
entropy

Article

An Image Encryption Algorithm Using Logistic Map with
Plaintext-Related Parameter Values

Jakub Oravec * , Lubos Ovsenik and Jan Papaj

����������
�������

Citation: Oravec, J.; Ovsenik, L.;

Papaj, J. An Image Encryption

Algorithm Using Logistic Map with

Plaintext-Related Parameter Values.

Entropy 2021, 23, 1373. https://

doi.org/10.3390/e23111373

Academic Editors: Salim Lahmiri and

Jose Santamaria

Received: 17 September 2021

Accepted: 18 October 2021

Published: 20 October 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Department of Electronics and Multimedia Communications, Technical University of Kosice,
Nemcovej 32, 040 01 Kosice, Slovakia; lubos.ovsenik@tuke.sk (L.O.); jan.papaj@tuke.sk (J.P.)
* Correspondence: jakub.oravec@tuke.sk

Abstract: This paper deals with a plaintext-related image encryption algorithm that modifies the
parameter values used by the logistic map according to plain image pixel intensities. The parameter
values are altered in a row-wise manner, which enables the usage of the same procedure also during
the decryption. Furthermore, the parameter modification technique takes into account knowledge
about the logistic map, its fixed points and possible periodic cycles. Since the resulting interval of
parameter values achieves high positive values of Lyapunov exponents, the chaotic behavior of the
logistic map should be most pronounced. These assumptions are verified by a set of experiments and
the obtained numerical values are compared with those reported in relevant papers. It is found that
the proposed design that uses a simpler, but well-studied, chaotic map with mitigated issues obtains
results comparable with algorithms that use more complex chaotic systems. Moreover, the proposed
solution is much faster than other approaches with a similar purpose.

Keywords: chaotic map; image encryption; logistic map; Lyapunov exponent; plaintext-related

1. Introduction

The extension of various communication networks and the increasing amount of
transmitted data in the late 1970s caused the need for modern encryption algorithms. These
algorithms were designed for operations with character strings, which allowed a wide
spectrum of possible applications. For a long time, most of the research was related only to
these algorithms and, since various alternatives were proposed much later, the first group
of algorithms could be considered conventional algorithms.

The amount of applications for conventional encryption algorithms was further en-
larged by introducing new modes of operation for them. However, in certain cases, even
these tools could not make conventional encryption algorithms useful. Therefore, the
research into dedicated encryption algorithms that could be utilized for some specific
applications started.

The earliest image encryption algorithms from the late 1990s perceived the whole
process of image encryption as the rearrangement of pixel intensities followed by some
rather simple diffusion techniques [1,2]. These approaches exploited the properties of
chaotic maps, which, in general, are dynamical systems that show unexpected and hardly
predictable behavior [3]. After some time, researchers started to focus on the analysis of
the image encryption algorithms and newly acquired knowledge led to significant changes
in the design of image encryption algorithms. Probably the most important paper dealing
with the analysis was published by Solak et al. in 2010 [4]. An attack described in [4]
illustrated how several similar plain images could be used to reveal the architecture of
the used image encryption algorithm or even parts of the used key. After the proposal of
Solak’s attack, the majority of the newly designed image encryption algorithms employed
more complex techniques that mitigated some vulnerabilities of previous approaches. At
this point, some of the dedicated image encryption algorithms started to show better
performance in certain applications than the conventional encryption algorithms such as

Entropy 2021, 23, 1373. https://doi.org/10.3390/e23111373 https://www.mdpi.com/journal/entropy

https://www.mdpi.com/journal/entropy
https://www.mdpi.com
https://orcid.org/0000-0002-0484-226X
https://orcid.org/0000-0002-5594-6157
https://orcid.org/0000-0002-5428-4008
https://doi.org/10.3390/e23111373
https://doi.org/10.3390/e23111373
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/e23111373
https://www.mdpi.com/journal/entropy
https://www.mdpi.com/article/10.3390/e23111373?type=check_update&version=2

Entropy 2021, 23, 1373 2 of 22

the Advanced Encryption Standard (AES) [5]. These applications include the encryption of
secret messages in image steganography systems [6–8] and securing medical images [9] or
some biometric features [10]. The findings reported in [4] were later extended by Xie et al.
in 2017 [11] and Preishuber et al. in 2018 [12].

Probably the largest issue with the usage of conventional encryption algorithms for
image encryption is caused by the properties of uncompressed image data. While data
stored in character strings are usually quite compact and individual characters are not
related to each other, the number of image pixels could be large (to the extent that some
of them are redundant) and their intensities are closely correlated [13,14]. This situation
is shown in Figure 1, where a plain image with a resolution of 512 × 256 pixels and a
color depth of 8 bits per pixel is encrypted by AES in its simplest mode of operation, being
Electronic CodeBook (ECB) [15]. This example used password 0 × C9 0F DA A2 21 68
C2 34 C4 C6 62 8B 80 DC 1C D1, which was acquired from the first 128 bits of the binary
expansion of number π.

before encryption encrypted by AES ECB

Figure 1. Effect of image encryption performed by AES in ECB mode.

Figure 1 shows the how AES works in ECB mode—it creates a codebook of encrypted
data blocks that correspond to plain data blocks according to the used password. If a
data block is present multiple times in the plain image, it will be reflected by one block of
encrypted data on the same places in the encrypted image. This situation is visible mainly
in monotonous areas of plain images, where the intensity changes between adjacent image
pixels are very small or even absent.

The remedy for this problem could be the usage of another mode of operation for
AES [15]. However, many other modes require more complex computations, which may
raise the computational complexity of encryption. This is pronounced mainly on platforms
that do not fully support hardware acceleration [16]. Another solution is the usage of a
dedicated image encryption algorithm that is designed according to the specific properties
of image data, such as the redundancy of image pixels and correlation of their intensities.

The newest generation of dedicated image encryption algorithms respond to the
concerns raised by Solak et al. in [4] by so-called plaintext-related techniques. These
include a broad spectrum of solutions; some of them will be briefly described in the
following section. An important condition for every plaintext-related approach is that it
has to utilize at least one step that depends on values obtained from plain images. In this
case, the resulting encrypted image should be significantly different from images acquired
from various plain images and the possibility of successful differential attacks (such as
Solak’s attack) should be suppressed.

In this paper, we would like to propose a new approach to the plaintext-related image
encryption. While the previous techniques focused on introducing plaintext-related steps
mainly in the confusion and diffusion stages, the presented algorithm uses plain image pixel
intensities to affect parameter values during the generation of a pseudo-random sequence.
While some theoretical foundations were already laid out by Liu and Miao in 2016 [17]
and some algorithms were even proposed, e.g., those by Chai et al. in 2020 [18] or Zheng
and Hu in 2021 [19], all of these have significantly higher computational complexity than
other plaintext-related techniques. The algorithm presented in this paper should provide a
solution that has the benefits of a plaintext-related pseudo-random sequence combined
with the favorable computational complexity of approaches that use a plaintext-related
step during the confusion or diffusion stage.

Entropy 2021, 23, 1373 3 of 22

There are also some other interesting papers dealing with the mentioned issues but,
due to inappropriate choices of experimental images or a lack of reported numerical values,
these approaches could not be effectively compared with other solutions. Some examples
of these papers include [20–24].

The main contributions of this proposal are clearly described in a bullet-point list in
Section 3.

The rest of the paper is organized as follows: Section 2 describes some of the recent
work in the area of plaintext-related image encryption. Section 3 explains the proposed
solution and also fundamental techniques that are used. Section 4 presents and discusses
the experimental results. The last section, Section 5, concludes the paper with a brief
overview of the properties of the proposed solution and some ideas for future work.

2. Related Work

One of the first image encryption algorithms that took into account Solak’s attack was
designed by Kanso and Ghebleh in 2012 [25]. Their proposal changes the amount of chaotic
map iterations according to plain image pixel intensities. While this design is beneficial
against differential attacks, it increases the possibility of successful side-channel attacks as
operations with brighter images require more time.

Another technique was presented by Fu et al. in 2013 [26]. In this case, the pixel
intensities are converted to bits that are later rearranged by circular shifts with sizes
determined by the intensities of previous image pixels. However, since there are only eight
possible sizes of circular shifts corresponding to 256 possible pixel intensities, the same
shift could be achieved by multiple pixel intensities.

A solution with a plaintext-related confusion stage was proposed by Zhang in 2014 [27].
The fact that plain image pixel intensities affect only the rearrangement of pixels together
with the used architecture significantly decreases the performance of this approach, mainly
for images with large monotonous areas.

Norouzi et al. presented a one-stage algorithm in 2014 [28] where the plain image pixel
intensities are directly added to the processed intensity values. However, the drawbacks of
this solution were reported by Zhang et al. already in 2014 [29] when Norouzi’s algorithm
was declared as broken.

A plaintext-related algorithm designed by Murillo-Escobar et al. in 2015 [30] uses
a sum of pixel intensities to modify some initial conditions of the utilized chaotic maps.
There are two issues with this proposal—the same sum could be obtained from various
images and this sum could not be computed from the encrypted image. Therefore, the
decryption algorithm requires an additional parameter that is embedded into the encrypted
image by means of steganography. The presence of this value is so obvious that the whole
algorithm was broken by Fan et al. in 2018 [31].

Chai et al. proposed a technique employing a hash function in 2017 [32]. Since the
hash digests from plain and encrypted images are significantly different, the decryption
algorithm could not use the same key. This makes Chai’s algorithm asymmetric. Moreover,
the usage of such complex tools as hash functions significantly increases the encryption
and decryption times.

A similar solution with the hash functions was proposed by Wang et al. in 2018 [33].
In this case, even the authors admitted that the used architecture is complicated and the
reported encryption speed of approx. 0.055 MB/s is quite low.

Since 2018, several authors have designed image encryption algorithms that use
complex chaotic systems with five or more dimensions. While the computations of iterates
take much more time, the performance is not always as good as in simpler and more finely
tuned chaotic systems. The proposals with complex chaotic systems include two papers by
Li et al. from 2018 and 2020 [34,35], where hash digests are computed multiple times and
they are later used as inputs for other complex systems (Lorenz’s hyperchaotic system and
piecewise linear chaotic map).

Entropy 2021, 23, 1373 4 of 22

Sun’s algorithm from 2019 [36] is slowed down by a seven-dimensional chaotic system
that is used to compute iterates only for three sequences. A solution by Chai et al. from
2020 [18] combines three simpler chaotic maps together with the Latin squares technique;
however, the authors do not sufficiently analyze the potential drawbacks of the resulting
system, such as fixed points or periodic cycles. An approach by Zhang and Han from
2021 [37] uses a six-dimensional system together with a technique of DNA coding, which
results in very slow encryption speeds.

A proposal by Zheng and Hu from 2021 [19] utilizes Chen’s chaotic system and plain
image pixel intensities to perturb the parameters of another chaotic system. This solution
does not use hash functions and the properties of the resulting combined chaotic system
are clearly described.

In our previous work, we focused on several topics regarding plaintext-related image
encryption. A paper from 2018 [38] described how a two-dimensional chaotic map could
be used for introducing dependencies between plain images and the steps of an image
encryption algorithm. In a work from 2019 [39], an analysis of the one-way characteristics of
the logistic map (LM) was given together with an algorithm that uses reported knowledge.
A plaintext-related technique using the Mojette transform was presented in a paper from
2019 [40]. The most significant drawbacks of LM and their solutions were discussed in a
publication from 2020 [41]. Our experience in the field of plaintext-related image encryption
was used in a paper presented in 2021 [42] that describes a way to introduce relations
between plain image pixel intensities and an encryption algorithm during the quantization
of pseudo-random sequences.

3. Proposed Solution

The technique presented in this paper utilizes plain image pixel intensities for the
modification of a parameter used by LM during the generation of one of the pseudo-
random sequences. While similar techniques have been already investigated [17] and also
experimentally tested [18,19], our proposal should be more effective—it should achieve
comparable results with these, but with higher encryption speeds of older and simpler
algorithms that utilize plaintext-related steps in the confusion or diffusion stage. The
values of the commonly used numerical parameters of our proposal should be comparable
with more complex approaches that use hash functions [32–37].

The main novelties of this proposal include:

• the usage of a novel plaintext-related parameter modification scheme for LM;
• the whole encryption/decryption scheme is symmetric—these operations are able to

extract the required values from either plain or encrypted images;
• it takes into account the knowledge about LM—previously reported drawbacks such

as fixed points or periodic cycles [39,41] are suppressed by careful choice of parameter
value intervals and alternation of parameter values during the generation of pseudo-
random sequences. This could be viewed as a novelty since it is not common even for
new proposals.

The presented approach can be applied on images with arbitrary resolution and color
depths of 8 bits per pixel (grayscale images) or 24 bits per pixel (true color images). The
key length is 128 bits and it is represented in a hexadecimal notation. A simplified block
scheme of the proposed solution is shown in Figure 2.

Each stage presented in Figure 2 has its specific purpose. The image rearrangement
stages prepare pixel intensities for processing (into two-dimensional matrices) or for
encoding and saving the results (into images with color planes). The key processing stage
divides the entered key into eight parts and converts them from hexadecimal notation to
parameter values for the LM. Encryption continues by the plaintext-related stage, where
the parameters of the generated sequence are changed according to the plain image pixel
intensities. Then, the correlation of pixel intensities is suppressed by pixel rearrangement.
New dependencies between their intensities are created during the diffusion stage. In the
event that some of the pixel intensities are different, this stage spreads the differences

Entropy 2021, 23, 1373 5 of 22

across the whole image. A key whitening stage is especially important for providing better
robustness against attacks, as it is the first stage that needs to be broken. In this stage, the
processed image is combined with a pseudo-random sequence that depends on the used
key. Since the sequence needs to be generated prior to the combination, this stage has to
happen after the key processing stage, both during encryption and decryption. The whole
concept of key whitening comes from conventional encryption algorithms; it is used also
in AES [43].

decryption

image rearrangement

key processing

combination with a pseudo-random
sequence (key whitening)

row-wise and column-wise
inverse confusion stage

row-wise combination with
plaintext-related sequences

image rearrangement

four dimensional
inverse diffusion stage

encryption

image rearrangement

key processing

row-wise combination with
plaintext-related sequences

column-wise and row-wise
confusion stage

combination with a pseudo-random
sequence (key whitening)

image rearrangement

four dimensional
diffusion stage

Figure 2. A block scheme describing stages of the proposed solution.

Decryption uses a slightly different order of the mentioned stages. The first, second
and the last stage are the same as during the encryption. The other decryption stages, which
could be numbered 3 to 6, correspond to encryption stages, but their order is reversed—
the combination with a pseudo-random sequence is followed by inverse diffusion and
confusion stages and row-wise combination with plaintext-related sequences.

3.1. Logistic Map and Its Properties

LM can be considered an example of a chaotic system with a simple definition but
rather complicated behavior [44]. LM is a one-dimensional map, so each iteration of the
map generates one value, called an iterate. The computations of LM utilize one parameter
r ∈ (0, 4) and an initial value x0 ∈ (0, 1). Iterate values xn ∈ (0, 1) are computed by (1):

xn+1 = r · xn(1− xn), (1)

where n ∈ {1, 2, 3, . . . , N} is the sequential number of iterates and N is the total number
of iterates.

The desired unpredictable behavior of the LM is achieved after some iterations that
are used only to shift from the initial value x0. These iterates that are not used for the
generation of pseudo-random sequences belong to the so-called transient period. Its length
is usually 1000 iterates [44].

Entropy 2021, 23, 1373 6 of 22

The properties of the LM regarding various values of parameter r could be illustrated
by a bifurcation diagram. An example of the bifurcation diagram, constructed from a
sequence with x0 = 0.5 and a transient period of 1000 iterates is shown in Figure 3.

1

0.8

0.6

0.4

0.2

0

xn

0 0.5 1 1.5 2 2.5 3 3.5 4

r

Figure 3. A bifurcation diagram for the LM.

The bifurcation diagram shows that the behavior of the LM is predictable until r ∼ 3,
when the first bifurcation occurs [3,44]. After several other bifurcations, the number of
possible iterate value trajectories greatly increases and it becomes challenging to determine
on which one the next iterate value would lie. There are still some areas with suppressed
chaotic behavior, such as that around r ∼ 3.85; however, the area close to r = 4 displays the
most unpredictable behavior. This could be illustrated also by a plot of estimated Lyapunov
exponents (LEs) λ that quantify divergences between two trajectories with a small initial
difference [3,41,44]. LEs for the LM could be estimated by (2) [41]:

λ ∼ lim
it→∞

1
It

It−1

∑
it=0

ln|r(1− 2xit)|, (2)

where it = 1, 2, 3, . . . , It is the sequential number of iterates computed for one parameter
value r, It is the total number of these iterates, ln(a) is a natural logarithm of a and brackets
|b| compute the absolute value of b.

A plot of LEs estimated for a sequence of iterates generated by the LM (1) with
x0 = 0.5, parameter values of r ∈ (3, 4), a transient period of 1000 iterates and It = 1000 is
shown in Figure 4. This plot has 106 samples for the mentioned interval of r.

Positive values of λ indicate that the behavior of the LM at these values of r is
considered chaotic. Negative spikes may be a sign that the LM has a periodic cycle or even
a fixed point at corresponding values of r [41,44,45]. These situations are undesirable and,
if they are not mitigated, image encryption algorithms could be susceptible to some of the
attacks or they could be broken [46].

Locations of fixed points for the LM could be obtained by substitution and the solving
of (1) [41,46]. If the interval of the used values of r for the LM is (0, 4), the only fixed
point is located at 1

1−r . This fixed point can be suppressed by modification of r during the
computation of new iterates. Multiple parameter values also suppress the occurrence of
possible periodic cycles [41,45].

Entropy 2021, 23, 1373 7 of 22

–8

–6

–2

3 3.1 3.2 3.3 3.4 3.5 3.6 3.7 3.8 3.9 4

r

0

–4
x0 , r)(λ

Figure 4. A plot of estimated LEs for the LM with r ∈ (3, 4).

Another issue with the usage of the LM as a generator of pseudo-random sequences
is dependencies between pairs of successive iterates and their unequal distribution. Both
problems are caused by the nature of (1), which is an iterative function as xn = f (xn−1).
These two problems could be fixed by the usage of a suitable quantization technique [39,41].

While all mentioned issues with the LM have already published solutions, some of
them are not very effective. In our previous work, we focused on the design of com-
bined solutions that help to suppress several issues in one stage of the image encryption
algorithm [41,42]. In this proposal, we would like to alter the parameter values of r ac-
cording to the plain image pixel intensities. Moreover, the resulting values of r should
achieve positive values of λ so that the generated sequences do not have any undesired
statistical properties.

3.2. Encryption

The encryption algorithm uses a plain image P with arbitrary resolution and color
depths of 8 or 24 bits per pixel. In addition to this, it needs also a 128-bit-long key K,
inserted in a hexadecimal notation. The encryption produces an encrypted image E.

Step 1: Image rearrangement. This step is used for the reshaping of both grayscale
and true color images into a two-dimensional matrix P′. The grayscale plain images are
simply copied to matrix P′. The color planes of true color images are decomposed into
columns of pixels and these are rearranged as triplets consisting of columns from the red,
green and blue color plane. This process is shown in Figure 5.

1 2 3

4 65

1 2 3

4 65

Figure 5. A rearrangement scheme for true color images.

When a processed image is stored in matrix P′, its width and height are passed to
variables w′ and h. The total number of image pixels is computed as numpx = w′ · h and
the number of color planes is saved as numcp.

Step 2: Key processing. Used key K is divided into eight parts K1 to K8. The hexadeci-
mal characters from K are assigned to key parts according to (3):

Ki(j) = K
(
2 · (i− 1) + j

)
, (3)

where i = 1, 2, 3, . . . , 8 is the sequential number of key parts and j = 1, 2 is used as the
sequential number of hexadecimal symbols.

Entropy 2021, 23, 1373 8 of 22

The key parts K1 to K8 are then converted from hexadecimal to decimal notation with
the usage of the big endian ordering scheme [47] and later used for the computation of
parameter values r1 to r8 via (4):

ri = 4− 10−15((9− i) · 256 · 65,536− Ki
)
, (4)

where constants of 256 and 65,536 represent the amount of possible plain image pixel
intensities and key values.

Step 3: Row-wise combination with plaintext-related sequences. This step creates a
lookup table LT with values of parameter r that are later modified by plain image pixel
intensities and then used for combination with other pixel intensities. The lookup table
LT has h rows and w′ columns, being the same size as the matrix with processed image P′.
This step effectively doubles the memory consumption of the proposed solution, which
is generally not an issue, but it greatly improves the speed of the whole algorithm. The
lookup table LT is filled by repeating sequences of values r1, r2, r3, . . . , r8 using a row-major
order (at first, the values are passed to the top row from its left side to the right side, then to
other rows) [47,48]. An example of a matrix filled by this technique is shown in Figure 6.

r3

r6 r7

r4r1

r5

r2

r8

r3 r6 r7r4

r1

r5

r2

Figure 6. An illustration of a lookup table filled by row-major order.

The values in the lookup table LT are then rearranged by two circular shifts that utilize
two pseudo-random sequences seq′1 and seq′2. These are generated by the LM (1) with an
initial value x0 = 0.5 and a transient period of 1000 iterates. The key schedule used during
the computation of all sequences, their length and maximal possible element values are
shown in Table 1. The same parameter value patterns are used during the transient period
and also after it.

Table 1. Key schedule, sequence lengths and maximal element values for all generated sequences.

Generated Parameter Values Sequence Maximal Element
Sequence Pattern Length Value Q

seq1 r4 r8 r3 r7 r2 r6 r1 r5 w′ h− 1
seq2 r5 r1 r6 r2 r7 r3 r8 r4 h w′ − 1
seq3 r1 r2 r3 r4 r5 r6 r7 r8 h× w′ 255
seq4 r2 r1 r4 r3 r6 r5 r8 r7 w′ h− 1
seq5 r7 r8 r5 r6 r3 r4 r1 r2 h w′ − 1
seq6 r8 r7 r6 r5 r4 r3 r2 r1 numpx 255

Patterns of parameter values from Table 1 were not chosen with any specific intent.
Operations with these parameter value patterns should result in similar values of nu-
merical parameters for various plain images. The longest sequences, seq3 and seq6, use
patterns from r1 to r8 and from r8 to r1, respectively. Sequences seq4 and seq5 used for the
rearrangement of pixel intensities switch values in pairs of parameter values from seq3 and
seq6. Finally, sequences seq1 and seq2 use patterns that start with either r4 or r5 and then
increment or decrement their index by 4 (one half of the total parameter amount).

Elements of generated sequences seq1 and seq2 are quantized by (5) and resulting
sequences are denoted as seq′1 and seq′2.

seq′i =
⌊

Qi ·
(
104 · seqi (mod 1)

)⌋
. (5)

Entropy 2021, 23, 1373 9 of 22

It should be noted that the quantization by (5) removes the first four decimal places of
iterates. This is helpful for obtaining a balanced distribution of element values and also for
the suppression of dependencies between successive sequence elements [39,41].

The first group of circular shifts rearranges the parameter values in the individual
columns of the lookup table LT. The shift sizes are determined by values of sequence
seq′1. Then, the second group of shifts is done in the rows of LT, with the sizes of shifts set
by sequence seq′2. An illustration of the described rearrangement scheme is displayed in
Figure 7.

r3r2 r8 r1 r7

r5 r1 r7 r5 r6

r6 r4 r3r4 r2

1 2 20 1

r3

r6 r7

r4r1

r5

r2

r8

r3 r6 r7r4

r1

r5

r2

4

1

2

r1

r6

r3 r2

r7

r4

r5

r3

r8 r1

r6

r4

r7

r5

r2

Figure 7. A matrix rearrangement technique.

Then, a sequence seq3 is generated by LM (1), but this time in a different way. It uses
x0 = 0.5, but after its transient period of 1000 iterates, only one iterate x1001 is stored. This
iterate is used as a starting point for multiple sequences utilized for individual rows of the
matrix with processed image P′.

Now, this step works individually with each row of pixel intensities from matrix P′.
The rows are scanned from the top to the bottom, with their indexes being l = 1, 2, 3, . . . , h.
For each of these rows, a sequence seqplr with w′ elements is generated by the LM (1)
without any other transient periods and with an initial value of x1001. LM uses parameter
values from row l of lookup table LT that are modified by plain image pixel intensities
from row l − 1 of P′ by (6):

LT(l, :) = LT(l, :) + 10−15 · 65,536 · P′(l − 1, :), (6)

where the colon : stands for all indexes in a row of image pixels, the constant of 65,536
represents the amount of possible key values and index l − 1 is substituted with h for the
first row of P′(1, :).

The resulting modified parameter values r in lookup table LT belong to interval
〈3.999999865833743, 4− 10−15〉 in a double precision data type [49]. Since the minimal
value of LEs estimated with x0 = 0.5 for this interval with a transient period of 1000 iterates
and It = 1000 is still positive at approx. 0.6645 for r = 3.9999999629572112, the sequences
generated with these parameter values are considered chaotic [3,41,44].

The sequence seqplr generated with plaintext-related parameters from lookup table
LT is quantized by (5), stored as seq′plr and then it is combined with the currently scanned
row of pixel intensities in P′ by (7):

P′(l, :) = P′(l, :)⊕ seq′plr, (7)

where ⊕ represents an operation of binary eXclusive OR (XOR) [50,51].
The procedures dealing with the lookup table LT—modification of values according

to the intensities of P′, generation and quantization of the sequences and their combination
with processed image P′—are repeated for all other rows. The scanning order from
the top to the bottom of the P′ is important, as it could be reversed during decryption
(l = h, h− 1, h− 2, . . . , 1). Hence, the decryption algorithm is able to obtain the required
pixel intensities from P′(l − 1, :) that affect the parameter values in LT.

Step 4: Column-wise and row-wise confusion stage. Any traces of pixel intensity
correlation that could be left in matrix P′ after Step 3 are suppressed by rearrangement of
its pixels. This step is done similarly as the shuffling of parameter values r1 to r8 in the
lookup table LT. At first, two sequences seq4 and seq5 are generated by the LM (1) with

Entropy 2021, 23, 1373 10 of 22

initial values x0 = 0.5 and other parameters given by Table 1. These sequences are then
quantized by (5) and stored as seq′4 and seq′5.

After this, the circular shifts in the individual columns and individual rows of matrix
P′ are done. The sizes of the shifts are determined by the element values of sequences seq′4
and seq′5. This technique is shown also in Figure 7.

Step 5: Four-dimensional diffusion stage. This step introduces dependencies between
pixel intensities from matrix P′, which are useful when two similar plain images are
encrypted. The dependencies are created in four directions so all pixel intensities of P′

are affected even by small differences between plain images. During each of the four
scans, the actually processed vector of pixel intensities from P′ is combined with two other
vectors—one is added by modulo 256 addition and the second one is XORed with the
actually processed vector. Indexes of all vectors used during the four scanning directions
are described in Table 2.

Table 2. Combinations used during four scanning directions.

Scanning Scanning Order Addition XORDirection Rows l Columns k (Mod 256)

top to bottom 1, 2, 3, . . . , h : l − 1 l + 1
left to right : 1, 2, 3, . . . , w′ k− 1 k + 1

bottom to top h, h− 1, h− 2, . . . , 1 : l + 1 l − 1
right to left : w′, w′ − 1, w′ − 2, . . . , 1 k + 1 k− 1

Note: A colon : stands for all possible row or column indexes.

If row index l + 1 or column index k + 1 is greater than h or w′, a value of 1 is used
instead. Furthermore, if indexes l − 1 or k− 1 are less than 1, values of h or w′ are utilized.

Step 6: Combination with a pseudo-random sequence. This step helps to protect all
previous steps as any successful attacks need to break this step at first. A sequence seq6 is
generated by the LM (1) with an initial value x0 = 0.5, a transient period of 1000 iterates
and other parameters given by Table 1. This sequence is quantized by (5), stored in a
variable seq′6 and later rearranged to a matrix seq′6m with h rows and w′ columns by the
row-major order shown in Figure 6. The matrix seq′6m is then combined with matrix P′

by (8):
P′ = P′ ⊕ seq′6m. (8)

Step 7: Image rearrangement. In this step, the matrix with processed image pixel
intensities P′ is transferred into encrypted image E, which is the sole output of the en-
cryption algorithm. The rearrangement scheme is inverse to that presented in Step 1—if
the value of numcp points out that the plain image P was true color, three color planes
are reconstructed from triplets of columns from P′. Otherwise, if the plain image P was
grayscale, it is directly copied from matrix P′ to image E.

3.3. Decryption

The decryption algorithm uses an encrypted image E and 128-bit-long key K to
produce a decrypted image D. As already shown in Figure 2, the decryption algorithm
stages are almost the same as those used during encryption; however, the order of some is
reversed. The first two steps are the same. The third decryption step is an inverse of the
sixth encryption step—the processed image matrix is combined with a sequence generated
by the LM (the sequence that is not plaintext-related). After this, next step of the decryption
algorithm removes dependencies created during the four-dimensional diffusion stage.
At this step, the order of scanning directions is reversed and the signs for addition modulo
256 are changed from “+” to “−” and vice versa.

After this, the pixel intensities are rearranged back in the fifth decryption step by two
groups of circular shifts. Their order is reversed—the first group of shifts takes place in
rows of matrix P′ and the second group deals with shifts in the columns of P′. The sizes of
shifts determined by sequences seq′5 and seq′4 are multiplied by a factor of −1. Then, in the

Entropy 2021, 23, 1373 11 of 22

sixth decryption step, the plaintext-related sequence is generated, processed and used for
combination with P′. Since the operation is row-wise and it could start at the bottom of the
image and continue to its top, the decryption algorithm is able to revert the effects of the
third encryption step without any additional information.

The decrypted image D is created from the matrix P′ in the last step of the decryption
algorithm by the same procedure as in the last encryption step.

4. Experimental Results

Experiments with the proposed solution were performed on a PC with 2.5 GHz CPU,
12 GBs of RAM running MATLAB R2015a on Windows 10 OS. A set of images from the
USC-SIPI database [52] used for the experiments is shown in Figure 8. All these images
have a resolution of 512 × 512 pixels. Images lena and peppers have color depths of 24 bits
per pixel; other images have color depths of 8 bits per pixel. Utilized keys are included in
Table 3. The value of key K1 was obtained from the first 128 bits of the binary expansion of
number π. Please note the minimal difference between keys K1 and K2.

lena peppers baboonG

sailboatGpeppersGlenaG

Figure 8. A set of experimental images.

Table 3. A set of experimental keys.

Key Value

K1 0× C9 0F DA A2 21 68 C2 34 C4 C6 62 8B 80 DC 1C D1
K2 0× C9 0F DA A2 21 68 C2 34 C5 C6 62 8B 80 DC 1C D1
K3 0× 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

4.1. Key Space Size and Key Sensitivity

The proposed image encryption algorithm utilizes 128-bit-long keys. Therefore, the
size of key space is 2128. Considering that the decryption of a grayscale image with a
resolution of 512 × 512 pixels takes approx. 140 ms (see Section 4.6 for details), the brute
force attack requires approx. 1.5106× 1030 years. Hence, the proposed image encryption
algorithm can be considered robust enough against brute force attacks.

The effects caused by the usage of incorrect keys are shown in Figure 9. Even the
smallest possible difference between keys K1 and K2 results in major differences between

Entropy 2021, 23, 1373 12 of 22

two encrypted or decrypted images. This means that the proposed image encryption
algorithm is sensitive to the used keys.

di�erence imagelena K1encrypted with lena K2encrypted with

lena K1encrypted with

K1and decrypted with

lena K1encrypted with

K2and decrypted with

lena K2encrypted with

K1and decrypted with

Figure 9. An illustration of key sensitivity of the proposed solution.

4.2. Robustness against Image Modification

The proposed image encryption algorithm was designed to be sensitive to even slight
differences between plain images. In the event that two plain images differ in the intensities
of one of more image pixels, the encryption by the proposed image encryption algorithm
leads to significantly different encrypted images. An example of this feature is shown in
Figure 10, where two similar plain images with a resolution of 32 × 16 pixels and color
depth of 24 bits per pixel were encrypted with key K1. All pixel intensities of the original
plain image were equal to zero; the modified plain image had one pixel with an intensity
level of 1 in the top left corner of the red color plane.

original image modi�ed image

original image
K1encrypted with

modi�ed image
K1encrypted with

Figure 10. Effect of even slight modification on encrypted images.

Entropy 2021, 23, 1373 13 of 22

The mentioned property of the proposed image encryption algorithm means that it is
not robust to any modification of plain or encrypted images. Each change would affect the
resulting image.

4.3. Statistical Properties of the Plaintext-Related Sequence

Since one of the sequences generated by the LM (1) is modified by plain image pixel
intensities, we supposed that it might be interesting to investigate the statistical properties
of this sequence. For this purpose, the NIST 800-22 test suite [53] was utilized. The same
set of statistical tests was used during the AES candidate selection process.

The NIST 800-22 suite runs 15 statistical tests over a set of binary sequences. In our
case, we followed the recommendations given in [53] and used 100 sequences with a length
of 106 bits. Therefore, the required length of the plaintext-related sequence was 108 bits.
This sequence was obtained from the encryption of a zero-intensity image (intensities of all
pixels are equal to 0) with a resolution of 3000 × 2000 pixels and color depth of 24 bits per
pixel. The first 108 element values of sequences seq′plr were converted to binary notation by
the big endian ordering scheme [47] and stored in a vector that was later tested by the NIST
800-22 test suite. Encryption used key K3, which is a zero key (all elements are 0)—this
combination of plain image and key is practically the worst-case scenario for the image
encryption algorithm as both the plain image and key are very monotonous.

The results in Table 4 show that the analyzed sequence displays suitable statistical
properties even after its modification according to the plain image pixel intensities. The
analyzed sequence passed all 15 tests, and borderline results were obtained in the runs,
overlapping template matching and approximate entropy tests.

Table 4. Results of the tests from NIST 800-22 suite obtained by the plaintext-related sequence.

Test Required Obtained
Pass Rate Successful Results

Frequency (monobit) 96/100 99/100
Frequency within a block (M = 128 bits) 96/100 98/100

Runs 96/100 96/100
Longest run of ones in a block 96/100 97/100

Binary matrix rank 96/100 98/100
Discrete Fourier transform (spectral) 96/100 98/100
Non-overlapping template matching 96/100 97/100(m = 9 bits, first p-value)

Overlapping template matching (m = 9 bits) 96/100 96/100
Maurer’s universal statistic 96/100 98/100

Linear complexity (M = 500 bits) 96/100 98/100
Serial (m = 16 bits, first p-value) 96/100 98/100

Approximate entropy (m = 10 bits) 96/100 96/100
Cumulative sums (first p-value) 96/100 99/100

Random excursions (first p-value) 60/63 62/63
Random excursions variant (first p-value) 60/63 63/63

4.4. Properties Regarding Statistical Attacks

The robustness of encrypted images against statistical attacks could be evaluated
by several measures. The first of them is the suppression of peaks in the histograms
of encrypted images. A histogram comparison for plain image lenaG and its version
encrypted with key K1 is shown in Figure 11. It is clearly visible that the proposed image
encryption algorithm flattens the histogram; therefore, it is more difficult to extract some
useful statistical information from the encrypted image.

Entropy 2021, 23, 1373 14 of 22

0
50 100 150 200 250

pixel intensities in plain image

fr
eq

u
en

cy

0

1000

2000

3000

4000

5000

0 50 100 150 200 250
0

1000

2000

pixel intensities in encrypted image

fr
eq

u
en

cy

Figure 11. A comparison of histograms of plain and encrypted images.

Histogram comparison could be done also in an objective way by computing values of
histogram variance var by (9). Higher values of var mean that the histogram has significant
peaks and smaller values of var point out that it is more balanced. Values of var for the set
of experimental images and keys are included in the third column of Table 5.

var =
1

22·L

2L

∑
i=1

2L

∑
j=1

(
hg(i)− hg(j)

)2

2
[-], (9)

where L is the color depth of a color plane or grayscale image, i and j are histogram bin
indexes and hg denotes a histogram of the analyzed image.

Another means of evaluating the robustness against statistical attacks is through corre-
lation diagrams. These plots generally use a set of randomly chosen 1000 pixel pairs. Each
pair contains the intensities of two pixels that are adjacent either horizontally, vertically
or diagonally. Then, the two intensities from each pixel pair are used as coordinates on
two axes. If the intensities are close to each other, the resulting plotted point is close to line
y = x. Otherwise, if the intensities differ a lot, the plotted point could be located anywhere
in the plot. An example of a correlation diagram for 1000 randomly chosen diagonally
adjacent pixel pairs from plain image lenaG and its version encrypted with key K1 is shown
in Figure 12. It can be clearly seen that the encryption breaks the correlation between the
intensities of adjacent pixels.

Entropy 2021, 23, 1373 15 of 22

0

50

100

150

200

250

0
50 100 150 200 250

l k[,]intensity of encrypted image pixel

in
te

n
si

ty
 o

f
en

cr
y

p
te

d

im
ag

e
p

ix
el

[
+1

+1
,

]
l

k

0 50 100 150 200 250
0

50

100

150

200

250

intensity of plain image pixel l k[,]

in
te

n
si

ty
 o

f
p

la
in

[
+1

+1
,

]
l

k
im

ag
e

p
ix

el

Figure 12. A comparison of correlation diagrams for plain and encrypted images.

The correlation between two adjacent pixel intensities could be assessed also by an
objective measure—the value of correlation coefficients ρ. These are calculated separately
for each color plane and in three different directions—horizontally (ρh), vertically (ρv) and
diagonally (ρd)—by (10). Resulting values of ρh, ρv and ρd obtained from computations
with 1000 randomly chosen pixel pairs are presented in columns 4 to 6 of Table 5. The
interval of ρ is 〈−1, 1〉, and lower absolute values of ρ mean that the image pixel intensities
are less correlated.

ρ =
∑

numpp
pp=1

(
in1(pp)− in1

)
·
(
in2(pp)− in2

)√
∑

numpp
pp=1

(
in1(pp)− in1

)2 ·∑numpp
pp=1

(
in2(pp)− in2

)2
[-], (10)

where pp = 1, 2, 3, . . . , numpp is the pixel pair index, numpp denotes the number of pixel
pairs, sequences in1 and in2 store intensities from the pixel pairs and in1 stands for the
arithmetic mean of sequence in1.

The next objective measure is a value of entropy H, which is computed separately for
each color plane of the analyzed image by (11). Values obtained for the sets of experimental
images and keys are included in the seventh column of Table 5. The theoretical boundary
of H is the same as the color depth of the investigated color plane or grayscale image. The
higher values of entropy mean that the color plane or grayscale image is closer to an ideal
source of random information [54].

H = −
2L−1

∑
in=0

p(in) · log2
(

p(in)
)

[bits/px], (11)

Entropy 2021, 23, 1373 16 of 22

where in is a vector of image pixel intensities and p(in) stands for the probability of the
occurrence of a pixel with intensity in.

Table 5. Achieved values of numerical parameters.

Image, var ρh ρv ρd H NPCR U ACIColor Plane [-] [-] [-] [-] [bits/px] [%] [%]and Key

lena
R 510,371 0.9723 0.9731 0.9535 7.5889

not reportedG 1,290,286 0.9734 0.9709 0.9531 7.106
B 1,908,534 0.9702 0.9733 0.9528 6.8147

K1

R 1094 −0.0019 0.002 −0.0012 7.9992 99.6143 33.4857
G 1003 −0.0005 −0.0018 −0.0001 7.9993 99.6134 33.4805
B 929 −0.0014 −0.001 −0.0022 7.9994 99.6144 33.4811

K2

R 1064 0.0017 0.0008 −0.0016 7.9993 99.6135 33.4816
G 1046 −0.001 0.0024 0.0021 7.9993 99.6142 33.4839
B 1137 0.0002 0.0004 −0.0014 7.9992 99.6145 33.4822

K3

R 1024 −0.0029 0.0017 0.0011 7.9993 99.6151 33.486
G 1007 −0.0015 0.0012 −0.0018 7.9993 99.6138 33.4823
B 909 −0.0027 −0.0003 0.0007 7.9994 99.6157 33.4855

peppers
R 852,749 0.9577 0.965 0.9477 7.3388

not reportedG 1,273,532 0.9609 0.9681 0.9558 7.4963
B 1,965,713 0.963 0.965 0.9523 7.0583

K1

R 1012 0.0024 −0.0004 −0.0013 7.9993 99.614 33.4816
G 988 −0.0006 0.0017 0.0012 7.9993 99.6164 33.4832
B 1099 −0.0003 0.0028 −0.001 7.9992 99.6154 33.4818

K2
R 878 0.0006 0.0014 −0.0023 7.9994 99.6146 33.4818
G 909 0.0014 −0.0005 0.0007 7.9994 99.6132 33.4808
B 841 −0.0007 −0.001 0.0025 7.9994 99.6166 33.4846

K3
R 1070 0.0017 0.0022 −0.0004 7.9993 99.6158 33.4864
G 947 0.0011 0.001 −0.0009 7.9993 99.6157 33.4874
B 1036 −0.0006 −0.0003 0.0023 7.9993 99.6147 33.483

baboonG

-

750,764 0.8435 0.7129 0.6758 7.3579 not reported
K1 1123 0.0013 0.0014 0.0001 7.9992 99.6153 33.4807
K2 1102 −0.0009 −0.0027 0.0014 7.9992 99.6142 33.4808
K3 1046 −0.0019 −0.0013 −0.0004 7.9993 99.6149 33.4856

lenaG

-

1,039,126 0.9709 0.9765 0.9561 7.2344 not reported
K1 993 0.0006 −0.0015 −0.0008 7.9993 99.6127 33.483
K2 1046 −0.0009 0.0029 0.0022 7.9993 99.6138 33.4836
K3 995 −0.0013 0.0026 0.0018 7.9993 99.6144 33.4847

peppersG

-

478,900 0.9698 0.9767 0.9628 7.5943 not reported
K1 1108 0.0013 −0.0006 −0.0012 7.9992 99.614 33.484
K2 1075 −0.002 −0.0007 −0.0016 7.9993 99.6132 33.4847
K3 935 0.0007 −0.0026 0.0004 7.9994 99.6137 33.4806

sailboatG

-

718,875 0.9748 0.9657 0.9538 7.4847 not reported
K1 918 0.0011 −0.0004 −0.0016 7.9994 99.6135 33.4844
K2 1042 −0.0003 −0.002 0.0014 7.9993 99.6154 33.4824
K3 906 0.0019 −0.0019 −0.0003 7.9994 99.6148 33.4855

Note: A dash—means that plain image is grayscale.

4.5. Properties Regarding Differential Attacks

In general, differential attacks use a pair of similar plain images P1 and P2, encrypt
them with the same key and compare the resulting encrypted images E1 and E2. The
difference between plain images is usually minimal—one pixel intensity is either incre-
mented or decremented. There are two numerical parameters that assess robustness against
differential attacks—the Number of Pixel Change Ratio (NPCR) and the Unified Average

Entropy 2021, 23, 1373 17 of 22

Changing Intensity (UACI). Since the location of the difference between plain images P1
and P2 could affect the resulting values of NPCR and UACI, both of these measures are
computed as arithmetic means of 100 measurements with different locations of the pixel
intensity difference.

NPCR sums up the amount of differences between two encrypted images E1 and E2.
Its values are computed separately for each color plane or grayscale image by (12):

NPCR =
100
h · w

h

∑
l=1

w

∑
k=1

Di f f (l, k) [%]

Di f f (l, k) =
{

0 if E1(l, k) = E2(l, k)
1 if E1(l, k) 6= E2(l, k)

, (12)

where h and w are the height and width of images, and l and k are line and column indexes.
On the other hand, UACI also takes into account the sizes of pixel intensity differences.

The values of UACI are calculated separately for each color plane or grayscale image
via (13):

UACI =
100
h · w

h

∑
l=1

w

∑
k=1

|E1(l, k)− E2(l, k)|
2L − 1

[%], (13)

where brackets |a| represent the absolute value of number a.
Computed values of NPCR and UACI are presented in the last two columns of Table 5.

Please note that the values for plain images are not included as the computation of NPCR
and UACI could be done only for encrypted images.

The robustness of the analyzed image encryption algorithm against differential attacks
can be considered sufficient if the computed values of the NPCR and UACI fall into
intervals of expected values proposed by Wu et al. [55]. For images with a resolution of
512 × 512 pixels and a color depth of 8 bits per pixel, the intervals of 〈99.6094%, 100%)
for NPCR and (33.3115%, 33.6156%〉 for UACI mean that the analyzed image encryption
algorithm is robust against differential attacks in 999 of 1000 cases.

4.6. Measurement of Computational Complexity

The computational complexity of image encryption algorithms could be estimated
by two methods. The first one examines the complexity of each operation used to encrypt
or decrypt images by means of a big O notation [47]. However, it is challenging to apply
this approach on image encryption algorithms as it is difficult to break complex operations
such as matrix rearrangement, circular shifts or conversion from hexadecimal to binary
notation into fundamental ones such as addition, subtraction or multiplication.

Therefore, image encryption algorithms are usually compared by the arithmetic means
of repeated measurements of encryption times tenc and decryption times tdec. The most
common size of a measurement set is 100 times for encryption and 100 times for decryption.
The effects of different image resolutions and color depths could be mitigated by the
computation of encryption speeds venc and decryption speeds vdec by (14):

voper =
h · w · numcp

220 · toper
[MB/s], (14)

where h, w and numcp denote the height, width and number of color planes of the analyzed
image, the constant of 220 stands for the number of bytes in a megabyte and toper is the
measured encryption time (tenc) or measured decryption time (tdec). The measurements
use seconds as units.

Entropy 2021, 23, 1373 18 of 22

One of the most important hardware parameters, the processor clock frequency, is
taken into account in calculations of the numbers of processor cycles necessary for an
encryption (cycenc) or a decryption (cycdec) of one byte by (15):

cycoper =
fCPU · toper

h · w · numcp
[cycles/B], (15)

where fCPU is the processor clock frequency in Hertz.
The arithmetic means of 100 repeated measurements of encryption and decryption

times are presented as tenc and tdec in Table 6. These values were used for the computation
of encryption speeds venc, decryption speeds vdec and also the numbers of processor cycles
necessary for an encryption cycenc or a decryption cycdec of one byte. All these values are
included in Table 6.

Table 6. Measured and computed values of computational complexity.

Image tenc tdec venc vdec cycenc cycdec
and Key [ms] [ms] [MB/s] [MB/s] [cycles/B] [cycles/B]

lena
K1 493.0626 487.9469 1.5211 1.5371 1567.4 1551.14
K2 490.6985 488.0388 1.5284 1.5368 1559.89 1551.43
K3 493.014 487.4362 1.5211 1.5371 1567.25 1549.52

peppers
K1 491.7683 488.2473 1.5251 1.5361 1563.29 1552.1
K2 492.1848 490.5268 1.5238 1.529 1564.61 1559.34
K3 491.2771 488.7079 1.5266 1.5347 1561.73 1553.56

baboonG
K1 149.4431 143.812 1.6729 1.7384 1425.2 1371.5
K2 149.4405 143.4985 1.6729 1.7422 1425.18 1368.51
K3 149.2358 143.409 1.6752 1.7433 1423.22 1367.65

lenaG
K1 149.4753 143.4511 1.6725 1.7428 1425.51 1368.06
K2 149.3001 143.7227 1.6745 1.7395 1423.84 1370.65
K3 149.5298 144.3434 1.6719 1.732 1426.03 1376.52

peppersG
K1 149.5122 143.768 1.6721 1.7389 1425.86 1371.08
K2 149.4405 143.4985 1.6729 1.7422 1425.18 1368.51
K3 149.2358 143.409 1.6752 1.7433 1423.22 1367.65

sailboatG
K1 149.2376 143.7204 1.6752 1.7395 1423.24 1370.62
K2 149.1357 143.3698 1.6763 1.7437 1422.27 1367.28
K3 149.1004 143.4411 1.6767 1.7429 1421.93 1367.96

4.7. Discussion

The values presented in Table 5 lead to several conclusions. Encryption of all combi-
nations of plain images and keys resulted in a significant decrease in histogram variance
var. This fact is valid for both true color and grayscale images. The differences between the
individual color planes of true color images are barely noticeable and they do not form any
kind of pattern.

Correlation coefficients ρh, ρv and ρd are also visibly decreased after the encryption.
None of the used keys obtains significantly better values. The results are balanced also for
different plain images. This means that the proposed image encryption algorithm obtains
very good results even after encryption with a monotonous key such as K3.

Computed values of entropy H are close to the theoretical boundary of 8 bits per pixel.
All presented values fall into a rather small interval of 〈7.9992, 7.9994〉.

All values of NPCR and UACI belong to intervals of expected values for images with
this resolution and color depth [55]. Different color planes of true color images have similar
values of NPCR or UACI. The presented values are not affected by the value of the used
key since results for all three experimental keys are very similar.

Entropy 2021, 23, 1373 19 of 22

Comparison of encryption and decryption times tenc and tdec from Table 6 shows that
they are slightly different—the decryption seems to be faster. The maximal differences
between tenc and tdec for true color and grayscale images are similar at approx. 5.5 ms and
approx. 6 ms, which means that this difference is not produced by the amount of processed
data. This difference is caused by the reversed order of certain stages during decryption
(see Figure 2 for details) as the processed image does not need to be saved to a matrix and
loaded from it as many times as during encryption.

The encryption speeds venc and decryption speeds vdec demonstrate that the speed
of the proposed solution decreases with the increasing amount of processed data. This is
caused by the linear complexity of the plaintext-related stage—the more sequence elements
are generated and modified according to the plain image, the more time it takes. While this
stage does not use hash functions or any similar tools, it is still the most complex among
other stages used in the proposed algorithm. This issue is visible also from the values of
measures cycenc and cycdec.

4.8. Comparison with Similar Work

Numerical values achieved by the proposed solution were compared with values re-
ported in several papers dealing with similar plaintext-related image encryption algorithms.
Older approaches use simpler plaintext-related stages that may obtain insufficient values
of some numerical parameters [25,27] or whole algorithms may be already broken [30].
Some of the newer proposals utilize complex chaotic systems and do not focus on the
fine-tuning of their performance [32–35,37]. The values of numerical parameters obtained
for the red color plane of true color image lena or grayscale image lenaG with resolutions
of 512 × 512 pixels are included in Table 7.

Table 7. Comparison of obtained numerical results with similar work.

Approach ρh ρv ρd H NPCR U ACI cycenc
[-] [-] [-] [bits/px] [%] [%] [cycles/B]

Red color plane of true color image lena
proposed −0.0019 0.002 −0.0012 7.9992 99.6143 33.4857 1567.4

[25] −0.0029 −0.015 0.0129 7.997 99.62 33.51 ∼2270
[30] 0.0135 - 7.9974 99.63 33.31 648.53

Grayscale image lenaG
proposed 0.0006 −0.0015 −0.0008 7.9993 99.6127 33.483 1425.51

[19] 0.0077 0.0053 0.0003 7.9993 99.606 33.4714 4205.32
[27] −0.0046 −0.0511 −0.0168 7.9993 99.6101 33.4679 8230.32
[32] 0.0044 0.0151 0.0012 7.9993 99.62 33.45 15,120.97
[33] −0.0037 −0.0029 0.0047 7.9975 99.5956 33.5512 43,151.97
[34] 0.0013 0.0008 0.0066 7.9993 99.6107 33.436 5185.19
[35] 0.0003 0.0019 0.0003 7.9993 99.6159 33.4846 4945.37
[37] −0.0003 −0.0024 −0.0022 7.9994 99.6096 33.4599 72,452.57

Note: A dash-stands for non-reported data.

The proposed solution achieves the best values of correlation coefficients ρ and entropy
H among algorithms reporting results for the red color plane of true color image lena.
Values of NPCR and UACI are comparable with the best approach [25] in this category.
The number of processor cycles necessary for the encryption of one byte cycenc is higher
than that achieved by [30]; however, this scheme was broken [31].

A comparison of algorithms that report numerical values for grayscale image lena
shows that the values of ρ achieved by the proposed solution are close to the best values
obtained by [35]. However, the proposed algorithm has much more balanced results. The
highest value of H is achieved by [37], closely followed by the proposed algorithm and
almost all other solutions. Obtained values of NPCR and UACI are also among the best
as the proposed algorithm ranks second behind [35] for NPCR and third behind [33,35]

Entropy 2021, 23, 1373 20 of 22

for UACI. The most significant advantage of the proposed solution is its computational
complexity, which is by far the lowest. The second-fastest algorithm [19] is almost three-
times slower.

The reported numerical parameters show that the proposed solution is able to reach
values of numerical parameters that are comparable with those achieved by more complex
approaches that use either hash functions [32–35] or special coding techniques [18,37].
As our proposal is the fastest one, and considering that the presented values of numerical
parameters are close to the best, the proposed algorithm can be viewed as effective and our
initial assumptions about its properties are proven to be correct.

5. Conclusions

This paper dealt with the topic of plaintext-related image encryption algorithms. After
a brief introduction to the area and a survey of relevant approaches, a novel solution was
proposed. It merges the latest knowledge about the LM and its properties from our previous
work, a new plaintext-related parameter modification technique and a rather uncommon
row-wise approach of pixel intensity processing that enables the extraction of all required
values during both encryption and decryption. Experimental results showed that the
proposed algorithm is sensitive even to small differences between various plain images or
keys and the sequence modified according to the plain image pixel intensities passed all
statistical tests from the NIST 800-22 test suite. The numerical results were compared with
those reported in similar work and it was found that, although our proposal uses a simpler
chaotic map, it can obtain the same results as algorithms utilizing complex chaotic systems.
Furthermore, the computational complexity of the proposed scheme is much lower that
that of other algorithms.

The presented results confirm an idea from our previous research—finely tuned, sim-
pler chaotic systems can manifest similar behavior to some inappropriate implementations
of more complex chaotic systems. Moreover, the simpler chaotic maps were popularized
much sooner and they have been analyzed more precisely. In our future work, we would
like to investigate other methods of utilizing the full potential of simple chaotic maps
such as the LM in the area of plaintext-related image encryption. These may include
modifications of Equation (1) for the enhancement of its chaotic behavior, the usage of
different quantization techniques that may obtain multiple sequence elements from one
iterate or more efficient parameter value patterns.

Author Contributions: Conceptualization, J.O. and L.O.; methodology, J.O.; software, J.O.; validation,
J.O., L.O. and J.P.; formal analysis, J.O.; investigation, J.O.; resources, L.O. and J.P.; data curation,
J.O.; writing—original draft preparation, J.O.; writing—review and editing, J.O., L.O. and J.P.;
visualization, J.O.; supervision, L.O. and J.P.; project administration, L.O.; funding acquisition, J.P.
All authors have read and agreed to the published version of the manuscript.

Funding: This research was funded by the Slovak Research and Development Agency, research grant
no. APVV-17-0208.

Data Availability Statement: The data presented in this study are available on request from the
corresponding author.

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviations
The following abbreviations are used in this manuscript:

AES Advanced Encryption Standard
CPU Central Processing Unit
ECB Electronic CodeBook
LE Lyapunov Exponent

Entropy 2021, 23, 1373 21 of 22

LM Logistic Map
NPCR Number of Pixel Change Ratio
OS Operating System
RAM Random Access Memory
UACI Unified Average Changing Intensity
XOR eXclusive OR

References
1. Pichler, F.; Scharinger, J. Finite dimensional generalized baker dynamical systems for cryptographic applications. In Proceed-

ings of the International Conference on EUROCAST 1995, Innsbruck, Austria, 22–26 May 1995; Springer: Berlin, Germany,
1995; pp. 465–476.

2. Fridrich, J. Symmetric ciphers based on two-dimensional chaotic maps. Int. J. Bifurc. Chaos 1998, 8, 1259–1284. [CrossRef]
3. Gleick, J. Chaos: Making a New Science; Vintage Books: London, UK, 1998; 380p.
4. Solak, E.; Cokal, C.; Yildiz, O.T.; Biyikoglu, T. Cryptanalysis of Fridrich’s chaotic image encryption. Int. J. Bifurc. Chaos 20, 5,

1405–1413. [CrossRef]
5. FIPS 197: ‘Advanced Encryption Standard (AES)’. Available online: https://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.197.pdf

(accessed on 3 September 2021).
6. Hajduk, V.; Broda, M.; Kovac, O.; Levicky, D. Image steganography with using QR code and cryptography. In Proceedings of the

International Conference Radioelektronika 2016, Kosice, Slovakia, 19–20 April 2016; IEEE: Danvers, MA, USA, 2016; pp. 350–353.
7. Oravec, J.; Turan, J. Substitution steganography with security improved by chaotic image encryption. In Proceedings of the

International Conference Informatics 2017, Poprad, Slovakia, 14–16 November 2017; IEEE: Danvers, MA, USA, 2017; pp. 284–288.
8. Fang, D.; Sun, S. A new scheme for image steganography based on hyper-chaotic map and DNA sequence. J. Inf. Hiding Multim.

Signal Process. 2018, 9, 392–399.
9. Chen, X.; Hu, C.-J. Adaptive medical image encryption algorithm based on multiple chaotic mapping. Saudi J. Biol. Sci. 2017, 24,

1821–1827. [CrossRef]
10. Abundiz-Perez, F.; Cruz-Hernandez, C.; Murillo-Escobar, M.A.; Lopez-Gutierrez, R.M.; Arellano-Delgado, A. A fingerprint image

encryption scheme based on hyperchaotic Rossler map. Math. Probl. Eng. 2016, 2016, 2670494. [CrossRef]
11. Xie, E.Y.; Li, C.; Yu, S.; Lu, J. On the cryptanalysis of Fridrich’s chaotic image encryption scheme. Signal Process. 2017, 132, 150–154.

[CrossRef]
12. Preishuber, M.; Hutter, T.; Katzenbeisser, S.; Uhl, A. Depreciating motivation and empirical security analysis of chaos-based

image and video encryption. IEEE Trans. Inf. Forensics Secur. 2018, 13, 2137–2150. [CrossRef]
13. Kovac, O.; Lukacs, P.; Gladisova, I. Textures classification based on DWT. In Proceedings of the International Conference

Radioelektronika 2018, Prague, Czech Republic, 19–20 April 2018; IEEE: Danvers, MA, USA, 2018; pp. 1–5.
14. Mihalik, J.; Gladisova, I. Color content descriptors of images by vector quantization. Adv. Electr. Electron. Eng. 2020, 18, 264–273.
15. NIST SP 800-38A: ‘Recommendation for Block Cipher Modes of Operation: Methods and Techniques’. Available online:

https://nvlpubs.nist.gov/nistpubs/Legacy/SP/nistspecialpublication800-38a.pdf (accessed on 3 September 2021).
16. Gueron, S. Intel Advanced Encryption Standard (AES) New Instructions Set. Available online: https://www.intel.com/content/

dam/doc/white-paper/advanced-encryption-standard-new-instructions-set-paper.pdf (accessed on 3 September 2021).
17. Liu, L.; Miao, S. A new image encryption algorithm based on logistic chaotic map with varying parameter. SpringerPlus 2016, 5,

289–300. [CrossRef]
18. Chai, X.; Zheng, X.; Gan, Z.; Chen, Y. Exploiting plaintext-related mechanism for secure color image encryption. Neural Comput.

Appl. 2020, 32, 8065–8088. [CrossRef]
19. Zheng, J.; Hu, H. A symmetric image encryption scheme based on hybrid analog-digital chaotic system and parameter selection

mechanism. Multimed. Tools Appl. 2021, 80, 20883–20905. [CrossRef]
20. Masood, F.; Ahmad, J.; Syed, A.S.; Jamal, S.S.; Hussain, I. A novel hybrid secure image encryption based on Julia set of fractals

and 3D Lorenz chaotic map. Entropy 2020, 22, 274. [CrossRef]
21. Masood, F.; Driss, M.; Boulila, W.; Ahmad, J.; Rehman, S.U.; Jan, S.U.; Qayyum, A.; Buchanan, W.J. A lightweight chaos-based

medical image encryption scheme using random shuffling and XOR operations. Wirel. Pers. Commun. 2021, 23, 1–28.
22. Wu, Z.; Pan, P.; Sun, C.; Zhao, B. Plaintext-related dynamic key chaotic image encryption algorithm. Entropy 2021, 23, 1159.

[CrossRef]
23. Moussa, K.H.; El Naggary, A.I.; Mohamed, H.G. Non-linear hopped chaos parameters-based image encryption algorithm using

histogram equalization. Entropy 2021, 23, 535. [CrossRef]
24. Pourasad, Y.; Ranjbarzadeh, R.; Mardani, A. A new algorithm for digital image encryption based on chaos theory. Entropy 2021,

23, 341. [CrossRef]
25. Kanso, A.; Ghebleh, M. A novel image encryption algorithm based on a 3D chaotic map. Commun. Nonlinear Sci. 2012, 17,

2943–2959. [CrossRef]
26. Fu, C.; Hou, S.; Zhou, W.; Liu, W.; Wang, D. A chaos-based image encryption scheme with a plaintext related diffusion. In

Proceedings of the 2013 9th International Conference on Information, Communications & Signal Processing, Tainan, Taiwan,
10–13 December 2013; IEEE: Danvers, MA, USA, 2013; pp. 1–5.

http://doi.org/10.1142/S021812749800098X
http://dx.doi.org/10.1142/S0218127410026563
https://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.197.pdf
http://dx.doi.org/10.1016/j.sjbs.2017.11.023
http://dx.doi.org/10.1155/2016/2670494
http://dx.doi.org/10.1016/j.sigpro.2016.10.002
http://dx.doi.org/10.1109/TIFS.2018.2812080
https://nvlpubs.nist.gov/nistpubs/Legacy/SP/nistspecialpublication800-38a.pdf
https://www.intel.com/content/dam/doc/white-paper/advanced-encryption-standard-new-instructions-set-paper.pdf
https://www.intel.com/content/dam/doc/white-paper/advanced-encryption-standard-new-instructions-set-paper.pdf
http://dx.doi.org/10.1186/s40064-016-1959-1
http://dx.doi.org/10.1007/s00521-019-04312-8
http://dx.doi.org/10.1007/s11042-021-10751-0
http://dx.doi.org/10.3390/e22030274
http://dx.doi.org/10.3390/e23091159
http://dx.doi.org/10.3390/e23050535
http://dx.doi.org/10.3390/e23030341
http://dx.doi.org/10.1016/j.cnsns.2011.11.030

Entropy 2021, 23, 1373 22 of 22

27. Zhang, Y. A chaotic system based image encryption algorithm using plaintext-related confusion. Indones. J. Electr. Eng. Comput.
Sci. 2014, 12, 7952–7962. [CrossRef]

28. Norouzi, B.; Mirzakuchaki, S.; Seyedzadeh, S.M.; Mosavi, M.R. A simple, sensitive and secure image encryption algorithm based
on hyper-chaotic system with only one round diffusion process. Multimed. Tools Appl. 2014, 71, 1469–1497. [CrossRef]

29. Zhang, Y.; Xiao, D.; Wen, W.; Li, M. Breaking an image encryption algorithm based on hyper-chaotic system with only one round
diffusion process. Nonlinear Dyn. 2014, 76, 1645–1650. [CrossRef]

30. Murillo-Escobar, M.A.; Cruz-Hernandez, C.; Abundiz-Perez, F.; Lopez-Gutierrez, R.M.; Acosta Del Campo, O.R. A RGB image
encryption algorithm based on total plain image characteristics and chaos. Signal Process. 2015, 109, 119–131. [CrossRef]

31. Fan, H.; Li, M.; Liu, D.; An, K. Cryptanalysis of a plaintext-related chaotic RGB image encryption scheme using total plain image
characteristics. Multimed. Tools Appl. 2018, 77, 20103–20127. [CrossRef]

32. Chai, X.; Gan, Z.; Zhang, M. A fast chaos-based image encryption scheme with a novel plain image-related swapping block
permutation and block diffusion. Multimed. Tools Appl. 2017, 76, 15561–15585. [CrossRef]

33. Wang, X.; Zhu, X.; Wu, X.; Zhang Y. Image encryption algorithm based on multiple mixed hash functions and cyclic shift. Opt.
Lasers Eng. 2018, 107, 370–379. [CrossRef]

34. Li, Z.; Peng, C.; Li, L.; Zhu, X. A novel plaintext-related image encryption scheme using hyper-chaotic system. Nonlinear Dyn.
2018, 94, 1319–1333. [CrossRef]

35. Li, Z.; Peng, C.; Tan, W.; Li, L. A novel chaos-based image encryption scheme by using randomly DNA encode and plaintext
related permutation. Appl. Sci. 2020, 10, 7469. [CrossRef]

36. Sun, S.; Guo, Y.; Wu, R. A novel image encryption scheme based on 7D hyperchaotic system and row-column simultaneous
swapping. IEEE Access 2019, 7, 28539–28547. [CrossRef]

37. Zhang, Q.; Han, J. A novel color image encryption algorithm based on image hashing, 6D hyperchaotic and DNA coding.
Multimed. Tools Appl. 2021, 80, 13841–13864. [CrossRef]

38. Oravec, J.; Turan, J.; Ovsenik, L.; Ivaniga, T.; Solus, D.; Marton, M. Asymmetric image encryption approach with plaintext-related
diffusion. Radioengineering 2018, 27, 281–288. [CrossRef]

39. Oravec, J.; Turan, J.; Ovsenik, L.; Huszanik, T. A chaotic image encryption algorithm robust against the phase space reconstruction
attacks. Acta Polytech. Hung. 2019, 16, 37–57.

40. Ovsenik, L.; Turan, J.; Huszanik, T.; Oravec, J.; Kovac, O.; Oravec, M. Image encryption algorithm with plaintext related chaining.
Comput. Inform. 2019, 38, 647–678. [CrossRef]

41. Oravec, J.; Ovsenik, L.; Turan, J.; Huszanik, T. Mitigating drawbacks of logistic map for image encryption algorithms. Comput.
Inform. 2020, 39, 1250–1281. [CrossRef]

42. Oravec, J.; Ovsenik, L.; Papaj, J. An image encryption algorithm with a plaintext-related quantisation scheme. IET Image Process
2021, 15, 2039–2055. [CrossRef]

43. Schneier, B. Applied Cryptography: Protocols, Algorithms, and Source Code in C; Wiley: New York, NY, USA, 1996; 1027p.
44. May, R.R. Simple mathematical models with very complicated dynamics. Nature 2004, 261, 459–467. [CrossRef]
45. Persohn, K.J.; Povinelli, R.J. Analyzing logistic map pseudorandom number generators for periodicity induced by finite precision

floating-point representation. Chaos Solitons Fractals 2012, 45, 238–245. [CrossRef]
46. Arroyo, D.; Alvarez, G.; Fernandez, V. On the inadequacy of the logistic map for cryptographic applications. In Proceedings

of the 10th Spanish Meeting on Cryptology and Information Security, Salamanca, Spain, 2–5 September 2008; Universidad de
Salamanca: Salamanca, Spain, 2008; pp. 77–82.

47. Knuth, D.E. The Art of Computer Programming; Addison-Wesley: Boston, MA, USA, 2005; 1872p.
48. Steingartner, W.; Eldojali, M.A.; Radakovic, D.; Dostal, J. Software support for course in semantics of programming languages.

In Proceedings of the International Scientific Conference on Informatics 2017, Poprad, Slovakia, 14–16 November 2017; IEEE:
Danvers, MA, USA, 2017; pp. 359–364.

49. IEEE 754-2019: ‘IEEE Standard for Floating-Point Arithmetic’. Available online: https://ieeexplore.ieee.org/servlet/opac?
punumber=8766227 (accessed on 3 September 2021).

50. Steingartner, W.; Galinec, D. The role of categorical structures in infinitesimal calculus. J. Appl. Math. Comput. Mech. 2013, 12,
107–119. [CrossRef]

51. Steingartner, W.; Polakova, A.; Praznak, P.; Novitzka, V. Linear logic in computer science. J. Appl. Math. Comput. Mech. 2015, 14,
91–100. [CrossRef]

52. The USC-SIPI Image Database. Available online: http://sipi.usc.edu/database/ (accessed on 3 September 2021).
53. NIST SP 800-22 Rev. 1a: ‘A Statistical Test Suite for Random and Pseudorandom Number Generators for Cryptographic

Applications’. Available online: https://nvlpubs.nist.gov/nistpubs/Legacy/SP/nistspecialpublication800-22r1a.pdf (accessed
on 3 September 2021).

54. Broda, M.; Hajduk, V.; Levicky, D. Universal statistical steganalytic method. J. Electr. Eng. 2017, 68, 117–124. [CrossRef]
55. Wu, Y.; Noonan, J.P.; Agaian, S. NPCR and UACI randomness tests for image encryption. J. Sel. Areas Telecommun. 2011, 1, 31–38.

http://dx.doi.org/10.11591/telkomnika.v12i11.6480
http://dx.doi.org/10.1007/s11042-012-1292-9
http://dx.doi.org/10.1007/s11071-014-1235-2
http://dx.doi.org/10.1016/j.sigpro.2014.10.033
http://dx.doi.org/10.1007/s11042-017-5437-8
http://dx.doi.org/10.1007/s11042-016-3858-4
http://dx.doi.org/10.1016/j.optlaseng.2017.06.015
http://dx.doi.org/10.1007/s11071-018-4426-4
http://dx.doi.org/10.3390/app10217469
http://dx.doi.org/10.1109/ACCESS.2019.2901870
http://dx.doi.org/10.1007/s11042-020-10437-z
http://dx.doi.org/10.13164/re.2018.0281
http://dx.doi.org/10.31577/cai_2019_3_647
http://dx.doi.org/10.31577/cai_2020_6_1250
http://dx.doi.org/10.1049/ipr2.12174
http://dx.doi.org/10.1038/261459a0
http://dx.doi.org/10.1016/j.chaos.2011.12.006
https://ieeexplore.ieee.org/servlet/opac?punumber=8766227
https://ieeexplore.ieee.org/servlet/opac?punumber=8766227
http://dx.doi.org/10.17512/jamcm.2013.1.11
http://dx.doi.org/10.17512/jamcm.2015.1.09
http://sipi.usc.edu/database/
https://nvlpubs.nist.gov/nistpubs/Legacy/SP/nistspecialpublication800-22r1a.pdf
http://dx.doi.org/10.1515/jee-2017-0016

	Introduction
	Related Work
	Proposed Solution
	Logistic Map and Its Properties
	Encryption
	Decryption

	Experimental Results
	Key Space Size and Key Sensitivity
	Robustness against Image Modification
	Statistical Properties of the Plaintext-Related Sequence
	Properties Regarding Statistical Attacks
	Properties Regarding Differential Attacks
	Measurement of Computational Complexity
	Discussion
	Comparison with Similar Work

	Conclusions
	References

