likely etiology
for the specimens of O. megalodon and C. leucas described herein including (1) a single
incompletely split crown (as opposed to two crowns united by dentine and/or enameloid);
(2) bifurcated, partially doubled internal morphology (pulp cavity in C. leucas and
ascending canals of O. megalodon); and (3) only minor abnormalities to the root
morphology along the midline. The latter includes a midline ridge with parallel grooves
instead of a single midline groove, mesiodistally expanded nutrient groove near the central
foramen, an internally bifurcating central foramen, and the possible presence of multiple
central foramina in the pathological C. leucas tooth; and a concavity across the lingual
surface between the neck and the crown in the pathological O. megalodon tooth.

There are several main issues that complicate etiological diagnosis of double tooth
pathologies in sharks and other vertebrates, which prevents comparison with those of
mammals. First is the absence of shared terminology reflective of shared etiology. Whereas
double tooth pathologies in sharks are often referred to as “bicuspid” or “coalescent” (e.g.,
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Figure 7 Simplified Chondrichthyes composite phylogeny highlighting the published distribution of
dental pathologies. Main branching structure of selachians including the pattern of divergence among
Chlamydoselachidae, Heterodontidae, Carcharhinidae, Mitsukurinidae, Odontospididae, the relation-
ships among Carcharhiniformes, and the placement of Carcharodon in Lamnidae follows Vélez-Zuazo &
Agnarsson (2011). Extinct taxa from Otodontidae, Cretoxyrhinidae, Anacoracidae, and Archaeolamnidae
were not included in the molecular analyses that form the backbone of this phylogeny. We have therefore
grafted them unresolved within Lamniformes but outside Lamnidae (following Shimada et al., 2017;
Siverson & Lindgren, 2005; Rozefelds, 1993; respectively and Cappetta, 2012) relative to the relationships
of Mitsukurinidae, Odontospididae, and Lamnidae hypothesized by Vélez-Zuazo & Agnarsson (2011)
and Sorenson, Santini & Alfaro (2014). Cretomanta is placed unresolved within Batoidae following
Underwood & Cumbaa, 2010. Leonodus is hypothesized to belong to a clade representing a sister group to
all other chondrichthyans (Antarctilamna-Wellerous; Ginter, 2004). Batoidea silhouette adapted from art
by Piotr Siedlecki from FreeIMG: https://www.freeimg.net/photo/1471979/manta-ray-sting-silhouette.
Selachii silhouettes adapted from art by Faceone911 Glass on toppng: https://toppng.com/free-image/
shark-silhouette-PNG-free-PNG-Images_49350. Carcharhinidae and Heterodontus silhouettes adapted
from art by Francois Libert and John Turnbull, respectively. Lamniformes silhouette from wikimedia
commons. Chlamydoselachus silhouette adapted from art by Tambja on wikimedia commons. Leo-
nodus based on Antarctilamna art by DiBgd fromWikimedia Commons. Silhouettes representing tooth
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Balbino & Antunes, 2007; Botella, 2006; Botella, Valenzuela-Ríos & Martínez-Pérez, 2009;
Delpiani, Figueroa &Mabragaña, 2012; Gudger, 1937), the terms “fusion,” “concrescence,”
“gemination,” and/or “twinning” are common in mammalian studies. The latter terms
are associated with developmental processes allowing direct etiological comparisons,
whereas the former are generally ambiguous (undefined developmentally) with respect to
splitting or fusion of the tooth bud during morphogenesis.

Mammals exhibit thecodont and largely diphyodont dentition (i.e., their teeth are
completely enclosed in a deep socket of bone and most species only have two generations
of teeth during their lifespan) (García & Zurriaguz, 2016). The teeth of sharks are not
housed in sockets, rather they are attached to the top of mineralized cartilaginous jaws via
connective tissues (acrodont) and infinitely regenerated throughout life (polyphyodont)
(Ripamonti, 2018). Differences in tooth attachment, replacement frequency, and mode
might affect how these double tooth pathologies manifest anatomically, or whether or not
they occur at all. For example, incomplete breakdown of the dental lamina (a fold of oral
epithelium that forms the tooth bud) is hypothesized to cause oral pathologies in mammals
(Eversole, 1999; Štembírek et al., 2010), but is an irrelevant etiology in sharks due to the
presence of a continuously erupting dental lamina in the latter (Ripamonti, 2018)
(although laminar injury in sharks would be expected to cause tooth pathology). Disease
and genetic mutations have been proposed as alternative possible causes of tooth
deformities in mammals. Although there have been no functional studies evaluating the
impact of disease and genetic mutations on dental development in sharks, these etiologies
have largely been discounted in part due to modern selachians being particularly resistant
to infections (Becker, Chamberlain & Stoffer, 2000 and references therein). Rather, tooth
deformities in extant selachians, such as those resulting in tooth doubling, are generally
hypothesized to be the result of trauma (Becker, Chamberlain & Stoffer, 2000; Gudger,
1937). Despite enormous variation in the form and function of vertebrate dentition, the
structure and morphogenesis of teeth, the tooth regeneration process itself, and the genetic
underpinnings of both are thought to be highly conserved throughout vertebrate evolution
(Tucker & Fraser, 2014; Ripamonti, 2018). This suggests that developmental
characterizations of tooth pathologies are likely to be homologous across vertebrates, and
therefore the terminology proposed for mammalian double tooth pathology subtypes is
likely to be widely applicable beyond mammals.

Figure 7 (continued)
deformation and abnormal tooth row from Becker, Chamberlain & Stoffer (2000) and Gudger (1937).
All Silhouettes fall under creative commons fair use. Image sources: [Blacktip Reef Shark, female -
Carcharhinus melanopterus] (https://www.flickr.com/photos/zsispeo/36123502541), [CC BY-NC-SA
2.0] (https://creativecommons.org/licenses/by-nc-sa/2.0/)- [Port Jackson shark (juvenile) - Hetero-
dontus portusjacksoni] (https://www.flickr.com/photos/johnwturnbull/15026942705), [CC BY-NC-SA
2.0] (https://creativecommons.org/licenses/by-nc-sa/2.0/)- [File:Megalodon-Carcharodon-Scale-
Chart-SVG] (https://commons.wikimedia.org/wiki/File:Megalodon-Carcharodon-Scale-Chart-SVG.
svg), [CC BY-SA 4.0] (https://creativecommons.org/licenses/by-sa/4.0/deed.en)- [File:Chlamydose-
lachus ang.JPG] (https://commons.wikimedia.org/wiki/File:Chlamydoselachus_ang.JPG), [CC BY-SA
3.0] (https://creativecommons.org/licenses/by-sa/3.0/deed.en)- [File:Antarctilamna speciesDB15.jpg]
(https://commons.wikimedia.org/wiki/File:Antarctilamna_speciesDB15.jpg), [CC BY-SA 4.0] (https://
creativecommons.org/licenses/by-sa/4.0/deed.en). Full-size DOI: 10.7717/peerj.12775/fig-7
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Second, there exists inconsistency in the application of mammalian terms for double
tooth pathologies in the published literature, whereby the same terms are applied to
different (hypothesized) developmental conditions and/or contrasting conditions are
noted as key features for the same diagnosis. If terms and definitions lack standardization
within mammals, this further complicates their extension outside the clade. For example,
Kirillova (2009) describes tooth abnormalities inMammuthus argued to represent damage
to a single tooth bud during tooth morphogenesis as “fused” teeth. Based on the
developmental condition, this etiology should equate to gemination. Hülsmann, Bahr &
Grohmann (1997) describe human tooth abnormalities using the terms fusion and
concrescence interchangeably when some examples should only equate to fusion and
others should only equate to concrescence. Venkatesh et al. (2016) states that two distinct
pulp cavities is a diagnostic feature of fusion, whereas a single pulp cavity is a diagnostic
feature of gemination and cites Sekerci et al. (2011) for this definition. By contrast,
Camargo, Aritaa & Watanabe (2016) state that fusion can be present with only one pulp
cavity, even resulting in a single abnormally large tooth (More & Tailor, 2012). Finally,
More & Tailor (2012) suggest that gemination, twinning, concrescence, and other terms
are types of “fusion”, conflating all of these conditions with true fusion.

Perhaps the most serious impediments to comparing double tooth abnormalities during
the evolution of vertebrates rests in the nature of the fossil record itself including the
commonality of tooth preservation outside the jaw and the inability to directly observe
tooth morphogenesis. This is because the diagnostic difference between fusion and
gemination is a developmental one and it is therefore difficult to discriminate among these
pathologies in isolated teeth (More & Tailor, 2012; Patil et al., 2013). Fusion is defined as
the joining of two tooth buds in development, whereas gemination is defined as the
interrupted splitting of a tooth bud resulting in a partially bifurcated tooth. Fusion can be
complete, resulting in a single hypertrophied tooth, or incomplete resulting in separate
crowns stemming from a single root, separate roots attached to a single crown, a partially
divided root and single crown, or a partially divided crown and single root (Bhargava,
Chaudhary & Aggarwal, 2012; More & Tailor, 2012; Patil et al., 2013; Camargo, Aritaa &
Watanabe, 2016; Venkatesh et al., 2016). Any incomplete form of fusion can be
morphologically indistinguishable from gemination, particularly when attempting to
compare key diagnostic features noted for mammals to double tooth pathologies in sharks.
For example in a study on human dentition, Kelly (1978) noted that because gemination
is the splitting of a single tooth bud, the halves are predicted to be mirror images;
whereas fusion typically represents fusion of a supranumerary tooth (typically abnormal in
shape) to a normal tooth. However, in clear instances of gemination in the tiger shark
Galeocerdo cuvier and the blacktip shark Carcharhinus limbatus caused by the puncture of
a tooth germ by a stingray spine (Gudger, 1937; rediagnosed here in Table 2), the two
halves of the pathological teeth are morphologically distinct, reflecting the original
asymmetry of the non-pathological tooth structure. Therefore, this criterion may only
apply to teeth that are normally symmetrical and cannot be generally applied. In addition,
Kelly (1978) notes that fusion in mammals is typically characterized by the presence of
two distinct roots, whereas in cases of gemination, there is usually only a single root.
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Table 2 Dental pathologies across Chondrichthyes.

Species name Original identification of
pathology

Pathology category (Fig. 7) Source

Carcharhinus leucas Double Tooth Pathology indet. Double Tooth Pathology This article

Bent Cusp Deformation Becker, Chamberlain & Stoffer
(2000)

Carcharhinus obscurus Irregular series of tiny bud-like
teeth lacking a central cusp

Irregularly Sized Tooth Becker, Chamberlain & Stoffer
(2000)

Broken cutting edge due to teleost
spine puncture

Deformation Becker, Chamberlain & Stoffer
(2000)

Tooth Division/Split Double Tooth Pathology indet. Gudger (1937)

Entire tooth bent backwards Deformation Gudger (1937)

Carcharhinus plumbeus Broken cusps due to teleost spine
puncture

Deformation/bending/twisting Becker, Chamberlain & Stoffer
(2000)

Negaprion eurybathrodon Twisted crown Deformation/bending/twisting Balbino & Antunes (2007)

Notched cutting edge Cutting Edge Deformation Balbino & Antunes (2007)

Asymmetrically-shaped root Root Deformation Balbino & Antunes (2007)

Carcharhinus sp. Tooth Division/Split due to
internal division of tooth bud

Double Tooth Pathology indet. Gudger (1937)

Abnormally sized molar teeth Irregularly Sized Tooth Gudger (1937)

Abnormal amount of teeth in
tooth row

Irregular Tooth Row Gudger (1937)

Carcharhinus limbatus Tooth Division due to embedded
sting-ray spine

Gemination Gudger (1937)

Galeocerdo cuvier Tooth Division due to embedded
sting-ray spine

Gemination Gudger (1937)

Abnormally bicuspid tooth Double Tooth Pathology indet. Gudger (1937)

Bent cusp Deformation/bending/twisting Gudger (1937)

Cusp is reverse oriented mesially Irregular Tooth Row Balbino & Antunes (2007)

Bent cusp Deformation/bending/twisting Balbino & Antunes (2007)

Carcharodon Hooked cusp Deformation/bending/twisting Hubbell (1996)

Tooth separated into two distinct
teeth due to damaged gum
tissue

Double Tooth pathology indet. Hubbell (1996)

Perforated tooth due to sting-ray
spine

Perforation Hubbell (1996)

Two adjacent teeth merged
together

Double Tooth Pathology indet. Hubbell (1996)

Entire tooth twisted Deformation/bending/twisting Hubbell (1996)

Extreme deformation of tooth Deformation/bending/twisting Hubbell (1996)

Paranomotodon sp. Cusp rotation Deformation/bending/twisting Becker, Chamberlain & Stoffer
(2000)

Deformed nutrient grooves Nutrient Groove Deformation Becker, Chamberlain & Stoffer
(2000)

Twisted cusp Deformation/bending/twisting Cappetta & Case (1975)
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Table 2 (continued)

Species name Original identification of
pathology

Pathology category (Fig. 7) Source

Carcharoides totuserratus Cusp is reverse oriented mesially Irregular Tooth Row Balbino & Antunes (2007)

Bent cusp Deformation/bending/twisting Balbino & Antunes (2007)

Twisted cusp Deformation/bending/twisting Balbino & Antunes (2007)

Abraided cutting edge, devoid of
denticles

Cutting Edge Deformation Balbino & Antunes, 2007

Entire tooth twisted Deformation/bending/twisting Balbino & Antunes, 2007

Carcharias taurus Twisted cusps Deformation/bending/twisting Vuuren et al. (2015)

Notched cutting edge Cutting Edge Deformation Vuuren et al. (2015)

Reduced cusplet size Irregularly Sized Tooth Vuuren et al. (2015)

Scapanorhynchus texanus Bent Cusp Deformation/bending/twisting Becker, Chamberlain & Stoffer
(2000), Roemer (1849)

Abnormal root growths Root Deformation Roemer (1849)

Archaeolamna kopingensis Rotated and compressed cusp Deformation/bending/twisting Becker, Chamberlain & Stoffer
(2000)

Entire tooth and crown bent Deformation/bending/twisting Davis (1890)

Cretoxyrhina mantelli Notched cutting edge Cutting Edge Deformation Shimada (1997)

Enameloid cracking Enameloid Deformation Shimada (1997)

Excess growth of dentine Irregularly Sized Tooth Shimada (1997)

Formation of fossae Formation of Fossae Shimada (1997)

Protuberances on crown surface Enameloid Deformation Shimada (1997)

Disturbance near cown-root
contact

Neck Deformation Shimada (1997)

Otodus megalodon Double Tooth Pathology indet. Double Tooth Pathology indet. This article

Split cutting edge Cutting Edge Deformation Itano (2013)

Wavy cut in cutting edge Cutting Edge Deformation Boessenecker (2016)

Lack of enameloid near base of
crown and cutting edge

Enameloid Deformation Balbino & Antunes (2007)

Asymmetrically-shaped crown
curving distally

Deformation/bending/twisting Balbino & Antunes (2007)

Squalicorax kaupi Distal notch disconnected Cutting Edge Deformation Agassiz (1843)

Squalicorax pristodontus Bending along mesial edge Deformation/bending/twisting Agassiz (1843)

Coalescent teeth Double Tooth Pathology indet. Balbino & Antunes (2007)

Heterodontus portusjacksoni Abnormally sized molar teeth Irregularly Sized Tooth Gudger (1937)

Abnormal amount of teeth in
tooth row

Irregular Tooth Row Gudger (1937)

Chlamydoselachus anguineus Excess amount of cusps Double Tooth Pathology indet. Gudger (1937)

Abnormally small teeth Irregularly Sized Tooth Gudger (1937)

Double Teeth/Twinning Double Tooth Pathology indet. Gudger (1937)

(Continued)
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However, these frequency data are based on human studies and cannot confidently be
applied widely across vertebrates without additional research and Kelly (1978) himself
notes a seemingly conflicting example of this pattern. Given the difference in tooth
implantation and root morphology between mammals and sharks, the diagnostic utility of
such a feature outside mammals is questionable.

Several researchers have noted that the two pathologies can be differentiated by
counting the number of teeth in the tooth row to determine if the total number of teeth is
less or more than expected (e.g., Kelly, 1978; Patil et al., 2013). Other than direct
observation of tooth morphogenesis, this is the only criterion we are aware of that has been
published as a definitive means to discriminate between gemination and fusion of teeth.
Unfortunately, this criterion cannot be evaluated in isolated teeth, which are common in
the fossil record, especially for sharks.

Other diagnostic features may prove useful. Botella (2006), Botella, Valenzuela-Ríos &
Martínez-Pérez (2009) identified an instance of fusion in isolated shark teeth based on
the conjoining of two different-sized teeth in Leonodus carlsi (62% difference), indicating
the two teeth were in different stages of morphogenesis at the time of fusion and thus
revealing a developmental signal. We suggest that differences in the developmental stages

Table 2 (continued)

Species name Original identification of
pathology

Pathology category (Fig. 7) Source

Amblyraja doellojuradoi An additional incomplete tooth
row between two complete rows

Irregular Tooth Row Delpiani, Figueroa &
Mabragaña (2012)

An increasing tooth base size and
division of cusps

Double Tooth Pathology indet. Delpiani, Figueroa &
Mabragaña (2012)

Irregular tooth arrangement Irregular Tooth Row Delpiani, Figueroa &
Mabragaña (2012)

Underdeveloped cusps,
abnormally sized

Irregularly Sized Tooth Delpiani, Figueroa &
Mabragaña (2012)

Deformed base/root Root Deformation Delpiani, Figueroa &
Mabragaña (2012)

Brachyrhizodus wichitaensis S-shaped tooth deformation Deformation/bending/twisting Becker, Chamberlain & Stoffer
(2000)

Offset nutrient grooves Nutrient Groove Deformation Becker, Chamberlain & Stoffer
(2000)

Entire tooth twisted Deformation/bending/twisting Romer (1942)

Mobula rochebrunei Double Tooth Pathology indet. Double Tooth Pathology indet. Herman et al. (2000)

Tooth row splitting Irregular Tooth Row Underwood & Cumbaa (2010),
Herman et al. (2000)

Cretomanta canadensis Pathologic fused teeth Fusion Underwood & Cumbaa (2010)

Leonodus carlsi Pathologic fused teeth Fusion Botella (2006), Botella,
Valenzuela-Ríos & Martínez-
Pérez (2009)

Note:
Distribution of dental pathologies across Chondrichthyes corresponding with Fig. 7.
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(useful for sharks or mammals) or differences in crown morphology due to the fusion
of different, yet neighboring, tooth types in heterodont taxa or aberrant supranumerary
teeth (useful for mammals) are additional criteria that may prove to be reliable for
differentiating between fusion from gemination in isolated teeth. Research on the efficacy
for these traits to serve as criteria for etiological-based diagnosis of double tooth
morphologies in extant sharks and other non-mammalian vertebrates is needed to make
confident diagnoses.

The presence of internal bifurcation (main ascending canals in O. megalodon, and pulp
cavity in C. leucas), only minor root abnormalities and a lack of clear root doubling,
symmetrical mirroring of tooth halves (absence of any aberrant crown morphology, or
developmental differences) suggests that gemination is more likely to have caused these
double tooth pathologies; however, none of these features can be used to definitely rule out
fusion for these specimens.

Paleoecological inferences
To our knowledge, these are the first double tooth pathologies documented for either
O. megalodon or C. leucas specifically; however, multiple other tooth pathologies are
described and appear to be widespread in these taxa. Becker, Chamberlain & Stoffer (2000)
document a pathologic C. leucas tooth in which the cusp of the tooth is bent forward
towards the jaw symphysis. Pathologies in O. megalodon are abundant and include split
cutting edges (Itano, 2013) among other abnormalities. These include teeth bearing subtle,
wavy cuts along the midpoint of the crown on the distal cutting edge (Boessenecker, 2016)
and trauma to tooth germs that caused the teeth to buckle lingually and distally or caused
distortion of the distal cutting edge (Purdy et al., 2001). In extant taxa such tiger sharks
(Galeocerdo cuvier) and blacktip sharks (Carcharhinus limbatus), which have diets that
consist of Batoidea (rays and skates), tooth abnormalities have been linked to feeding
trauma, such as puncture by stingray spine (Gudger, 1937). Injury due to the perforation of
teleost or selachian fish spines during feeding has also been suggested to initiate tooth
deformities (Becker, Chamberlain & Stoffer, 2000). Therefore, the presence of gemination
and/or fusion provides further support for feeding trauma in C. leucas and O. megalodon.

C. leucas is known to be a generalist predator, having a diet composed of a wide diversity
of prey including taxa known to cause feeding-related traumas that have previously
been hypothesized to be linked to observed tooth deformations in other sharks. These
include rays, sawfish, other sharks, bony fish, and sea urchins, all of which could
potentially inflict damage to a developing tooth bud (Estupiñán-Montaño et al., 2017).

The diet of O. megalodon has been inferred to largely consist of cetaceans and sirenians
based on general tooth morphology, estimations of bite force, predation and/or scavenging
marks on prey, mechanical tooth damage, and evolutionary models (Godfrey et al.,
2018; Diedrich, 2013; Medina-Gavilán et al., 2015 and references therein). It has also been
suggested that O. megalodon fed on turtles and fish (Aguilera & de Aguilera, 2004).
Identification of tooth abnormalities in O. megalodon resulting from damage or
perforation of a developing tooth bud may provide support for a diet consisting of a wider
diversity of marine animals. Although purely speculative, these could include spiny fish,
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billfish, walrus, and rays among other taxa. Makaira (marlin) is a genus of Istiophoridae
(billfish) characterized by a distinctive spear-like rostrum used for hunting (Domenici
et al., 2014).Makaira make up the diet of many modern sharks (Kitchell et al., 2002; Lowe
et al., 1996) and interactions between these animals are known to occasionally become
violent (Wisner, 1958), and can result in the wounding or death of the shark (Block,
Booth & Carey, 1992). Maikaira and large spiny fish such as Mola (sunfish) are known to
have inhabited the same environments as O. megalodon (e.g., the lower Middle Miocene
Calvert Formation of Virginia (Weems, 1985; Carnevale & Godfrey, 2018; Perez et al.,
2018)) and could have been food sources. In addition, the late Miocene Gatun Formation
of Panama preserves a paleonursery habitat for O. megalodon and also a high diversity of
selachians including C. leucas (Pimiento et al., 2013). Batoids (rays and skates) are also
abundant in this formation and species such as Aetobatus (eagle rays), which are known to
inhabit open waters and coral reefs, possess venomous tail barbs that are used defensively
(Caceres et al., 2020; Schluessel, Bennett & Collin, 2010).

The late Neogene Purisima Formation of Northern California preserves a nearshore and
estuarine environment and is represented by a highly diverse aquatic and terrestrial
fauna including sharks such O. megalodon, rays, bony fish, toothed and baleen whales,
sirenians, and seals (Boessenecker, Perry & Schmitt, 2014). Among the pinnipeds from the
Purisima Formation, Valenictus, an extinct genus of Odobenidae (walrus), had tusks
that likely grew to be nearly half a meter long (Boessenecker, 2017; Deméré, 1994). The
Greenland shark Somniosus microcephalus likely feeds upon modern walruses (MacNeil
et al., 2012), and a similar predator-prey relationship may have existed between
O. megalodon and Valenictus. The tusks of walruses are more blunt than fish spines and
ray barbs. Nonetheless, they are capable of inflicting serious injury upon the polar bears
that hunt them (Ovsyanikov, 1995). If Valenictus constituted a portion of the diet of
sharks in the Purisima fauna, their tusks may have posed a puncture risk to the developing
tooth buds of O. megalodon.

Finally, interactions between conspecifics or consexuals are well documented in
elasmobranchs (Martin, 2007; Brunnschweiler & Pratt, 2008), as is cannibalism (Gudger,
1932; Vorenberg, 1962; Budker, 1971; Snelson, Mulligan & Williams, 1984; Wetherbee,
Gruber & Cortés, 1990; Vögler, Milessi & Quiñones, 2003). Interactions such as these may
occasionally involve mouth to mouth biting between individuals, potentially resulting
in damage to the tooth bud and subsequent deformation of teeth, and could also be a
source of oral trauma. Although we consider these abnormalities in C. leucas and
O. megalodon to most likely be the result of feeding trauma, it is clear that in some cases of
abnormal tooth doubling in selachians, such as the enigmatic shark Cretomanta, trauma
due to feeding is unlikely, as this shark was presumably planktivorous (Underwood &
Cumbaa, 2010).

CONCLUSIONS
We describe the internal and external morphology of pathological and non-pathological
teeth of the lamniform Otodus megalodon and carcharhiniform Carcharhinus leucas,
including the first three-dimensional reconstructions of the internal microstructure of the
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teeth of these taxa. Our pathological teeth exhibit a single bifid crown with symmetrical
halves and abnormal internal microstructure including a bifurcating pulp cavity in
C. leucas and more than twice as many main ascending canals in O. megalodon.
We rediagnose the double tooth pathologies in Galeocerdo cuvier and Carcharhinus
limbatus as gemination based on puncture of a tooth germ by a stingray spine, which yields
a developmental signal; however, diagnosing the isolated C. leucas and O. megalodon teeth
in our sample is more complicated. A bifurcating pulp cavity and a bifurcating main
ascending canal in C. leucas and O. megalodon respectively, and the lack of major root
abnormalities in both taxa, suggests gemination is a more likely diagnosis. This is
supported by the symmetry of these teeth, which rules out fusion of tooth buds in one
tooth file in different developmental stages, a criterion that has been used to diagnose the
only instance of documented fusion in chondrichthyans (Botella, 2006; Botella,
Valenzuela-Ríos & Martínez-Pérez, 2009). However, symmetry cannot be used to rule out
fusion of a neighboring tooth in a single row in polyphyodont taxa. Therefore in the
absence of total tooth count we opt for a more conservative diagnosis of gemination and/or
fusion for these teeth.

Double tooth pathologies in sharks are largely hypothesized to stem from trauma to
developing tooth buds. C. leucas is known to feed on a variety of prey documented to cause
feeding-related traumas such as rays, sawfish, other sharks, bony fish, and sea urchins.
The presence of double tooth pathologies in O. megalodon raises the question of whether
the diet of this species (considered to consist mainly of marine mammals and possibly
turtles and fish) was wider than currently appreciated. Additional study would be needed
to link specific prey items to frequency of dental pathologies in sharks before confident
dietary inferences could be made.

Terminology, differential diagnoses, and definitions of double tooth pathologies are
often inconsistently applied to extant and fossil specimens including mammalian and
non-mammalian species making comparisons difficult. We argue for a consistent set of
definitions and diagnostic criteria that may permit a more detailed understanding of the
evolutionary history and prevalence of various dental pathologies in Chondrichthyes and
comparatively across vertebrates. Such an effort may lead to new associations with
behavioral, dietary, or paleopathological factors such as disease and trauma that can
increase our understanding of the paleobiology of ancient animals.
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