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Abstract: In-home monitoring systems have been used to detect cognitive decline in older adults
by allowing continuous monitoring of routine activities. In this study, we investigated whether
unobtrusive in-house power monitoring technologies could be used to predict cognitive impairment.
A total of 94 older adults aged ≥65 years were enrolled in this study. Generalized linear mixed
models with subject-specific random intercepts were used to evaluate differences in the usage time
of home appliances between people with and without cognitive impairment. Three independent
power monitoring parameters representing activity behavior were found to be associated with
cognitive impairment. Representative values of mean differences between those with cognitive
impairment relative to those without were −13.5 min for induction heating in the spring, −1.80 min
for microwave oven in the winter, and −0.82 h for air conditioner in the winter. We developed two
prediction models for cognitive impairment, one with power monitoring data and the other without,
and found that the former had better predictive ability (accuracy, 0.82; sensitivity, 0.48; specificity,
0.96) compared to the latter (accuracy, 0.76; sensitivity, 0.30; specificity, 0.95). In summary, in-house
power monitoring technologies can be used to detect cognitive impairment.

Keywords: power monitoring; in-house monitoring; cognitive impairment; dementia

1. Introduction

The number of people living with dementia is projected to triple by 2050 to 150 million,
as the world’s aging population continues to grow [1]. Mild cognitive impairment (MCI)
has been regarded as a prodrome of dementia, involving a decline in certain objective
cognitive functions yet preserving independence in everyday life and not meeting the
criteria for dementia [2,3]. Thus, in order to prevent dementia, the consensus is that primary
interventions should be focused on this MCI population. However, the prevalence of MCI
is difficult to ascertain due to differences in definitions and methods used in research,
resulting in a wide range of estimates (3–42%) of people aged ≥65 years [4].

The detection of cognitive impairment is often delayed, and many people with the
disorder remain undiagnosed. There are a number of possible reasons for this. First,
screening tests for cognitive impairment are performed at clinics and hospitals, but people
with poor subjective symptoms rarely go to hospitals for screening. Second, a complete
neuropsychological assessment requires information gathering from cohabiting family
members who are aware of the patient’s daily life. Yet, as many patients live alone in
this aging society, it is difficult to obtain a reliable, comprehensive clinical picture of the
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patient’s real-world status. Thus, sensitive and objective measures are crucial to aid with
early detection of cognitive decline.

As a solution to these current real-world difficulties in timely detection of cognitive
impairment, we propose the use of in-house power monitoring to identify people with
cognitive impairment. Power monitoring falls into the category of in-home monitoring in
a broad sense, providing the capability to automatically collect information on everyday
behaviors without imposing any restrictions on people’s routines. Advantages of in-home
monitoring are objective, long-term follow-up with continuous assessment that helps to
avoid some measurement biases [5]. Further, this continuous assessment can capture
intraindividual variability that may be the earliest indicator of meaningful changes in
routine daily activities [6,7]. Identifying individuals with cognitive impairment could
lead to targeted dementia interventions that ultimately improve the daily function and
independence of patients.

According to a systematic review of in-home monitoring sensor technologies for cog-
nitive impairment detection, a number of studies have identified early signs of dementia
from smart home-based behavioral data [8]. However, as conventional in-home monitoring
systems require sensors to be installed in many rooms, there are potential obstacles to
implementing these technologies in real life situations (e.g., installation, frequent mainte-
nance, and privacy concerns). In this study, we used an unobtrusive (non-wearable and
non-camera) in-house power monitoring technology developed by Informetis Co., Ltd.,
Tokyo, Japan, referred to as non-intrusive load monitoring (NILM) technology. It is a
device separation estimation technology that can be used to grasp life patterns based on the
usage of in-home electric appliances regardless of the manufacturer or model of the home
appliance, with a single sensor attached to the power distribution board in each home. The
present study is the first to use this in-house power monitoring system to predict dementia.

The present study aimed to evaluate differences in the usage time of home appli-
ances between Japanese older adults with and without cognitive impairment, and to
develop a preliminary prediction model for cognitive impairment by using in-house power
monitoring data.

2. Related Work

There has been no report of a model that actually predicts cognitive impairment using
in-house power disaggregation technology (including NILM technology), along with its
prediction performance. A large number of reports have been published on the methods
and infrastructure of Ambient Assisted Living (AAL) and electric power disaggregation
technology, which are described below.

AAL is an emerging field of research using intelligent and pervasive computing tech-
nologies, which mainly focuses on supporting older people to live safely and autonomously
in their home environment [9]. Globally, there is a growing demand for enhancing the
health of older people via the use of technology [10,11]. A survey by Grguric et al. [11]
showed the AAL models and architectures dealt with heterogeneous data sources and
data flow; the survey confirmed no commonly accepted standard of detection by sensors.
This study analyzed and compared previous works and architectures, which included
various functions, such as general health monitoring, wandering prevention tools, and fall
detection systems. In Europe, Nikoloudakis et al. [12] reported that the AAL European
Programme aims to foster emergency alert systems for wandering based on the AAL
system. The author showed that the utilization of AAL systems can allow caretakers to
constantly monitor a patient’s indoor/outdoor position and receive notification when they
leave predefined safety area [12].

Stavropoulos et al. [13] developed the DemaWare2 framework, which integrates a
wide range of sensor modalities and technologies, together with semantic fusion of audio
analysis techniques and plugs in the context of AAL. Sensors included not only ambient
and wearable devices, but also plugs in smart spaces. As a result, the average duration



Sensors 2021, 21, 6249 3 of 14

of daily activity tasks including use of kettles, cups, and smartphones made it possible to
distinguish between people with Alzheimer’s disease and those without.

Naeem et al. [14] discussed an overview of the current methods for unobtrusively
recognizing activities of daily living (ADL) within a home environment for people with
physical or cognitive disabilities. The study proposed a detailed overview of feature
detection and accurate activity recognition of ADL decline using in-home sensors.

Calmers et al. [15] demonstrated how the analysis of electricity usage through load
disaggregation can be used to model behavioral routines. Machine learning algorithms
sufficiently identified five appliances, including the kettle, microwave, toaster, electric
oven, and washing machine. Results from the clinical trial showed that important ADLs
can be detected and used to facilitate behavioral analysis, using these five devices alone. In
this paper, the system was tested in a clinical trial with two people with dementia over a
6-month period. This study showed that in-house power monitoring system could monitor
dementia patients and detect the disease progression at home.

Many machine learning approaches to appliance load monitoring have been inves-
tigated [16]. Among these, an excellent monitoring method for detecting actions in the
home environment called NILM has been established [17,18] and used in the present study.
For this study, NILM segments a sum of electrical signals, matches them to appliance
signatures by processing with a Factorial Hidden Markov Model, and outputs the estimate
of the electrical signal of each appliance. Our NILM technique has high performance in
classifying appliances using artificial intelligence and collected power consumption data
(Table A0). This NILM technique was registered as an international patent, which estimates
the activities of residents efficiently at a low cost. In this study, we estimated habitual
behavior of people in their homes using this NILM technology mentioned above.

3. Materials and Methods
3.1. Study Design and Participants

This prospective observational study used a cohort design based on data from community-
dwelling older adults aged ≥65 years living in Nobeoka City, Miyazaki Prefecture, Japan,
between April 2019 and July 2020 for over a 1-year period. Participants were recruited
through a briefing session, received explanations, provided written informed consent, and
underwent interviews and cognitive assessment. Individuals who were moderately or
severely demented (MMSE score ≤ 21) were excluded. A total of 94 participants were
enrolled in this study. Each participant was followed up for nearly 1 year.

The present study was conducted in accordance with the Declaration of Helsinki and
Good Clinical Practice Guidelines. The research protocol was approved by the Ethics Com-
mittee of the National Cerebral and Cardiovascular Center (#M30-174-2). All participants
provided written informed consent.

3.2. Cognitive Assessment

Participants were assessed at baseline using the Japanese version of the Mini-mental
State Examination (MMSE) by trained research staff [19]. MMSE is a widely used cognition
screening test [20]. It has a maximum score of 30 points and assesses the following five
areas of cognitive function: orientation, registration, attention and calculation, word recall,
and language. We defined cognitive impairment (Cog) as an MMSE score ≤ 27 and no
cognitive impairment (NC) as an MMSE score > 27, based on reports by Kaufer et al. [21]
and Damian et al. [22]. Damian et al. reported that this cut-off score discriminated best
between normal cognition and cognitive impairment compared to commonly used lower
threshold scores [22].

3.3. Other Clinical Data

Participants were clinically assessed at baseline using a questionnaire consisting of
the following variables: age, sex, years of education (≤9 years or >9 years), drinking status
(everyday drinker or not), cigarette smoking (current smoker or other), living situation
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(living alone or with others), and past and current medical histories (diabetes mellitus,
hyperlipidemia, hypertension, stroke, cancer, myocardial infarction, and depressive symp-
toms). Depressive symptoms were assessed using the 15-item Geriatric Depression Scale
(GDS-15) [23], which is suitable for screening depression in community-dwelling older
adults. A cutoff point of 4/5 was used to define the presence of depressive symptoms [24].
The number of years of education refers to the participants’ educational background. For
example, in the case of a high school graduate, it is calculated as 12 years. In this study, the
number of years of education was collected as a continuous value and used as a binary
variable of whether it was 9 years or less when constructing prediction models. The reason
for this is that less than 9 years of education is often defined as low education. According
to a population-based study by Kivipelto et al., people with 7–9 years of education have
a 2.5 times higher risk of dementia, and those with 0–6 years have a 3.6 times higher risk
of dementia than those with more than 10 years of education [25]. According to the brain
reserve hypothesis, those with higher education develop dementia symptoms only with
greater pathological changes due to their greater brain capacity [26].

3.4. Experimental Setup

Daily activity data were collected using a well-established unobtrusive in-house power
monitoring system installed in the homes of participants. The in-house power monitoring
technology was developed by Informetis Co., Ltd. and adopted by TEPCO Power Grid,
Inc., Tokyo, Japan. Electrical contractors installed a power monitoring sensor on the
power distribution board and a mobile router in the living room. Measured information
of all power monitoring sensors was acquired via a wireless network of mobile routers,
and data were transmitted to the research server via a secure 4G line. In-house power
monitoring data were sent from the distributor to the research server in 5-min intervals
and were deleted from the device after the data were held for 1 h or more. The sensor was
continuously monitored from the date of sensor installation (baseline) until 31 July 2020,
and power monitoring data sorted in chronological order were accumulated in the research
server owned by TEPCO.

3.5. Measurement System for Home Appliance Usage Time

Several electric appliances (air conditioner, microwave oven, washing machine, rice
cooker, television (TV), and induction heating (IH)) were monitored. The use of these
electric appliances requires a certain degree of cognitive ability and could reflect the daily
life pattern of participants. In order to obtain information on the power usage status of
each electric appliance, we applied NILM technology.

NILM technology is a process for providing estimated energy usage by type of major
home appliance, including the aforementioned six electric appliances regardless of the
manufacturer or model of the home appliance, based on electrical load signatures at a
single point in the installation. This technology provides insight into various activities at
home via estimated usage of major home appliances (Figures 1 and 2). Further technical
details are available in the disclosed patent documentation (No. JP5668204B2, JP5669051B2,
JP6135962B2, JP6219401B2, EP2831758A2; “JP” for Japanese patents, and “EP” for European
patents). NILM technology used in the present study requires only a single sensor installed
on the power distribution board, which collects aggregated current waveform data from
various appliances in chronological order, and then analyzes the data using Machine
Learning algorithms, such as Factorial Hidden Markov Models, to produce an estimation
of each waveform factor of major home appliances. Furthermore, by adopting a power
signal coding technology that measures the amplitude and phase of the fundamental and
harmonics of the current waveform, it enables a higher-accuracy analysis.
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NILM technology has specific advantages related to data quality and assessment, 
which make it suitable for use in the present study. First, the performance of NILM tech-
nology in detecting electric appliance usage has been validated through comparisons of 

Figure 1. Schematic of NILM technology. NILM technology used in the present study requires only a single sensor installed
on the power distribution board, which collects aggregated power consumption data from various appliances, and then
analyzes the data using Machine Learning algorithms to produce estimated disaggregation into major home appliance
usage from the total current waveform regardless of the manufacturer or model of the home appliance.
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Figure 2. An example of estimated behavior of residents by NILM technology. This technology provides insight into various
activities at home via estimated usage time of major home appliances.

NILM technology has specific advantages related to data quality and assessment,
which make it suitable for use in the present study. First, the performance of NILM
technology in detecting electric appliance usage has been validated through comparisons of
prediction results by NILM technology with actual usage by sensors installed in each home
appliance, of which F scores (a performance indicator) were as follows: air conditioner,
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0.88; microwave oven, 0.96; washing machine, 0.88; rice cooker, 0.89; IH, 0.90; and TV, 0.69.
Other performance indicators of NILM technology are shown in Table A0. Second, TEPCO
monitored and checked data quality throughout the study period.

As a pre-processing step, data on electric appliance usage time in each house were
converted from seconds to days by summing the usage time of each day.

3.6. Statistical Analyses

Baseline characteristics are presented as medians (IQRs) for continuous variables and
N (%) for categorical variables. All statistical significance tests were two-sided, using
p < 0.05 as the level of statistical significance. Generalized linear mixed models (GLMMs)
were fitted using “lme4” package [27] and “emmeans” package of R statistical software
version 4.0.3 [28]. Statistical analyses and prediction model development were performed
with R “caret” package (version 6.0) [29].

Associations between cognitive status and usage time of each home appliance were
analyzed with GLMMs, assuming a normal distribution with subject-specific random inter-
cepts by estimating regression coefficients and 95% confidence intervals (CIs). In GLMMs,
the usage time of each electric appliance per day was modeled as the dependent variable,
with cognitive status (Cog/NC), season, and the interaction term between cognitive status
and season as exposure variables. Multivariable-adjusted coefficients were adjusted for
days from baseline and season. Based on the GLMMs, estimated marginal means (EMMs)
were calculated by cognitive status and season. Mean differences in EMMs were tested for
statistical significance.

Two prediction models were developed to identify the cognitive status class (i.e.,
Cog or NC) of participants. In the present study, a generalized linear model (GLM)
was used, assuming a binomial distribution. Model 1 included age, sex, and years of
education as possible predictor variables, as they are known to be important risk factors
of dementia [30,31]. Model 2 included seasonal average usage times of air conditioner,
microwave oven, and IH, in addition to the predictor variables included in Model 1.
Reasons for selecting these three electric appliances were as follows. First, we focused
on in-home electric appliances that are used every day, excluding those with a fixed one-
time operation usage time. Second, we selected home appliances for which usage time
differed by cognitive status in the GLMM analyses (i.e., seasonal average usage times of
air conditioner, microwave oven, and IH). To take into account seasonal changes in home
appliance usage, average usage times for all seasons were included as predictor variables.
Finally, from all the above-mentioned predictor variables, optimal predictors were selected
by recursive feature elimination (RFE) with 5-fold cross-validation (CV) [32] based on the
accuracy of each model. RFE is a wrapper-type feature selection which searches a subset
of predictors by first training a model with all possible predictors, ranking all possible
predictors by their feature importance, selecting the top one to the maximum number of all
possible predictors in order of importance, and making an updated model by the selected
predictors; these steps are repeated until the best subset of predictors by the least prediction
error is found [32].

The performance of each model was evaluated primarily by accuracy, and secondarily
by sensitivity, specificity, positive predictive value (PPV), and negative predictive value
(NPV) based on a 2 × 2 confusion matrix. Calibration plots were examined by dividing
participants into quartiles to show the agreement between predicted probability from
the model and observed proportion of cognitive impairment, which is recommended to
be reported by Transparent reporting of a multivariable prediction model for individual
prognosis or diagnosis (TRIPOD) reporting guideline [33]. Observed and predicted propor-
tions of cognitive impairment in each quartile were compared by the Hosmer-Lemeshow
test [34,35]. Its null hypothesis was that the observed and expected proportions are the
same across all quartiles.
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4. Results
4.1. Participants

A total of 94 people participated in this study. Participants were interviewed by
researchers and had the in-house power monitoring system installed in their homes. Fol-
lowing baseline evaluation, data were obtained from 78 participants without sensor failure
or consent withdrawal. Demographic and clinical characteristics of this final cohort are
summarized in Table 1. There were 23 participants with cognitive impairment (Cog group:
median age, 78.0 years) and 55 with normal cognition (NC group: median age, 75.0 years).
The majority of participants were male (Cog, 74%; NC, 67%). Median MMSE scores for the
NC and Cog groups were 29.0 and 26.0, respectively. In the Cog group, the proportions
of drinkers and smokers were high. Comorbidities such as diabetes, hyperlipidemia, hy-
pertension, stroke, and myocardial infarction were more common in the Cog group than
in the NC group. There was no significant difference in the rate of depressive symptoms
between the Cog and NC groups.

Table 1. Participant baseline demographics and clinical characteristics.

MMSE > 27
Normal Cognition

MMSE ≤ 27
Cognitive Impairment Total

(N = 55) (N = 23) (N = 78)

Continuous variables,
median (IQRs)

Age 75.0 (70.0, 78.5) 78.0 (75.0, 83.5) 76.0 (70.0, 80.0)
Men 37 (67.3%) 17 (73.9%) 54 (69.2%)

MMSE 29.0 (29.0, 30.0) 26.0 (24.0, 27.0) 29.0 (27.0, 30.0)
Years of education 12.0 (11.5, 12.5) 12.0 (10.5, 12.5) 12.0 (11.0, 12.8)
Usage hours of air

conditioner 1.59 (0.44, 3.26) 1.67 (0.31, 3.32) 1.63 (0.35, 3.33)

Usage hours of
microwave oven 0.12 (0.06, 0.17) 0.10 (0.04, 0.14) 0.115 (0.06, 0.17)

Usage hours of IH 0.15 (0.001, 0.71) 0.00 (0, 0.12) 0.02 (0, 0.56)
Categorical variables,

n (%)
Everyday drinker 21 (38.2%) 10 (43.5%) 31 (39.7%)
Current smoker 3 (5.5%) 2 (8.7%) 5 (6.4%)

Living alone 15 (27.3%) 3 (13.0%) 18 (23.1%)
Medical history

Diabetes mellitus 5 (9.1%) 3 (13.0%) 8 (10.3%)
Hyperlipidemia 16 (29.1%) 11 (47.8%) 27 (34.6%)

Hypertension 23 (41.8%) 11 (47.8%) 34 (43.6%)
Stroke 2 (3.6%) 3 (13.0%) 5 (6.4%)
Cancer 10 (18.2%) 4 (17.4%) 14 (17.9%)

Myocardial infarction 3 (5.5%) 4 (17.4%) 7 (9.0%)
Depressive symptoms 13 (23.6%) 3 (13.0%) 16 (20.5%)

Abbreviations: MMSE, Mini-Mental State Examination; and IQR, interquartile range.

4.2. Relationships between Electric Appliance Usage Time and Cognitive Status

We performed GLMM analyses to investigate relationships between the usage time of
each appliance and cognitive status. EMMs were calculated for three in-home appliances
(Figure 3). The Cog group had shorter usage times of IH, and tended to have shorter usage
times of microwave oven only in the spring and the winter and air conditioner only in the
winter, compared to the NC group. EMMs of IH usage time were lower in the Cog group
compared to the NC group, with differences of −13.5 (95% CI, −26.7–−0.34, p = 0.04) in
the spring; −13.0 (95% CI, −26.1–0.22, p = 0.05) in the summer; −12.8 (95% CI, −26.0–0.37,
p = 0.06) in the fall; and −11.9 (95% CI, −25.1–1.25, p = 0.08) in the winter. EMMs of
microwave oven usage time tended to be lower in the Cog group compared to the NC
group, with differences of −1.70 (95% CI, −4.09–0.69, p = 0.16) in the spring; and −1.80
(95% CI, −4.19–0.58, p = 0.14) in the winter. EMMs of air conditioner usage time tended
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to be lower in the Cog group compared to the NC group, with differences of −0.82 (95%
CI, −2.02–0.39, p = 0.18) in the winter. We observed no significant differences in EMMs of
air conditioner usage time; p = 0.60 in the spring; p = 0.89 in the summer; and p = 0.81 in
the fall. We observed no significant differences in EMMs of microwave oven usage time;
p = 0.53 in the summer; and p = 0.57 in the fall.
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4.3. Prediction Models for Cognitive Impairment with and without In-House Power
Monitoring Data

We developed two prediction models to differentiate between people with and without
cognitive impairment. As shown in Table 2, the accuracy, sensitivity, and specificity of
Model 1 were 0.76, 0.30, and 0.95, respectively. After adding in-house power monitoring
data to Model 1, Model 2 had an accuracy of 0.82, sensitivity of 0.48, and specificity of
0.96. The accuracy, sensitivity, and specificity were higher in Model 2 than in Model 1.
In Model 1, age and years of education were selected as predictor variables by RFE. In
Model 2 (i.e., with average usage times of electric appliances), the following variables were
selected by RFE: age, years of education, average usage times of IH in the summer and
spring, and the average usage time of air conditioner in the winter. Figure 4 shows the
observed proportion of cognitive impairment in each quartile of predicted probability by
calibration plots. Both Model 1 without power monitoring data and Model 2 with power
monitoring data presented good calibration (Hosmer–Lemeshow test Model 1, p = 0.07;
Model 2, p = 0.55).
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Table 2. Prediction performance of models for cognitive impairment with and without in-house
power monitoring data.

Model Model 1 without Power
Monitoring Data

Model 2 with Power
Monitoring Data

Accuracy 0.76 (0.65–0.85) 0.82 (0.72–0.90)
Sensitivity 0.30 (0.13–0.53) 0.48 (0.27–0.69)
Specificity 0.95 (0.85–0.99) 0.96 (0.87–1.00)

Positive predictive value 0.70 (0.35–0.93) 0.85 (0.55–0.98)
Negative predictive value 0.76 (0.65–0.86) 0.82 (0.70–0.90)
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5. Discussion

This study examined whether electric appliance usage time obtained from a single
sensor installed on the power distribution board could be used to identify residents with
cognitive impairment. Three independent power monitoring parameters that represent
activity behavior (i.e., seasonal average usage times of IH, microwave oven, and air con-
ditioner over 24 h) were found to be associated with cognitive impairment. We also
developed prediction models for cognitive impairment using in-house power monitoring
data and demographic data. The predictive model that included seasonal average usage
times of IH and air conditioner, which were obtained using NILM technology, showed
better predictive ability compared to the predictive model that did not include in-house
power monitoring data. To the best of our knowledge, this study is the first to report
meaningful associations between cognitive function and in-house power monitoring data
obtained using NILM technology.

The daily usage times of IH, microwave oven, and air conditioner were associated
with cognitive function, consistent with previous reports. Participants with cognitive
impairment had shorter usage times of IH and microwave oven. This could be explained
by diminished motivation and interest (“apathy”), which is one of the most common
behavioral and psychological symptoms of dementia (BPSD). Apathy is highly prevalent
across different stages of dementia [36]. Another possible explanation is the inability
to cook due to a decline in the ability to perform instrumental activities of daily living
(IADL) [37]. In the present study, participants with cognitive impairment had a shorter
air conditioner usage time in the winter. This result was in line with a previous report
suggesting that blunted responsiveness to temperature is a symptom of dementia [38]. In
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addition, it is a new lifestyle trend to use air conditioners instead of heaters, and people with
dementia have difficulty adapting to the use of new equipment. Alberdi et al. [39] reported
that cognitive impairment could be predicted from unobtrusively collected data on daily
routine activities (e.g., cooking, eating). In previous studies, the use of in-home monitoring
technologies to monitor everyday life activities, such as sleep, mobility, and ADLs, led
to the early detection of cognitive impairment [5,7,8]. While functional performance in
daily life is an important factor in the diagnosis of dementia, the necessary information can
only be collected from patients or their family/relatives. Our predictive models using in-
house power monitoring data and demographic data are screening tools for early detection
of residents with cognitive impairment, and the definite diagnosis must be confirmed
by physicians.

The predictive model developed in this study included a small number of key clin-
ical variables (age, sex, and years of education) [30,31] and power monitoring variables
measured by only one sensor, and showed good predictive performance. Interestingly,
the addition of power monitoring variables improved the predictive performance of the
model, as compared to the model without those variables. The GLM with in-house power
monitoring data and clinical data effectively detected cognitive impairment, with an accu-
racy of 0.82 (95% CI, 0.72–0.90). Reports on prediction models have been scarce. Akl et al.
proposed a method of using unobtrusive sensor technologies for home-based automatic
detection of cognitive impairment through continuous monitoring [40]. Using sensor
data, they were able to automatically detect MCI with an F0.5 score of 0.856, which was
calculated with a lower weight of precision than F score, and precision was not reported in
this paper. Alberdi et al. reported that cognitive symptoms can be predicted from in-home
monitoring data (F score: Random Forest, 0.77; Support Vector Machine, 0.77) [39]. In that
study, more than 30 sensors of five types were installed in smart homes. Although their
prediction models showed good predictive performance, the installation, management,
and evaluation of many sensors were problematic. Additionally, costs associated with the
equipment, as well as installation, were an obstacle to introducing the smart environment.
Compared to previous studies on in-house monitoring which required numerous sensors
to be installed and managed to estimate the overall behavior of residents, the greatest
advantage of our system is that it requires only a single sensor installed on the power
distribution board, which can be easily implemented to capture various daily activities.

In this study, we included older adults living alone, as well as those living with their
families. The reasons for this are as follows. First, if there is a person with cognitive decline
in a family living together, the life pattern of the whole family should be affected. Dementia,
with its progressive cognitive and functional decline and associated neuropsychiatric
symptoms, places a large burden on caregivers [41,42]. Therefore, life patterns can differ
between a family with normal cognitive function and a family caring for people with
impaired cognitive function. Second, our prediction models for cognitive impairment
consider unique values of each individual, by including age, sex, and educational level,
although the values of electric appliance usage time variables are the same among a family
living together. Third, in the real-world, the proportion of people with cognitive decline
who do not live alone is higher than those who live alone [43]. The reason may be that
a certain degree of cognitive function is required to perform daily activities necessary to
live independently.

This study has several limitations. First, the behavioral data detected by our sensor
were not on an individual basis but on a home basis, reflecting the behaviors of all people
living in the home including other family members and long-term visitors. NILM tech-
nology could not identify the individual user of electric appliances. To obtain accurate
data to confirm our results, a future study should focus on people living alone. Second,
given the small sample size of the present study, further investigation with a larger number
of participants is warranted. Third, this study excluded people with severe dementia.
As there is currently no cure for dementia and mild cognitive impairment is considered
reversible, the present prediction model was developed as a screening tool for the early
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stages of cognitive impairment. Further studies are needed to examine the suitability of
this predictive model for severe dementia subjects. Fourth, an external validation study
should be conducted in the future, although the lack of external validation appears to be a
common issue for other existing risk prediction models based on in-house monitoring.

The strength of this study is that it demonstrated the potential of in-house power
monitoring to predict and diagnose cognitive impairment at an early stage by allowing
for continuous monitoring and detection of changes in the daily life of older adults. In
addition, unlike other in-house sensors, our sensor is installed in one place (i.e., on the
distribution board). As there is no need to attach multimodal sensors in various places, our
system can be easily adapted to any house. In addition, the NILM technology used in this
study has been registered as an international patent (EP2831758A2), and it is a technology
that can separate an aggregated current waveform into individual waveforms of major
home appliances, even if the manufacturer and model of the home appliance are different.
Therefore, this NILM technology can be implemented in the real world without the need to
build a laboratory setting.

In consideration of the aforementioned limitations, we offer recommendations for
future studies. First, we constructed prediction models using average power data of each
home appliance on a seasonal basis. For future application, time series analysis focusing
on the change from the past in each individual can be considered. Moreover, by increasing
the number of participants and performing analyses in groups with varying cognitive
function, AI-based analysis will be possible. This will allow for detection of not only
simple linear regression but also relationships including non-linearity, thereby improving
the performance of the prediction model. With further testing and validation, the power
monitoring parameters measured in this study can be used to facilitate in-house continuous
remote monitoring to track cognitive frailty over time. TEPCO aims to develop this in-
house power monitoring system into installation as a social infrastructure in the future,
which can be provided as a ubiquitous service when needed.

6. Conclusions

In-house power monitoring technologies can be used to identify people with cognitive
impairment. This study represents the first step toward building a reliable system that
integrates real-life power information into a potentially useful automated warning tool for
the early detection of and medical intervention for cognitive impairment.
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Appendix A

Table A0. Performance of NILM technology for each electric appliance when using testing datasets, based on information
from Informetis Co., Ltd.

F Score Precision Recall Specificity Negative
Predictive Value Cohen Kappa Accuracy

Air conditioner 0.88 0.91 0.90 0.94 0.91 0.80 0.95
Microwave oven 0.96 0.97 0.95 1.00 1.00 0.96 1.00
Washing machine 0.88 0.87 0.90 1.00 1.00 0.88 0.99

Rice cooker 0.89 0.94 0.85 1.00 1.00 0.89 1.00
IH 0.90 0.92 0.91 0.99 1.00 0.89 0.99
TV 0.69 0.81 0.68 0.91 0.83 0.59 0.83

Abbreviations: IH, induction heating; TV, television.
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