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Abstract: The corrosion inhibition performance of an imidazolium-based ionic liquid (IL), 1-butyl-3-
methylimidazolium thiocyanate (BMIm), was studied on AA 6061 alloy in 1 M HCl solution at 303 K,
333 K, and 363 K by gravimetric tests, potentiodynamic polarization, and electrochemical impedance
spectroscopy (EIS) analysis. Scanning electron microscopy with energy dispersive X-ray (SEM-EDX)
and X-ray photoelectron spectroscopy (XPS) were used to detect the surface morphologies and
chemical composition of the surface films. The results indicate that this IL inhibits AA 6061 corrosion
in acid with maximum inhibition efficiencies of 98.2%, 86.6%, and 41.2% obtained at 303 K, 333 K,
and 363 K respectively. Inhibition efficiency generally decreased with increasing immersion time;
the major exception was at 303 K, whereby the inhibition efficiency was detected to increase with
immersion time from 30 to 90 min and then decrease slightly beyond 90 min. The results indicate that
BMIm is a mixed-type inhibitor with a predominant effect on cathodic reactions. Surface morphology
analyses by SEM revealed less surface damage in the presence of the inhibitor. XPS analysis established
the development of a protective film on the AA 6061 surface which was hydrophobic in nature.

Keywords: corrosion inhibition; ionic liquid; AA 6061; XPS

1. Introduction

Carbonate reservoirs require acid fracturing to improve their permeability. A section of tubing
needs to be removed after acid fracturing. Steel tubing can be removed by drilling, but the efficiency is
low and the cost is high. Aluminum alloys are the most promising alternative to steel tubing materials
because of their high specific strength and ease of drilling through them [1]. HCl is frequently used
in acid fracturing, but it can cause high corrosion rates of aluminum components [1,2]. Therefore,
the key requirement for the practical application of aluminum alloy as a tubing material is to find a
suitable inhibitor to reduce corrosion in acid to ensure that it can withstand the specified internal and
external conditions during acid fracturing. Most effective inhibitors for Al are organic compounds
that comprise heteroatoms, i.e., N, S, or O atoms, in their structure [3–5]. It has been shown that
imidazoline-based compounds have good corrosion inhibition efficiency and ease of degradation [6].
However, many of these inhibitors are not eco-friendly. Due to health and environmental concerns,
the use of several organic inhibitors has been restricted because of their toxic nature. While sol-gel
coatings on aluminum alloys offer many benefits regarding chemical attack [7], but they also have
limitations. Natural products from plants are also used as inhibitors and have been shown to have
good inhibition efficiency [8–10]. However, challenges with forecasting the precise inhibiting groups,
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the binding sites, inhibition mechanism, etc. are significant, as the complex composition of these natural
inhibitors requires separation of the extract into distinct constituents to establish these parameters.
Furthermore, extracts of plants are fairly unstable and easily degraded, which limits their use on
industrial scales [11].

In the meantime, ionic liquids (ILs), a kind of molten salt composed of organic cations and
several anions, have found vast potential applications as favorable green inhibitors due to their
properties, like good ionic conductivity, nonflammability, greater stability, low volatility at normal
working temperature, and eco-friendly nature [12–14]. ILs display stability to thermal, electrochemical,
chemical, and radiolytic perturbations [15,16]. They are usually utilized in relatively high-temperature
applications. A major reason for increasing interest in ILs is their high thermal stability; they are
resistant to both decomposition and evaporation [17]. Imidazolium-based ILs manifest high thermal
stability [18]. Earlier workers have shown that ILs are feasible as corrosion inhibitors for various
alloys in acid solutions [19–21]. Some ILs having N atoms in the cationic part, such as imidazolium,
pyrrolidine, pyridinium, and their derivatives, have been broadly tested as inhibitors for various metals
in different media [22–25]. However, to our knowledge, imidazolium-based ILs are yet to be tested as
corrosion inhibitors for Al alloys. To explore this, the present work evaluates the corrosion inhibition
influence exerted by 1-butyl 3-methylimidazolium thiocyanate (BMIm), an imidazolium-based IL, as a
new corrosion inhibitor for AA 6061 alloy in 1 M HCl solution, as well as the effect of concentration
and temperature. The corrosion inhibition property of the IL on AA 6061 alloy was determined using
gravimetric analysis, the potentiodynamic polarization technique, and EIS study by adding different
concentrations of ILs into corrosive solution. Surface analyses of the alloy samples were executed
using SEM-EDX and XPS analysis. The hydrophobic character of samples after immersion in test
solution was also evaluated using contact angle analysis. Based on the outcomes, useful facts about
the mechanisms of corrosion inhibition are presented.

2. Experimental Details

2.1. Materials

Experiments were executed on AA 6061 alloy samples. The chemical composition of the alloy is
presented in Table 1. AR grade 37% HCl and distilled water were as a test solution. The BMIm (98%)
was obtained from Lanzhou Greenchem, Lanzhou, China, and used without further purification.

Table 1. Composition of AA6061 alloy (wt.%).

Fe Si Cu Mn Mg Ti Zn Al

0.15 0.53 0.26 0.06 0.92 0.04 0.02 Bal.

2.2. Gravimetric Tests

Mass loss experiments were carried out under full soaking of 250 mL of nondeaerated 1 M HCl
solution with and without inhibitor at various temperatures (303 K, 333 K, and 363 K), controlled
by an oil thermostat (Jintan Science Analysis Instrument Co., Ltd., Jintan, China). Aluminum alloy
coupons of 25 mm × 20 mm × 2 mm with a hole of 1.5 mm diameter at one end were abraded
using emery paper (Chron Chemical Co., Ltd., Chengdu, China) (grades 200, 400, 600, 800, and 1000)
and then washed using distilled water and acetone. After weighing using a digital balance with an
accuracy of ±0.01 mg, the samples were suspended in a beaker containing the test solution using
a string. After immersion for different times, the samples were taken out, washed under running
water to remove the corrosion products, dried under a hot air stream, and again weighed. Different
concentrations of BMIm were used to analyze the concentration effect on the inhibition efficiency
according to temperature. For accuracy, gravimetric tests were done in triplicate and the mean
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values are reported and used in further evaluations. Corrosion rate (ν) and inhibition efficiency (ηw%)
were calculated using the equations given below [26]:

ν =
W
St

(1)

where W = average weight loss of three specimens, S = surface area of one AA 6061 sample,
and t = time (h) of immersion.

ηw% =
ν0 − ν
ν0

× 100 (2)

where ν0 and ν are the values obtained for corrosion rate without and with inhibitor, respectively.

2.3. Electrochemical Analysis

Electrochemical tests were performed using an Autolab PGSTAT302N (Metrohm AG Co., Ltd.,
Barendrecht, The Netherlands) with three-electrode cell association, in which a platinum wire served
as a counter electrode and a dip type saturated calomel electrode (SCE) (Zhanhua electronic precision
instrument service Co., Ltd., Shanghai, China) was used as the reference electrode. The AA 6061 sample
(Xinjiang Joinworld Co., Ltd., Urumqi, China), which was the working electrode (WE), had an exposed
surface area of 10 × 10 mm; it was abraded with emery paper on the test face, and then washed with
distilled water, degreased using acetone, and finally dried. Electrochemical experiments were carried
out in 1 M HCl solutions with different concentrations of BMIm (1.0, 2.0, 3.0, and 4.0 mM) at 303 K.
Before measurements of all electrochemical tests, the WE was kept in the test solution for 30 min at
ambient temperature to achieve fairly constant OCP values. The potentiodynamic polarization tests
were performed with a potential range of −400 mV to 600 mV vs. OCP at a sweep rate of 0.5 mV s−1.
The inhibition efficiency (ηp%) was determined as:

ηp% =
Icorr − Icorr(inh)

Icorr
× 100 (3)

EIS was performed at OCP in the frequency range of 105 to 10−2 Hz using a 10 mV peak-to-peak
voltage excitation. The impedance data were analyzed to assess the corrosion characteristics.
Various parameters were obtained from the simulation of plots using the Zsimpwin 3.21 software.
All the measurements were done thrice and the average values are reported using the best figures.
A fresh solution was used for every electrochemical experiment.

2.4. Surface Analyses

Samples of dimension 10 mm × 10 mm × 2 mm were prepared as described before. After dipping
in 1 M HCl without and with 3 mM inhibitor for 90 min, the samples were completely washed using
distilled water and dried. SEM (ZEISS EVO MA15, Carl Zeiss AG Co., Ltd., Oberkochen, Germany)
was used to visualize the morphology of the surface for the polished, corroded, and inhibited samples.
Electrons were generated at the source by thermionic heating. These electrons were then accelerated
to a voltage between 1–40 kV and condensed into a narrow beam applied for imaging and analysis.
The equivalent EDX spectra and elemental mapping were used for the qualitative analysis of the
adsorbed inhibitor on the sample surface. An X-Max SDD detector was used. XPS (Model: ESCALAB
250 XI, Thermo Fisher Scientific Co., Ltd, Waltham, MA, USA) was also used to identify the chemical
composition of the films formed on the samples after immersion in 1 M HCl solution without and with
3 mM inhibitor concentration. The Al Kα line was applied as the X-ray baseline. Inspected spectra,
collected with the high-resolution Al 2p, O 1s, N 1s, S 2p, C 1s, and Cl 2p regions, were verified.
Nonlinear Shirley background subtraction was used to get the XPS signal intensities. A contact
angle analysis of the samples was also performed using a contact angle tester with a liquid drop
(DSA100 KRUSS, Bluestar Electronic Technology Co., Ltd, Shenzhen, China). The shapes of the droplets
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were obtained using a digital camera, and the angles were determined using a computer with the
help of the JGW-360A software (Version 1.0, Chenghui Testing machine Co., Ltd. Chengdu, China).
The contact angle data were obtained from the average of six recordings under identical conditions
and using the best pictures.

3. Results and Discussion

3.1. Gravimetric Investigations

The values obtained for inhibition efficiencies (ηw) from the mass loss (immersion time is 90 min)
for different BMIm concentrations in 1 M HCl at different temperatures are shown in Figure 1. To analyze
the effect of temperature on inhibition ability, tests were carried out from 303 K to 363 K in steps of 30 K.
It was found that ηw increased with increases in concentration at various temperatures. At 3.0 mM
concentration, the values of maximum efficiencies were 98.2%, 86.6%, and 41.2% for 303 K, 333 K,
and 363 K respectively. These results indicate that BMIm is a good inhibitor for Al alloy at 303 K and
333 K in 1 M HCl, but that it was not very effective at 363 K. A possible reason is that the corrosion rate
was very fast at 363 K, and a large amount of aluminum had been corroded before the BMIm formed a
protective film on the sample surface. In order to verify this, an additional experiment was carried out
by immersing the aluminum alloy sample in deionized water containing 4.0 mM inhibitor (BMIm)
for 2 h at 303 K, and then testing it in 1 M HCl solution having 3.0 mM BMIm at 363 K; the obtained ηw

was 71.4%. These results of supplementary experiments showed that BMIm is also an effective inhibitor
at 363 K if a protective film forms on the surface before the experiment. Figure 1 also demonstrates that
ηw diminishes with temperature, which could be ascribed to the increased ease of inhibitor desorption
from the alloy surface with temperature increase. Figure 2 shows the influence of immersion time on
inhibition efficiency. Notably, ηw was significantly dependent on the immersion time, increasing with
the time of immersion at 303 K from 30 to 90 min, and then decreasing slightly; however, for other
temperatures, it decreased regularly with an increase in immersion time. The presence of BMIm in the
acid solution prevents the reduction/oxidation reactions from taking place which are responsible for
metal degradation, so that an increasing inhibitor concentration enhances the adsorption of inhibitor
molecules and coverage of the inhibitor on the metal surface [27].
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Figure 2. Relationship between inhibition efficiency (ηw) and time in 1 M HCl at different temperatures
using weight loss method at 3 mM concentration of inhibitor.

3.2. Open Circuit Potential (OCP)

The variation of OCP (Eocp) of AA 6061 alloy in 1 M HCl solution with time in the absence and
presence of inhibitor at 303 K is shown in Figure 3. It can be noticed from the figure that the shapes of
all the curves are similar. The test specimens achieved steady-state potential in the test solution in the
absence and presence of inhibitor in about 200 s, as illustrated in Figure 3. The values of potential in
the presence of the inhibitor are moved towards the cathodic side, indicating the impact of the inhibitor
largely on the cathodic reaction [28].Materials 2020, 13, x FOR PEER REVIEW 6 of 20 
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Figure 3. Open circuit potential versus time curves for AA 6061 in 1 M HCl without and with inhibitor
at 303 K.

3.3. Potentiodynamic Polarization Study

The potentiodynamic polarization curves for AA 6061 alloy in 1 M HCl containing different
concentrations of BMIm at 303 K with 90 min immersion time are presented in Figure 4. The corrosion
current density (Icorr) and other parameters were assessed by extrapolating the cathodic linear area
to the corrosion potential as described before in presence of inhibitors for aluminum [26,29]. Table 2
demonstrates the various corrosion parameters obtained from polarization curves. It is clear from
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Figure 4 that the curves shifted towards the more negative potentials in the presence of inhibitor in
comparison to the blank sample. This indicates that the inhibitor predominantly exerts an influence on
cathodic reactions [30]. It appears that Icorr reduces with the concentration of the inhibitor. Likewise,
efficiency increases with inhibitor concentration, which may be attributed to enhanced blockage portions
of the electrode surface by adsorption of the inhibitor. The ηp of a 4.0 mM inhibitor concentration
reached a maximum of 98%, indicating that BMIm is a good inhibitor for AA 6061 alloy in 1 M HCl
solution. It is also obvious from Table 2 that as the concentration of BMIm increases, the values of the
corrosion potential (Ecorr) shift slightly in the negative direction. An inhibitor must be considered either
anodic or cathodic when variation in the Ecorr value between the inhibited and the blank sample is
more than 85 mV [31]. The present results demonstrate that the differences in the Ecorr values between
the inhibited and the blank systems were not more than 85 mV, which suggests that the inhibitor is
mixed-type, with a predominant influence on cathodic reactions [32,33]. Cathodic slope alters to some
extent upon the addition of inhibitor, which indicates that the mechanism of hydrogen evolution is not
significantly changed in the presence of the inhibitor.Materials 2020, 13, x FOR PEER REVIEW 7 of 20 
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without and with various inhibitor concentrations at 303 K.

Table 2. Polarization parameters for the corrosion of AA 6061 alloy in 1 M HCl containing various
concentrations of inhibitor at 303 K.

Inhibitor Conc.
(mM)

Ecorr
(V vs. SCE)

Icorr
(µAcm−2)

βc
(mV dec−1)

βa
(mV dec−1)

Corrosion Rate
(mmy−1)

Polarization
Resistance (Ω) IE (%)

0 −0.71 1030 80 139 12.06 4.9 –
1 −0.73 59.3 98 21 0.689 124.6 94.2
2 −0.77 29.5 77 40 0.271 504.3 97.1
3 −0.76 22.3 68 90 0.254 582.0 97.8
4 −0.79 20.7 60 52 0.223 665.6 98.0

3.4. Electrochemical Impedance Spectroscopy (EIS) Analysis

To get information about the surface passive films on the aluminum alloy samples, an EIS
investigation in 1 M HCl without and with different concentrations of inhibitor was executed
(immersion time is 90 min). Figure 5a shows the corresponding Nyquist diagram, and Figure 5b,c the
Bode diagrams of the investigated samples at 303 K. The Nyquist plots present a high frequency (HF)
capacitive loop and a low frequency (LF) inductive loop. Comparable plots have also been reported
by other investigators for the corrosion of aluminum and its alloys in acidic media [34,35]. The HF
capacitive loop could be ascribed to the charge transfer resistance of the oxide layer on Al, and the
LF loop to the process of H+ ion relaxation and the adsorption of corrosive ions (mainly anions), i.e.,
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chloride on or into the oxide film [36–38]. An inductive loop was also ascribed to the dissolution of
Al at low frequencies or the redissolution of the surface oxide layer [39,40]. Inductive behavior can
be attributed to surface area modulation or salt film property modulations, for instance, its density,
ionic conductivity, or thickness [41]. The size of both HF and LF loops increased appreciably with the
inhibitor concentration, the magnitude of absolute impedance increased, and the phase angles shifted
towards higher values. This could be ascribed to the formation of a film on the alloy surface [26].Materials 2020, 13, x FOR PEER REVIEW 9 of 20 
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Materials 2020, 13, 4672 8 of 18

To carry out an analysis of the EIS data, it was crucial to fit the data using an electric equivalent
circuit (EEC). All plots were simulated using the most appropriate EEC, as shown in Figure 6. The EEC
consisted of five elements, where Rs is the solution resistance, Rct is the charge-transfer resistance, CPE is
the constant phase element which corresponds to the double-layer capacitance (C), L is an inductive
element, and RL is the corresponding resistance. CPE was applied instead of actual capacitance,
since the achieved plots had depressed semicircles. CPE is a combination of properties associated with
both the surface and the electro-active species, and is independent of frequency. The application of the
CPE is essential, owing to the distribution of relaxation times because of inhomogeneities present at
the micro/nano level, like surface roughness/porosity, adsorption, and diffusion [42]. The depressed
semicircles define the frequency dispersion during impedance analysis because of the inhomogeneity
of the surface [37]. Polarization resistance (Rp) was calculated as follows [9]:

Rp =
Rt·RL

Rt + RL
(4)
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The inhibition efficiency (ηimp) was evaluated using the following equation:

ηimp% =
Rp(i) −Rp(0)

Rp(i)
× 100 (5)

where Rp(0) and Rp(i) are polarization resistance values in the absence and presence of
inhibitor, respectively.

The values of the impedance parameters are recorded in Table 3. The fitted data are in good
agreement with the experimental data, as evidenced by their low χ2 values. Both Rct and Rp values
increased significantly with the addition of BMIm, indicating that the metal exhibited less corrosion in
the presence of the inhibitor. The drop in CPE values with increasing inhibitor concentrations compared
with the CPE values in blank solution may have been due to a reduction in local dielectric constant
and/or increase in the thickness of the electrical double layer [43,44]. This suggests the adsorption of
inhibitor molecules at the metal/solution interface [44]. ηimp increased with the inhibitor concentration
and the maximum efficiency reached 98.4%, which again confirms that IL displays a good inhibitive
effect on AA 6061 alloy in 1 M HCl. The inhibition efficiencies attained from mass loss (ηw = 98.2%),
potentiodynamic polarization tests (ηp = 98%), and EIS (ηimp = 98.4%) were in good agreement.
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Table 3. EIS data for the corrosion of AA 6061 alloy in 1 M HCl in the existence of different concentration
of inhibitor at 303 K.

BMIm Conc.
(mM)

Rs
(Ω cm2)

CPE
(µF cm−2)

Rct
(Ω cm2)

Rp
(Ω cm2)

Cdl
(µF cm−2)

χ2 η (%)

Blank 17.8 9.3 × 10−5 39.1 18.74 4.7 × 10−5 0.0035 -
1.0 15.2 3.9 × 10−5 3.7 × 102 317.7 2.8 × 10−5 0.0022 94.0
2.0 23.6 2.0 × 10−5 7.8 × 102 672.1 1.7 × 10−5 0.0029 97.2
3.0 27.3 2.2 × 10−5 1.2 × 103 1032.3 1.6 × 10−5 0.0011 98.2
4.0 27.2 1.3 × 10−5 3.8 × 103 2756.9 9.1 × 10−6 0.0032 98.4

3.5. SEM-EDX Analyses and Elemental Mapping

Topographic and elemental chemistry information of polished alloy surface before exposure,
after exposure to acidic solution, and after exposure to an acidic solution in the presence of IL, was used
to clarify the corrosion and inhibition mechanisms. Figure 7a shows SEM images of the polished
AA 6061 alloy surface, and Figure 7b,c shows the SEM images and the corresponding EDX spectra
of the AA 6061 alloy after immersion in 1 M HCl without and with 3 mM inhibitor for 90 min at
303 K. It may be noticed from Figure 7a that before immersion, the aluminum alloy samples appeared
smooth, with polishing marks visible; however, after immersion in 1 M HCl solution without inhibitor,
the surface showed the destructive attack of the corroding medium with damaged polishing marks,
as is apparent in Figure 7b1. Moreover, the corrosion products seemed to be very uneven and the
surface quite rough. Alternatively, Figure 7c1 demonstrates that there was less destruction on the
surface of the alloy in the presence of inhibitor, and the alloy surface is smoother, which additionally
confirms the inhibition ability. The EDX spectrum illustrates peaks which are analogous to the elements
present in the alloy, along with their weighted proportions. Representative elemental mapping images
are also shown, along with their corresponding SEM images, which provide qualitative support to the
experimental results. The corresponding EDX spectra in Figure 7b2 show a higher amount of Cl (due to
HCl), and more Cl accumulated at the corrosion sites (Figure 7b3) than appeared in the sample with
inhibitor (Figure 7c1,c2). The observation that the amount of C increased in the samples dipped in the
solution having BMIm further confirms the adsorption of inhibitor on the alloy surface. S and N were
not observed in EDX, possibly due to very low adsorption or adsorption levels, i.e., below detection
limits of EDX; this possibility was explored by XPS analysis.

3.6. Contact Angle Analysis

The surface hydrophilic character of the samples was studied by water contact angle measurements.
The samples were immersed in 1 M HCl without and with 3.0 mM BMIm for 90 min before measuring
the contact angle. The measured contact angle of water droplets on different samples are presented
in Figure 8. The measurement was done at six different places and average values are reported.
The contact angle for the polished sample was 58.8◦ ± 8. After immersion in 1 M HCl, the contact angle
reduced and reached a value of 51.4◦ ± 11, which shows a more rough and hydrophilic surface, as also
evidenced by the SEM analysis. It has been reported that a greater surface roughness results in an
easier spread of water droplets on metal or alloy surfaces [45]. On the other hand, the surface after
immersion in the solution with inhibitor became more hydrophobic; this was obvious from its greater
contact angle value (96.8◦ ± 10). This evidence indicates that the surface was less prone to wetting by
water in the presence of inhibitor, which is an important factor defining corrosion protection in the
corrosive medium [46].
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3.7. X-ray Photoelectron Spectroscopy (XPS) Analysis

High-resolution XPS spectra were measured in the binding energy range of C 1s, Al 2p, O 1s,
N 1s, S 2p, and Cl 2p photopeaks to determine the interaction between the investigated IL and the Al
alloy surface. The investigation was executed after exposure to 1 M HCl solution without and with
3 mM of IL. The purpose of the implemented analysis was a qualitative and quantitative comparison
of several chemical species present at the metal/electrolyte interface and the determination of the
inhibition mechanism. The results obtained by the XPS study are presented in Figure 9. The Al peak
can be deconvoluted into two at about 74.3 eV and 75.1 eV, which are associated with the metallic and
oxide peak of Al2O3 [47]. Only one peak of the C 1s spectrum was obtained for a sample immersed in
solution without inhibitor, located at 284.7 eV, because of the adventitious adsorption of carbon on
the alloy surface due to air exposure [48,49]. One extra peak is revealed for the sample immersed in
the solution having BMIm at 285.9, which might have originated from the C–N bond of the adsorbed
inhibitor [50]. XPS analyses of N 1s illustrate a strong indication of chemical interactions between the
inhibitor and the surface of the metal, and established that the BMIm was adsorbed on the alloy surface.
Only one characteristic peak at 399.1 eV is depicted for samples immersed in 1 M HCl without the
inhibitor but deconvolution of the N1s signal may be fitted into two peaks in a solutions with inhibitor.
The peak at 399.1 eV was attributed to the coordinated nitrogen atom or C–N-metal connection [51].
The peak at 401.5 eV was attributed to the coordinated nitrogen in the imidazolium ring with the
AA 6061alloy surface [44]. The S 2p peaks were only observed for the samples immersed in solution
having inhibitor at 163.1eV and 168.7 eV. These can be attributed to 2p1/2 and 2p3/2 covalent bonds
between C and S [52]. The distinct appearances of nitrogen and sulfur peaks indicate the adsorption of
BMIm on the alloy surface. The O peak was located at 532.1 eV and attributed to metal oxide species.
Alternatively, the Cl 2p signal can be deconvoluted into two peaks for both samples at 198.1 and 199.5,
which indicates that Cl− anions had interacted with the substrate [53]. The atomic percentages of these
signals are presented in Table 4.Materials 2020, 13, x FOR PEER REVIEW 14 of 19 
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Figure 9. XPS peaks for passive films of the AA 6061 alloy exposed to 1 M HCl solution, (a) without
inhibitor; (b) with 3.0 mM inhibitor.

Table 4. Compositions of surface elements (at.%) from the XPS investigation for AA 6061alloy samples
immersed in 1 M HCl without and with inhibitor.

Element 1 M HCl 1 M HCl + 3 mM IL

Al 12.3 13.6
C 52.6 41.6
Cl 1.6 0.98
O 31.8 39.3
N 1.2 03.3
S 0.4 1.2

4. Discussion

Analogous to other major organic corrosion inhibitors, ILs also inhibit metal corrosion by
suppressing reactions at the anodic and/or cathodic sites at the surface of metal [54,55]. Hence,
inhibition of metal corrosion in the presence of ILs comprises the blocking of anodic oxidative metal
dissolution along with hydrogen evolution by cathodic reactions [55]. The mechanism of Al corrosion
in HCl solution has been postulated [56] and the anodic dissolution of aluminum can be represented,
according to [28], as Equations (6) and (7):

Al + Cl−→ AlClads
− (6)

AlClads
− + Cl−→ AlCl2+ + 3 e− (7)

The cationic part of ionic liquid (BMIm+) can interact electrostatically with AlClads
− ions and then

check the oxidation reaction of AlClads
− to AlCl2+ as revealed by Equation (7).
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Firstly, hydronium ions adsorption and hydrogen gas evolution occur at cathodic sites at the same
time. At the cathode, BMIm+ competes with hydrogen ions for electrons, leading to the formation of
[Al-BMImads] [13,55,57].

Al2O3 + H3O+ + e− ↔ Al2O3(H2O) +
1
2

H2 (8)

Al + BMIm+ + e−→ [Al-BMImads] (9)

BMIm+ has a big molecular size and thus substitutes a larger number of water molecules from the
surface of the metal. After their adsorption, BMIm+ accepts electrons from the metal, which leads to
the formation of electrically neutral IL molecules that also act as inhibitors. The neutral species transfer
their nonbonding electrons which are present on heteroatoms, and π-electrons into the d-orbitals of
the metal atoms of the surface, followed by the formation of coordinate bonds between metal and
the adsorbed IL, as reported for numerous organic inhibitors [58–60]. Since metals are electron-rich
already, this sort of donation results in interelectronic repulsion, which again leads to the transfer of
electrons from the d-orbitals of the surface metallic atoms to antibonding molecular orbitals of the
ILs, called retrodonation. Mutual donation and retrodonation reinforce each other through synergism,
resulting in the blocking of the metal surface, which inhibits metal corrosion [14,59,61]. This mechanism
is illustrated in Figure 10.Materials 2020, 13, x FOR PEER REVIEW 17 of 20 
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5. Conclusions

The corrosion inhibition behavior of imidazolium-based ionic liquid, BMIm, was studied for
AA6061 alloy in 1 M HCl to explore its inhibitive ability. The obtained results led to the following
conclusions:

• BMIm is an effective corrosion inhibitor for AA6061; the maximum inhibition efficiencies (ηw)
were 98.2%, 86.6% and 41.2% at 303 K, 333 K, and 363 K, respectively, at 3.0 mM concentration.
Inhibition efficiency increases with the inhibitor concentration, but decreases with the increase of
temperature. ηw increases with immersion time at 303 K from 30 to 90 min, and then decreases
slightly but for other temperatures; it decreases regularly with an increase in immersion time.
ηw at 363 K was 71.4% if the samples had been preadsorbed in inhibitor and then tested.

• Polarization results show that BMIm can efficiently diminish corrosion of AA 6061 in HCl solution,
and can be deemed as a mixed-type inhibitor with principal control on cathodic processes,
thereby reducing the overall rate of corrosion. The EIS results indicate the development of a more
protective passive film on the sample surface immersed in an acid solution containing inhibitor.

• Surface morphology analyses by SEM revealed less surface damage in the presence of inhibitor,
verifying the effectiveness of the BMIm, while EDX and elemental mapping offers graphic and
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qualitative support to the results from experiments. A contact angle analysis suggested that the
inhibited Al 6061 surface was hydrophobic in nature. XPS analysis established the formation of a
protective film by the inhibitor on the AA6061 alloy surface.

• ILs have a promising future in the field of corrosion inhibition as green corrosion inhibitors
for various alloys. Among the numerous existing ILs, imidazole-based ionic liquids have been
most extensively used. More research needs to be carried out in other industrially relevant
corrosive environments like CO2, H2S, and NaCl to determine the inhibitive behavior of IL-based
compounds for various alloys in these environments.
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