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Abstract

Lung cancer accounts for the highest number of cancer-related deaths worldwide. Early diagnosis significantly
increases the disease-free survival rate and a large amount of effort has been expended in screening trials and the
development of early molecular diagnostics. However, a gold standard diagnostic strategy is not yet available.
Here, based on miRNA expression profile in lung cancer and using a novel in silico reverse-transcriptomics
approach, followed by analysis of the interactome; we have identified potential transcription factor (TF) markers
that would facilitate diagnosis of subtype specific lung cancer. A subset of seven TF markers has been used in a
microarray screen and was then validated by blood-based qPCR using stage-II and IV non-small cell lung
carcinomas (NSCLC). Our results suggest that overexpression of HMGA1, E2F6, IRF1, and TFDP1 and downregulation
or no expression of SUV39H1, RBL1, and HNRPD in blood is suitable for diagnosis of lung adenocarcinoma and
squamous cell carcinoma sub-types of NSCLC. Here, E2F6 was, for the first time, found to be upregulated in NSCLC
blood samples. The miRNA-TF-miRNA interaction based molecular mechanisms of these seven markers in NSCLC
revealed that HMGA1 and TFDP1 play vital roles in lung cancer tumorigenesis. The strategy developed in this work
is applicable to any other cancer or disease and can assist in the identification of potential biomarkers.

Introduction
Lung cancer is the leading cause among cancer related
deaths worldwide, constituting 17% of new cancer cases
and 23% of deaths from cancer. Although N. American
and European countries show a slow decline in death
rates due to lung cancer, deaths due to this form of can-
cer are increasing considerably in Asian and African
countries [1]. Lung cancer is mainly divided into two

subtypes, small cell lung cancer (SCLC), which accounts
for 10-15% of all cases and non-small cell lung cancer
(NSCLC, 85-90%). The latter group is further histologi-
cally subdivided into four categories; adenocarcinoma,
squamous cell carcinoma, large cell carcinoma and
‘others’, for example cancers of neuroendocrine origin
[2]. The overall 5-year survival rate for NSCLC ranges
from 9% to 15% [3]. The high mortality from lung cancer
is due a combination of lack of reliable early diagnostic
tools [3,4] along with a poor arsenal of lung cancer regi-
mens for stage I lung cancer, whose survival rate is also
surprisingly low [5].
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Numerous studies have utilized different “-omics”-
based approaches to identify molecular signatures in
lung cancer with diagnostic or prognostic value while
using minimally invasive processes. Some of these are as
follows: 34 miRNA signatures [6], expression profiles of
11 miRNAs (miR-106a, miR-15b, miR-27b, miR-142-3p,
miR-26b, miR-182, miR-126, let7g, let-7i and miR-30e-
5p) from serum [7], 7 miRNA signatures [8], overex-
pression of six snoRNAs [9], and expression of 3 miRs
(miR-205, miR-210 and miR-708) in sputum [10]. Addi-
tional signatures and markers have also been reported
from the plasma proteome [11,12], the salivary pro-
teome [13], the serum epigenome [14], sputum-based
genomics [15], and blood-based gene expression studies
[16]. However, none of these have progressed suffi-
ciently to provide the necessary specificity and sensitiv-
ity required for clinical implementation.
microRNAs (miRNAs/miRs) are involved in a variety of

biological processes, including cell cycle regulation, cell
differentiation, development, metabolism, and aging [17].
They have also been shown to be aberrantly expressed in
several cancers [18]. Lung cancer is no exception to this
and miRNA signatures have been suggested to be useful in
diagnosis, prognosis, and therapy [7,19-21]. miRNAs regu-
late posttranscriptional gene expression and a single
miRNA can regulate up to 200 mRNAs including those
for transcription factors (TFs) [22]. Because miRNA tran-
scription is under the regulation of TFs, intriguing feed-
back and feed-forward regulatory loops can be formed
among TFs and miRNAs [17].
In this study we have developed a novel in silico

reverse-transcriptomics strategy followed by interactome
analysis to identify the sub-type specific diagnostic TF
markers in lung cancer. The approach is novel as the
sub-type specific TF markers were identified starting
with experimentally validated miRNA profiles in lung
cancer. We have also attempted to provide a molecular
insight during the early events in lung cancer.

Materials and methods
Literature mining
Extensive literature and text mining was carried out to col-
lect deregulated miRNAs in lung cancers (NSCLC and
SCLC) using databases such as PubMed, Sirus, and Else-
vier as well as search engines such as Google and Google
Scholar. miR2Disease [23] was also used to gather lung
cancer specific miRNAs information. Priority was given to
reports that have used markers based on biopsy samples
and patient’s remote media (blood, serum, plasma, spu-
tum, and bronchioalveolar lavage among others [24]).
Selected miRNAs were then grouped into three categories:
(1) NSCLC specific, (2) exclusively SCLC related, and (3)
common in both the types. The up- and down-regulated

miRNAs within each of these three groups were also
noted.

GO assignment to miRNAs using reverse annotation
strategy
No tool is currently available to classify or cluster miRNAs
as per their GO (Gene Ontology) or functional annotation.
We applied a reverse approach in which GO terms to a
miRNA are assigned based on the functional annotation of
the targets of the particular miRNA. In this approach, we
first identified experimentally validated targets of each
miRNA using miRNA target databases miRWalk [25],
miRecords [26], miReg [17], and miRTarBase [27]. Next,
targets for each miRNA were subjected to ToppGene
Suite [28] for GSEA (Gene Set Enrichment Analysis) can-
didate gene prioritization. The top-ranked genes were
used in DAVID v6.7 [29] analysis for functional annota-
tion clustering and the assignment of GO terms to each
miRNA which targets these genes. GO terms related to
various aspects of cancer were considered. miRNAs and
their corresponding targets that fall under these specific
GO categories were selected, and the rest were ignored
(Figure 1, Step-3).

miRNA-TF-miRNA or TF-miRNA-TF interactions
To date, there is no study reporting direct miRNA-
miRNA interaction. However, it is well known that miR-
NAs can modulate post-transcriptional gene regulation
as well as their own expression through feed-back and
feed-forward loops that are mediated by various TFs.
Therefore, there are miRNA-TF interactions. As TFs
interact with other TFs and proteins, the known TF-TF
networks can be complemented by integrating the rele-
vant miRNA-TF interactions to make TF-miRNA-TF or
TF-miRNA-TF-miRNA interactions. Such TF-miRNA-
TF-miRNA interaction networks will indirectly represent
the miRNA-miRNA interactions.
We thus created a cancer specific TF-TF interaction

network using targets of miRNAs frequently deregulated
in NSCLC, SCLC, or common to both of these types uti-
lizing Osprey v1.0.1 [30] (Figure 1, Step-3). To achieve
this, we selected all experimentally validated, highly
ranked miRNA targets of NSCLC, SCLC, or common to
both that were identified in the previous step and fed
them into Osprey (Figure 1, Step-6). The protein-protein
interaction (PPI) network for each cancer type generated
by Osprey was first filtered sequentially with the “Tran-
scription”, “Cell cycle” and “Cell cycle biogenesis” GO fil-
ters in Osprey (Figure 1, Step-8). Therefore, the resultant
TF-TF interaction network is cell cycle specific. The
sequential filters were used because cell cycle deregula-
tion is one of the major BPs (Biological Processes) that is
affected during tumorigenesis.
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This cell cycle specific TF-TF network was further
enriched by manually mapping the interacting miRNAs
with data collected from the miReg [17], TransmiR [31],
and CircuitsDB [32] databases and from literature mining
to create a TF-miRNA-TF interaction map (Figure 1,
Step-10). Because we have selected lung cancer related
miRNAs (based on GO assignment in the previous step)
and developed a network using their targets, this network
represents the interaction of TFs involved in lung cancer
tumorigenesis. Based on our earlier hypothesis, this inter-
action map also represents the miRNA-TF-miRNA or TF-

miRNA-TF interaction map that is common to both
NSCLC and SCLC. Similarly, NSCLC and SCLC specific
miRNA-TF-miRNA or TF-miRNA-TF or miRNA-miRNA
interaction maps were created using targets of NSCLC
and SCLC unique miRNAs. Therefore, a total of three net-
works were generated (Figure 1, Steps-14-15).

Marker identification
The miRNA-TF-miRNA or TF-miRNA-TF interaction
maps for NSCLC, SCLC, and common developed in the
previous steps were analyzed by subtracting from each

Figure 1 Flow-diagram showing entire strategy that is applied to identify TF biomarkers in Lung cancer based on miRNA profiles.
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other to identify the NSCLC, SCLC, and a common
pathway that is specific unique TFs. Each network was
further analyzed using the protein-protein interaction
(PPI) analysis tool VisANT [33] to identify the key
nodes and the shortest cancer specific pathways in each
network. Key nodes in a PPI network are identified as
having the highest number of interactions. Therefore,
such key node proteins are often involved in multiple
signaling pathways, and if a key node protein falls in a
shortest path, the node might be treated as a marker of
a disease provided that its expression is altered in that
disease state. In the third strategy, we utilized GSEA
identification of key genes in each network using Topp-
Gene Suite [28]. When all of the data from each of
these three analyses had been obtained, we identified
the TFs common to each of the individual analyses
(Figure 1, Steps-11-12). Therefore, these sets of common
TFs were putative markers, and the TFs that were a
part of NSCLC network could be treated as a NSCLC-
specific marker.

Experimental validation of markers
Once we had selected the potential markers, we checked
their expression levels initially in lung cancer tissue
samples using microarrays and then further validated
them using patient’s blood samples and quantitative RT-
PCR (qPCR) (Figure 1, Step-13).
Interrogation of data from expression microarray
The frozen tissue samples examined from 30 squamous
cell carcinomas and 30 adenocarcinomas (each is a type
of NSCLC) from the Liverpool Lung Project tissue bank.
All samples were of pathological stage T2. RNA was
extracted using the RNeasy kit (Qiagen). Five RNA
pools from five adjacent normal lung tissues were also
profiled for comparison purposes. The microarray
experiments were performed by Almac (Belfast, UK).
Total RNA was amplified using the NuGEN™ Ova-
tion™ RNA Amplification System V2. First-strand
synthesis of cDNA was performed using a unique first-
strand DNA/RNA chimeric primer mix, resulting in
cDNA/mRNA hybrid molecules. Following fragmenta-
tion of the mRNA component of the cDNA/mRNA
molecules, second-strand synthesis was performed, and
double-stranded cDNA was produced with a unique
DNA/RNA heteroduplex at one end. In the final amplifi-
cation step, RNA within the heteroduplex was degraded
using RNaseH, and a replication of the resultant single-
stranded cDNA was achieved using the DNA/RNA chi-
meric primer binding and DNA polymerase enzymatic
activity. The amplified single-stranded cDNA was puri-
fied to allow accurate quantitation of the cDNA and to
ensure optimal performance during the fragmentation
and labeling process. The single-stranded cDNA was

assessed using spectrophotometric methods in combina-
tion with the Agilent Bioanalyzer.
The appropriate amount of amplified single-stranded

cDNA was fragmented and labeled using the FL-Ovation™
cDNA Biotin Module V2. The enzymatically and chemi-
cally fragmented product (50-100 nt) was labeled via the
attachment of biotinylated nucleotides onto the 3’-end of
the fragmented cDNA.
The resultant fragmented and labeled cDNA was added

to the hybridization cocktail in accordance with the
NuGEN™ guidelines for hybridization onto Affymetrix
GeneChip® arrays. Following hybridization for 16-18
hours at 45°C in an Affymetrix GeneChip® Hybridization
Oven 640, the array was washed and stained on the Gene-
Chip® Fluidics Station 450 using the appropriate fluidics
script and then inserted into the Affymetrix autoloader
carousel and scanned using the GeneChip® Scanner 3000.
The Rosetta Error Model has been applied to the raw

data to generate the processed data. The profile compar-
isons between cancerous lesions and normal RNA pools
utilized Student’s t-test. The Benjamini & Hochberg
multiple test correction method was also employed.
Validation using quantitative RT-PCR (qPCR)
Blood samples, RNA isolation, and cDNA preparation
As our focus is NSCLC, blood samples from 8 metastatic
lung adenocarcinoma, 8 metastatic squamous cell lung
carcinoma patients, and 5 healthy volunteers (control)
were used for the validation. Patient eligibility criteria
were as follows: 18 years of age or older, in clinical stage
II-IV based on the International TNM classification, per-
formance status of 0 to 2, and no other malignances. All
patients and volunteers have signed informed consent
forms. Ten milliliters of EDTA blood sample was col-
lected from the selected groups before chemotherapy
treatment. Blood samples were centrifuged at 2000 g for
10 min and the serum phase was separated and frozen at
-80ºC. The Buffy Coat (white blood cells and circulating
tumor cells) was collected and processed by lysis (Ammo-
nium Chloride, TRIS, ddH20) and then washed with PBS.
The dry pellet was kept at -80ºC until RNA isolation.
RNA was purified by Quiamp RNA Blood Mini Kit
(QIAGEN Inc., USA) according to the manufacturer´s
instructions. cDNA was synthesized with random hex-
amer primers (Deoxynucleoside Triphosphate set, Roche,
Germany) at 10 mM, MgCl2, MuLV Reverse Transcrip-
tase, PCR Buffer, RNAse Inhibitor, and random hexamers
from Applied Biosystems USA. The resulting cDNA was
stored at -20ºC until further use.
Quantitative RT-PCR (qPCR)
qPCR was carried out using SYBR® Green Master Mix
(Applied Byosistems, USA) and Applied Biosystem’s
7500 real-time PCR system according to the manufac-
turer´s instructions. Primers for GAPDH were designed
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with Vector NTI Advance™ 11 (Invitrogen) and primers
for TFDP1, SUV39H1, RBL1, E2FG, IRF1, HMGA1, and
HNRPD were designed using qPrimerDepot (http://pri-
merdepot.nci.nih.gov/). To avoid the influence of geno-
mic contamination, the amplicons spanned at least one
intron. The primers used are listed in Additional file 1.
qPCR was performed in a final volume of 20 µl with a
SYBR PCR Master Mix, using 1 µl cDNA. Cycling con-
ditions were 95ºC for 10 min, followed by 40 cycles at
95ºC for 15 s and 60ºC for 1 min each to obtain the
melting curve.
Relative gene expression levels were determined by the

quantitative curve method. Quantitative normalization
of the cDNA in each sample was performed using
GAPDH gene expression as an internal control. Target
gene mRNA levels were given as ratios to GAPDH
mRNA levels. qPCR assays were performed in duplicate
for each sample, and the mean value was used to calcu-
late the mRNA expression levels.

Results
miRNA statistics in lung cancer
We selected 184 miRNAs for NSCLC and 62 for SCLC
using literature mining and the miR2 Disease database.
Among these 246 miRNAs, 41 were found to be involved
in both of the lung cancers and therefore are common
miRNAs involved in lung cancer regardless of the subtype
(Figure 1, Step-1). In the common miRNA group, 13 and
11 miRNAs were found to be up- and downregulated,
respectively; whereas 18 miRNAs showed differential
expression, i.e., either upregulated in SCLC and downre-
gulated in NSCLC or vice versa (Figure 1, Step-2) (Addi-
tional file 2). A total of 22 miRNAs were found to be
unique to SCLC (16 upregulated and 6 downregulated)
(Additional file 3). For NSCLC, the total number of unique
miRNAs was 143, (89 upregulated and 43 downregulated)
(Additional file 4).

Target-based functional annotation of miRNAs
Using miRWalK, miRBASE, miRecord, miRTarBASE, and
miReg we identified several validated targets for each
miRNA. Thereafter, as per our reverse transcriptomics
strategy, targets for each miRNA were subjected to gene
enrichment analysis using ToppGene Suite as described
in Materials and Methods (Figure 1, Step-3). Top targets
that are associated with common, NSCLC, and SCLC
were identified. DAVID-based functional annotations of
the top targets revealed that most of these targets are cell
cycle related, so the miRNAs that have these targets are
related to transcription, cell cycle regulation, cell biogen-
esis and organization, cell proliferation, and other biolo-
gical processes related to tumorigenesis. The list of
common miRNAs involved in lung cancer along with
their corresponding GO terms is presented in Additional

file 5. miRNAs involved uniquely in either NSCLC or
SCLC and their corresponding GO terms were also
defined (data not shown).

miRNA-miRNA interaction network in lung cancer
Interaction of common miRNAs
Based on the hypothesis that interactions of miRNA-TF-
miRNA or TF-miRNA-TF-miRNA targets represent
miRNA-miRNA interactions, we used gene enrichment
based on the top targets of miRNAs common to NSCLC
and SCLC in Osprey to create a protein-protein interac-
tion map (Figure 1, Steps-6-7). In total, 638 targets corre-
sponding to 40 common miRNAs generated a map
having 1791 nodes in Osprey. Keeping in mind that
miRNA genes are regulated by transcription factors (TF),
miRNAs regulate TFs, and, as the gene enrichment ana-
lysis shows, most of the miRNAs regulate transcription,
the network of 1791 nodes is filtered with the “Transcrip-
tion factor” filter in Osprey and subsequently only 170
nodes are retained. This transcription network of 170
nodes is further filtered with “Cell cycle” and “Cell Orga-
nization and Biogenesis” filters, as per the enriched GO
categories (Figure 1, Step-8), and finally the cell cycle
specific total of 26 key TF nodes in common events,
NSCLC, and SCLC are found (Figure 1, Step-9 and
Figure 2).
Interactions of SCLC associated miRNAs
For SCLC, 634 nodes are used in total to create the
interaction map in Osprey. The resultant map is sequen-
tially filtered with “transcription factor”, “Cell cycle”, and
“Cell organization and biogenesis” Filters and only 9 key
nodes are obtained (Figure 1, Steps-6-9 and Figure 3).
Interactions of NSCLC linked miRNAs
Similar methods of network creation and filtering to
those applied to identify key nodes in common and in
SCLC (Figure 1, Steps-6-9) were adopted to generate a
key interaction network in NSCLC. A total of 2421
nodes are filtered and finally 27 nodes are obtained
(Figure 4).
SCLC network is a part of NSCLC
Next we subtracted the LC specific networks from each
other to identify unique network specific TFs (Figure 1,
Step-11). In the 27 nodes of the NSCLC network (Figure 4),
all of the SCLC nodes (Figure 2) are found to be present
(Figure 4, in red circle). Therefore, it is evident that there
are additional pathways involved in NSCLC compared to
SCLC and the SCLC network represents a subset of the
NSCLC network.

Genes involved in common events in lung cancer
Next, we compared the common network (Figure 2) with
the SCLC (Figure 3) and NSCLC and SCLC networks
(Figure 4) by subtracting each from the other to identify
key nodes that are common to (1) SCLC and NSCLC;
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(2) general events, NSCLC, and SCLC; (3) NSCLC and
general; (4) NSCLC specific; and (5) general events in
lung cancers. The analysis revealed that nine genes (RB1,
E2F1, E2F2, CCNT2, CMYC, CEBPA, TP53, CDKN2A,
and HDAC4) that are key nodes in SCLC are common to

both the (1) SCLC and NSCLC and (2) general events,
NSCLC, and SCLC groups (Table 1, group-1-3). There-
fore, all of the SCLC genes are involved in NSCLC and in
general events in lung cancer. Fourteen unique genes
(Table 1, group-4) are found to be involved in both
NSCLC and general events. The comparison also shows
that four genes (Table 1, group-5) are specific to NSCLC
and three genes (Table 1, group-6) are unique to general
events. Therefore, these gene sets can be used in combi-
nation and their expression signature may be useful as
diagnostic markers for NSCLC.

Validation of markers
We selected seven genes [4 unique genes (E2F6, TFDP1,
SUV39H1, and HNRPD) for NSCLC and 3 genes (RBL1,
IRF1, and HMGA1) for general events] for validation as
diagnostic markers in lung cancer. Frozen NSCLC tissue-
based microarray analysis revealed that E2F6, TFDP1,
SUV39H1, and HMGA1 are significantly upregulated in
both the adenocarcinoma and squamous cell carcinoma
samples. The upregulation of RBL1 and downregulation
of IRF1 in the microarray analysis was significant in squa-
mous cell carcinoma but was statistically insignificant in
adenocarcinoma (Additional file 6).
qPCR validation of markers based on blood samples

showed expression patterns similar to the tissue based
microarray analysis. TFPD1, E2F6, IRF1, and HMGA1 are

Figure 2 Cell cycle specific 26 key interacting TFs that are targets of miRNAs involved in common events in lung cancer as well as in
NSCLC and SCLC. The network is created as described in the text. As per our hypothesis, this network also represents interactions of cell cycle
regulating miRNAs associated with NSCLC, SCLC, and common events of lung cancer. TFs circled in red are shared by both NSCLC and SCLC.
Molecules marked in hexagon are unique to common events. Other molecules in the map are shared by NSCLC and common events of lung cancers.

Figure 3 Cell cycle specific 9 key interacting TFs that are
targets of miRNAs involved in SCLC. As per our hypothesis, this
network represents interaction of cell cycle regulating miRNAs
associated with SCLC. For detail, please see the text.
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upregulated in all cancer samples. SUV39H1, RBL1, and
HNRPD are downregulated or not expressed in all sam-
ples compared to the control (Figure 5). Therefore, com-
bining the microarray and qPCR results, upregulation of
E2F6, HMGA1, IRF1, and TFDP1 and downregulation or
no expression of SUV39H1, RBL1, HNRPD can be used as
diagnostic markers of NSCLC, and, in particular, adeno-
carcinoma and squamous cell carcinoma.

Discussion
In this work we have identified key transcription factors
that can be useful biomarkers in diagnosis of lung cancer
using an in silico reverse-transcriptomics approach. In
this novel approach, starting with deregulated miRNAs in
lung cancers we have identified transcription factors that
can act as biomarkers, even for sub-type specific lung
cancers. Out of several putative markers we identified,

7 NSCLC specific markers were validated. We found that
E2F6, HMGA1, IRF1, and TFDP1 were upregulated and
RBL1, SUV39H1, and HNRPD were downregulated or
aberrantly expressed in adenocarcinoma and squamous
cell carcinoma, which are the sub-types of NSCLC.
HMGA1 (High mobility group AT-hook 1) is an onco-

gene that is induced by Wnt/beta-catenin pathway and
which positively regulates cell proliferation in gastric can-
cer [34]. By downregulating E-cadherin and upregulating
expression of TWIST1, it enhances epithelial-mesenchy-
mal transition and metastasis in colon cancer [35]. Upre-
gulation of HMGA1 in glioblastoma positively correlates
with malignancy, angiogenesis, and invasion [36]. In lung
cancer, it is also overexpressed and increased nuclear
expression correlates with poor survival in lung adeno-
carcinomas [37,38]. By upregulating PI3K and MMP2, it
promotes cell migration and invasion [37,39] and by

Figure 4 Interactions of TFs (as per our hypothesis miRNAs) associated with NSCLC and SCLC. TFs circled in red are shared by both
NSCLC and SCLC. Molecules marked in star are unique to NSCLC. Other molecules in the map are shared by NSCLC and general events of lung
cancers.

Table 1 Identified putative markers in lung cancers using the in silico reverse transcriptomics approach

Group LC Types Gene sets

1 Unique to SCLC RB1, E2F1, E2F2, CCNT2, CMYC, CEBPA, TP53, CDKN2A, HDAC4

2 Common to SCLC and NSCLC RB1, E2F1, E2F2, CCNT2, CMYC, CEBPA, TP53, CDKN2A, HDAC4

3 Common to general, SCLC, and NSCLC RB1, E2F1, E2F2, CCNT2, CMYC, CEBPA, TP53, CDKN2A, HDAC4

4 Common to NSCLC and general TFDP2, AHR, CCND1, TP73, RBL2, TAF1, PML, BCL6, MYB, WT1, PARP1, PCAF, TWIST, MCM7

5 NSCLC specific E2F6, TFDP1, SUV39H1, HNRPD

6 General/ common path specific RBL1, IRF1, HMGA1

The markers can be used in combination to design panels for diagnosis of sub-type specific lung cancers.
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activating miR-222 oncomiR, it induces PPP2R2A
mediated AKT signaling in NSCLC [40]. Therefore, upre-
gulation of HMGA1 plays a significant role in tumor pro-
gression in NSCLC. In our study, we also observed that
HMGA1 was upregulated in NSCLC supporting the pre-
vious findings.
TFDP1 (Transcription factor Dp-1) is a candidate onco-

gene that positively regulates S-phase entry and inhibits
apoptosis in cooperation with E2F1 [41]. It is amplified
and overexpressed in breast cancer [42] and upregulation
of TFDP1 positively correlates with tumor size and pro-
gression of hepatocellular carcinomas [43] and increased
cell viability in lung cancer [44]. In our observation,
TFDP1 was overexpressed in all lung adenocarcinomas
and squamous cell carcinomas, which supports the pre-
vious findings of Lu et al. (2000) in a SCLC cell line [45].
In our study, we observed IRF1 (Interferon regulatory

factor 1) was upregulated in all NSCLC samples tested,
although it had been shown to be downregulated in lung
cancer in a previous study [46]. IRF1 inhibits G1-S cell
cycle progression through P53 and p21 mediated path-
ways [46] and may act as a tumor-suppressor gene. This
finding is supported by the findings that it is downregu-
lated in gastric [47] and recurrent breast cancers [48].
However, IRF1 may not always act as a tumor-suppres-
sor, as there is a report that it is upregulated in skin squa-
mous cell carcinoma [49]. Therefore, our observation of
upregulated IRF1 in NSCLC samples requires further
attention to explore the precise role of this TF in various
cancers.
E2F6 (E2F transcription factor 6) inhibits entry into S

phase of cells stimulated to exit G0 [50] and inhibits
apoptosis through E2F1 [51]. It may therefore play a
role in cell proliferation and cell survival. There is no

report about this protein’s expression pattern in any
cancer. Here, we have, for the first time, observed that
E2F6 was upregulated in all of our tested NSCLC sam-
ples. This finding supports E2F6’s putative role in
tumorigenesis and shows that it may be a novel marker
for NSCLC.
SUV39H1 (Suppressor of variegation 3-9 homolog 1)

is a histone methyltransferase that inhibits inflammatory
responses by downregulating interleukin-6 production
[52]. SUV39H1 inhibits the expression of CCND1 and
may thereby negatively regulate cell proliferation [53].
However, its overexpression induces cell migration in
breast and colon cancers [54] and negatively regulates
apoptosis in a lung cancer model [55]. The expression
level of SUV39H1 inversely correlates with stage, prog-
nosis, and disease free survival in oral squamous cell
carcinoma [56] and breast cancer [57]. Therefore,
SUV39H1 may also have oncogenic properties. Although
SUV39H1 was significantly upregulated in adenocarci-
noma and squamous cell carcinoma tissue samples in
our microarray analysis, supporting its positive role in
tumorigenesis, it was found to be downregulated in
blood samples in our qPCR validation. Therefore,
SUV39H1 expression differs in lung cancer tissue and
blood samples.
RBL1 (Retinoblastoma-like 1 (p107)) inhibits cell pro-

liferation through G1 arrest [58] and positively regulates
epidermal differentiation [59]. RBL1 is downregulated
and inversely correlates with the histological grade of
squamous cell carcinomas and adenocarcinomas [60].
Our qPCR validation shows downregulation in all squa-
mous cell carcinoma and adenocarcinoma samples,
which supports the previous findings and RBL1’s func-
tion in tumors.

Figure 5 Blood based qPCR results for selected seven NSCLC specific markers. As compared to the control; HMGA1, TFPD1, E2F6, and IRF1
are upregulated and SUV39H1, RBL1, and HNRPD are downregulated or not expressed in all tested samples.
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HNRPD/AUF1 is a RNA-binding protein that both
positively and negatively regulates neoplastic gene regu-
latory networks in cancer depending on the type of neo-
plasm [61]. It binds to destabilize p21 mRNA and
thereby inhibits its anti-apoptotic activity [62]. Although
in our blood-based qPCR analysis AUF1 was downregu-
lated in all NSCLC samples, it has been reported to be
upregulated in HCC [63] and experimental murine lung
cancer [64]. It has been patented to aid in the prediction
of survival in lung cancer in a gene expression panel of
biomarkers (US 20100267574).
miRNA-markerTFs correlation: The seven identified

TFs that are aberrantly expressed in both the squamous
cell carcinoma and adenocarcinoma were plotted for
their interactions with miRNAs and other key TFs to
obtain more insight into these markers in lung cancer
pathogenesis (Figure 1, Steps-14-15). The miRNA-TF-
Cancer relationships were gathered from the miReg
[17], miR2Disease [23], miRWalk [25], miRecords [26],
TransmiR [31], CircuitsDB [32], and miRDB [65] data-
bases. The interaction map is represented in Figure 6.

The network clearly shows meaningful relationships
between the TFs and miRNAs in lung cancer. The inter-
actions show that the tumor suppressor miRNAs (miR-
29a, miR-16, miR-125, and let-7) that could target the
oncogene HMGA1 are downregulated. Upregulation of
HMGA1 induces expression of oncogenic miR-122.
Another two pro-oncogenic miRNAs that can also target
HMGA1, miR-196a-2 and miR-155, are upregulated in
lung cancers [66,67]. We observed that HMGA1 may
inhibit the putative tumor-suppressor IRF1 (as per the
interaction network) and that the miR-155 pro-oncomiR
directly targeted IRF1. Therefore, in this network,
HMGA1 is the key TF that positively regulates lung
tumorigenesis through upregulation of miR-122 and
perhaps by downregulation of IRF1. However, we found
that IRF1 is upregulated in the samples so that the
IRF1-HMGA1 interactions need further attention.
Tumor suppressor RBL1 is a target of the miR-17

oncomiR [68]. Furthermore, as per the interaction net-
work, RBL1 is activated by TAF1 and cMYC, and regu-
lates expression of E2F2, RB1, MCM7, and TFDP2.

Figure 6 The correlations of identified seven TF markers and interacting miRNAs. The interactions provide better insights of molecular
events and mechanisms during lung cancer tumorigenesis. For detail, please see the text.
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It thereby regulates the cell cycle and cell proliferation.
Therefore, RBL1 downregulation and upregulation of
miR-17 provide a meaningful mechanism in lung cancer
tumorigenesis [66,69].
The common pathway (of both NSCLC and SCLC)

related genes HNRPD, E2F6, TFDP1, and SUV39H1
also showed the expected TF-miRNA relationship in the
interaction map represented in Figure 6 based on the
available experimental evidence. The literature shows
that HNRPD and SUV39H1 may have positive roles in
tumorigenesis [55,56,64]. Although in our blood-based
qPCR, HNRPD and SUV39H1 are downregulated, they
are reported to be upregulated in a mouse model of
lung cancer [63], consistent with the tissue-based micro-
array analysis in our lung cancer samples. The involve-
ment of HNRPD and SUV39H1 is further supported by
reports that the tumor suppressor miR-125 is downre-
gulated in both NSCLC and SCLC [70,71]. Furthermore,
the tumor suppressor protein RB1 is downregulated in
lung cancer [66] and may inhibit SUV39H1.
The other two markers, E2F6 and TFDP1, are upregu-

lated in all of our blood samples. While two pro-oncogenic
miRNAs, miR-28 and miR-193, are upregulated [40] the
putative tumor-suppressor, miR-137, is downregulated in
lung cancers [72,73]. All three of these miRNAs target
E2F6 [74,75]. Furthermore, E2F6 putatively upregulates
TFDP1 and is downregulated by RB1. It is also found from
the interaction map that E2F6 inhibition by two upregu-
lated pro-oncomiRs (miR-28 and miR-193) is not suffi-
cient, as the E2F6 was found to be upregulated in lung
cancer. Further, E2F6 has been reported to upregulate
oncogene TFDP1 and to positively regulate cell prolifera-
tion and cell survival through E2F1 [41]. Additionally,
downregulation of RB1 in lung cancer is not able to
repress TFDP1 activity, and therefore, in lung cancer,
tumorigenesis is mediated through upregulation of E2F6
and TFDP1. However, the role of SUV39H1 and HNRPD
requires further exploration.

Conclusion
In this analysis, using an integrated reverse-transcrip-
tomics-based bioinformatics approach, we have identified
key transcription factors that may be useful in developing
subtype specific biomarkers in lung cancer. Our proposed
seven markers also have high potential to be used in lung
cancer diagnostics for NSCLC subtypes. Of course, addi-
tional experimental validation in independent sets of
patients is required to establish the diagnostic accuracy of
this panel and we are currently conducting those experi-
ments. The miRNA-TF-miRNA relationships with these
seven miRNAs show meaningful associations with these
TFs in lung cancer pathogenesis. The novel strategy devel-
oped in this research is powerful and can be applicable to

identify molecular mechanisms and markers in other can-
cers as well.
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