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Towards in cellulo virus 
crystallography
Helen M. E. Duyvesteyn1,2, Helen M. Ginn1,2, Maija K. Pietilä3,5, Armin Wagner   2, Johan 
Hattne   4,6, Jonathan M. Grimes1,2, Elina Hirvonen3, Gwyndaf Evans   2, Marie-Laure Parsy1, 
Nicholas K. Sauter4, Aaron S. Brewster4, Juha T. Huiskonen   1,3,7, David I. Stuart   1,2, Geoff 
Sutton1 & Dennis H. Bamford3

Viruses are a significant threat to both human health and the economy, and there is an urgent need 
for novel anti-viral drugs and vaccines. High-resolution viral structures inform our understanding of 
the virosphere, and inspire novel therapies. Here we present a method of obtaining such structural 
information that avoids potentially disruptive handling, by collecting diffraction data from intact 
infected cells. We identify a suitable combination of cell type and virus to accumulate particles in the 
cells, establish a suitable time point where most cells contain virus condensates and use electron 
microscopy to demonstrate that these are ordered crystalline arrays of empty capsids. We then 
use an X-ray free electron laser to provide extremely bright illumination of sub-micron intracellular 
condensates of bacteriophage phiX174 inside living Escherichia coli at room temperature. We have 
been able to collect low resolution diffraction data. Despite the limited resolution and completeness of 
these initial data, due to a far from optimal experimental setup, we have used novel methodology to 
determine a putative space group, unit cell dimensions, particle packing and likely maturation state of 
the particles.

Whilst viral complexity and size often limits the growth of crystals suitable for classical crystallographic char-
acterisation1, recent advances in electron cryo-microscopy (cryo-EM) have opened another route to high res-
olution structure determination2–4. Alternatively, X-ray free electron lasers (XFELs) offer less stringent crystal 
size requirements; using femtosecond-duration pulses that are over a billion times brighter than synchrotron 
radiation5. This has recently allowed the determination of a high-resolution structure from virus microcrystals6.

Although crystals are conventionally grown in vitro, the production of protein crystals in vivo may be achieved 
via numerous biological processes7. The relatively small size of in vivo crystals means that useful diffraction data 
can be collected only at microfocus synchrotron beamlines or XFELs8–10. Collecting diffraction data in cellulo 
minimises potential mechanical damage of fragile crystals and so has the potential for improving the quality 
of diffraction, however the signal-to-noise of the diffraction data will be adversely affected by the presence of 
extraneous cellular material11,12. Thus, for large unit cells and small crystals the intensities of the Bragg peaks will 
be dramatically reduced (for instance, similar sized crystals of small picornaviruses will have average intensities 
hundreds of times less than for lysozyme), whereas the background noise increases in proportion to the amount 
of extraneous material illuminated. Therefore, very careful experimental design will be needed to obtain useful 
measured diffraction intensities.

Most bacteriophages terminate an infection cycle by host cell lysis, which limits the accumulation of virus 
particles within the cell. However, there are some mutant cell lines available which are resistant to lysis by certain 
bacteriophages. For instance, mutation of the host gene slyD (sensitivity to lysis), which encodes peptidyl-prolyl 
cis-trans isomerase, can block lysis by phiX174, precluding viral escape13,14. We have therefore chosen to 
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investigate the structure of phiX174 within infected E. coli slyD cells as a proof of principle for what could be 
developed into a more general vehicle.

PhiX174′s lifecycle encompasses three distinct states (Fig. 1), all of which are icosahedral and have been stud-
ied, in vitro, by crystallography15–19 and electron microscopy20,21. The first stage is assemblage into a procapsid 
(108 S) form, which, upon loss of the B scaffolding protein, and gain of a J protein, concomitant with packaging 
of the ssDNA genome, forms the 132 S intermediate provirion, which is of a similar size16,17,22–24. Maturation to 
the virion (114 S) occurs with loss of the D scaffolding protein, and a significant collapse of the structure22,24. We 
report analysis of cells infected with both wild-type (wt) virus and AmbJ− mutant virus. The latter are unable to 
package DNA, since they do not possess the packaging protein, J. Using electron microscopy (EM) and X-ray 
diffraction, we demonstrate that small crystalline arrays form within cells. The experimental setup-up available, 
whilst unable to fully explore the potential of the method, nonetheless provided useful information, demonstrat-
ing the arrest of PhiX174 maturation at the procapsid state.

Results
phiX174 forms crystalline condensates in most cells 4.5 h post infection.  Thin-section EM of 
Escherichia coli C990 slyD infected with both wt and AmbJ− phiX174 revealed the presence intracellular viral 
condensates in lysis-defective conditions14 (see Methods), the result of particle accumulation (Fig. 2a). For exam-
ple, by 1.5 h post infection, aggregates of wt virus particles were seen in some 50% of the cells. By 4.5 h post 
infection, these had developed so that approximately 75% of cells contained condensates of empty particles, of 
which roughly one third appeared to be crystalline. We therefore selected 4.5 h post infection as the time point 
for further analysis.

Electron Cryo-Microscopy indicates the crystal lattice is reasonably well-ordered.  The crystal-
linity of the crystal-like arrays seen at 4.5 h post infection (for both wt and AmbJ− virus) was then visualised using 
whole-cell three-dimensional tomographic reconstructions and sub-tomogram averaging. The condensates, circa 
200 × 200 × 200 nm3 in volume, nearly filled the cell interior. Power spectra calculated from 2D projection images 
of cells confirmed that the condensates possessed crystalline order up to a resolution of ~52 Å (Fig. 2b,c). It 
appears that a major spacing of the lattice is around 340 Å. Sub-tomogram averaging suggested that the capsids 
were ordered on a lattice and were empty (Fig. 2d).

XFEL analysis of infected cells.  Cells were grown and infected adjacent to the Linac Coherent Light 
Source (LCLS), at Stanford University. A slurry of 4.5 h post infection cells was pumped through a gas dynamic 
virtual nozzle (GDVN)25 at room temperature into the X-ray beam at the LCLS CXI beamline5,26. Diffraction pat-
terns were collected on a CSPAD detector27 ~2.5 m from the interaction region of the beam with the jet to record 
low angle diffraction from condensates.

The majority of data were collected on wt phiX174 at a wavelength of 1.768 Å, while approximately 30% of the 
dataset was taken from the ambJ− mutant. Data for this latter sample were collected at both 1.768 and 1.306 Å 
wavelengths. At these wavelengths, the maximal resolutions at the detector edge were approximately 46 and 34 Å, 
respectively.

At the time the experiment was performed the beam and jet were larger than would have been ideal for this 
experiment. Ideally one would match the beam and the jet to the crystal size, whereas in practice these had diam-
eters of ~2 and 4 μm, respectively. Nevertheless, Bragg diffraction was observed, but limited to ~50 Å spacings 
(Fig. 3a).

Initial XFEL Parameters.  Based on calibrations from thermolysin data collected shortly before phiX17428, 
the detector distance was estimated to be 2.49 m. Note that this is dependent on accurate estimates of the thermo-
lysin unit cell29 and wavelength calibration at LCLS, neither of which were known to a confidence higher than 1%.

Figure 1.  Schematic of the stages in the assembly and maturation of phiX174, a T = 1 bacteriophage. The 
procapsid (pdb 1cd316) contains proteins B, D, F, G & H and develops into the provirion20 by losing at least 
some of the B proteins and gaining protein J and DNA. Subsequent formation of the mature virion (pdb 2bpa18) 
occurs through the loss of D proteins and the remaining B proteins.
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The two wavelengths of 1.768 and 1.306 Å were initially derived from LCLS log files. Wavelengths may, how-
ever, be taken on a per image basis (Supplementary Fig. 1). The shot-to-shot variation in wavelength is much less 
that the likely errors in distance, and reprocessing some of the data using these unique per shot energies gave no 
significant improvement, therefore all further analysis used the overall wavelengths from the log file.

Very low crystal-to-beam hit rates and highly intense artifacts from flaring, a likely consequence of reflection 
of the incident beam from the edge of the liquid jet (see Fig. 3a), precluded the use of conventional spot finding 
algorithms even with stringent masking. 168,456 images were initially triaged on the basis of the compressed 
image size. The extent of jpeg compression is related to information content in the image and we observed that the 
3.1 M pixel images compressed to a wide range of sizes (0.124 to 0.421 MB for 2 × 2 binned images). Inspection 
of a small subset of images revealed that those showing diffraction were <0.3 MB. Using this criteria we were able 
to immediately eliminate 72% of the images (examination of a substantial subset of these revealed that no diffrac-
tion patterns had been missed), whereas the triaged images for the wt sample showed a success rate of 7.2% when 
screened manually. For the ~680 diffraction patterns identified the coordinates of spots were recorded by hand. 
Spot positions on the detector were mapped into reciprocal space and pair-wise vectors between all observed 
spots on each image were calculated. By generating a histogram of these inter-spot distances, a ‘pseudo-powder 
pattern’ was formed, as described in Ginn 201630 (shown in light blue on Fig. 3b). There was no significant differ-
ence in the diffraction between the wt and mutant particles.

Based on the apparent high symmetry indicated by the sparse powder pattern a cubic space group seemed 
likely (this was consistent with the condensates seen in the cryo-ET reconstructions). In addition, as will emerge 
in the discussion below, although we strictly need to observe symmetry in the diffraction intensities to confirm 
the cubic space group, a cubic space group is consistent with elements of the inherent symmetry of the virus 
particle and the alignment of particle and crystal symmetry elements is a common feature of most virus crystals. 
For simplicity, we therefore assume that this is the case here. Thus, a systematic fitting of allowed face-centred 
(F), body-centred (I) and primitive- (P) space groups was performed (Fig. 3b). The powder pattern facilitates the 
identification of centering operations, since successively more reflections are systematically absent for P, I and F 
lattices. For a primitive lattice, all reflections can be of non-zero intensity (shown in red in Fig. 3b). For a body 
centered lattice the sum of the three components of the indices must be even (shown with dark blue hatching) 
for non-zero intensity and for face centering all three pair-wise sums of the components must be even (shown 
with green hatching and a star). This produced a convincing best fit for a face-centred cubic space group, with an 
approximate cell edge of 500 Å (see Supplementary Fig. 2). Assuming a cubic lattice this limits the possible space 
groups which can accommodate a chiral virus particle to F23, F432 and F4132. The highest subgroup of icosa-
hedral symmetry that can be accommodated in a crystal lattice is 23 symmetry. All of the putative space groups 

Figure 2.  Electron microscopy. (a) Ultrathin section of a E. coli C990 slyD1 cell infected with wt phiX174 at 
4.5 h p.i. Scale bar shows 200 nm. (b) Two-dimensional projection image of similarly infected E. coli C990 slyD1 
cell. Scale bar shows 500 nm. (c) Fourier transform of the area shown in (b). (d) Section through averaged 
tomogram density. Scale bar shows 100 nm.



www.nature.com/scientificreports/

4SCIENTIFIC REPOrTS |  (2018) 8:3771  | DOI:10.1038/s41598-018-21693-3

contain points of 23 symmetry, F23 has four such points whilst F432 and F4132 each have eight. Even with the 
most economical packing, only F23 can accommodate a particle of the size of phiX174 on a point of 23 symmetry, 
since four, but not eight, particles can be accommodated in a cell of this size (detailed packing arguments dis-
cussed below). We therefore conclude that the most likely space group of the viral arrays grown in infected cells 
is F23, with a = b = c = ~500 Å. Note that purified viral particles and procapsids have been crystallised previously, 
however none of these crystals are isomorphous with those grown in infected cells (the calculated powder pat-
terns agree poorly, Supplementary Fig. 3).

Putative Maturation State.  Since the diffraction from the wt and AmbJ− was indistinguishable and protein 
J is required for genomic packaging, it seemed likely that our sample is that of a procapsid (furthermore in elec-
tron micrographs the condensates appeared to be empty particles, Fig. 2). It is still possible that the condensates 
represent the mature virion, but in an empty form. Spontaneous maturation in some viral procapsids has been 
observed in vitro16,31–33, and most notably, for the homologous bacteriophage G4 (sequence identity of 40–66%), 
where both conformational change, and external scaffolding led to the formation of an empty ‘mature virion’34.

Knowing the space group and unit cell dimension, we can calculate the separation of the centres of neigh-
bouring virus particles (e.g. at 0, 0, 0 and 0, ½, ½) as ~353 Å. From published data, the minimum/maximum 

Figure 3.  Diffraction data and analysis. (a) Example of a strong diffraction pattern from phiX174 wild-type 
with a clear lattice. Panel shadowing was a consequence of a silicon support used to protect the detector. The 
black streak was observed on many patterns, although at different angles and is presumably derived from the 
beam reflecting from the jet edge. (b) Histogram of vector distances illustrating selection process of correct 
cubic space group. Blue fill peaks correspond to combined data from wild type and mutant data sets. Patterned 
peaks show predicted frequency of vector distances for face- (F), body- (I) and primitive- (P) centred structures. 
The closest match to our observed data (pale blue fill, with blue outline) is the face-centred cubic space group 
(green stars).
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diameters of the virion and procapsid are 300/342 and 348/352 Å respectively (Table 1). This strongly suggests 
that the in-cell crystals contain procapsids. Although there are some experimental uncertainties, the true unit cell 
dimension will lie well within the range of 480 to 520 Å (which correspond to the extreme distances and wave-
lengths within the experimental uncertainty). Within this range, the only sensible packing for either a procapsid 
or mature virus is for the procapsid with a cell dimension close to 500 Å, thus in the best packing for a mature 
virion (480 Å cell) the closest approach of sidechains is about 20 Å (Supplementary Fig. 4).

Discussion
We have established a routine procedure to produce cells, 75% of which contain phiX174 viral condensates. 
We have also demonstrated that these intracellular viral condensates form ordered sub-micron crystals that are 
capable of diffracting X-rays to produce informative patterns at XFELs. This represents a proof of principle for the 
extension of XFEL crystallography to systems with orders of magnitude lower signal than previously reported, 
and lends promise to further exploration of generic methods for viral structural analysis to bypass traditional 
crystallisation and handling. This holds potential for difficult-to-crystallise viral targets.

There is a clear route to improving the signal-to-noise for the diffraction data. At the time the experiments 
were performed, the beam and jet were larger than ideal. Assuming that the beam could be trimmed to the 
maximal crystal cross-section within the X-ray beam (~0.4 × 0.4 μm2 supposing maximum crystal dimensions 
are approximately twice those observed on average by EM), compared to the beam used here (which intersects 
approximately 2 × 2 μm2 of jet) a 25-fold improvement in signal-to-noise could be obtained. Furthermore, if the 
jet could be thinned from ~4 μm to the dimensions of a cell, ~1 μm, the total potential gain would be ~100-fold. 
Although the bacterial cells will scatter somewhat more strongly than the liquid jet, this is probably not an unrea-
sonable estimate. Finally, focussing the entire beam onto the crystal would increase the signal ~25-fold and the 
signal-to-noise by a further factor of five. Although extraordinarily challenging with current liquid jet technology, 
since the hit-rate will decline precipitously, solid-phase supports, offering high speed and precision, may be used 
instead to recover much of this potential 500-fold gain35,36. A significant improvement in hit rate may also be 
achieved with the recently reported Acoustic Droplet Ejection technology37.

If it is possible to extend the applicability of this method, and render it a generic vehicle for icosahedral, and 
perhaps any non-pleomorphic, virus particles, in cellulo crystallisation might provide new targets that may only 
be crystallised within intracellular conditions. It remains to be seen whether such advances provide a method 
competitive with electron microscopy for large complexes, but at the very least they may offer a synergistic tool.

Methods
Sample preparation.  Cultures were grown in Luria broth. Lysis-defective cells of logarithmic Escherichia 
coli C990 slyD1 cultures were infected with phix174 using a multiplicity of infection of 10 and CaCl2 and MgCl2 
were added to final concentrations of 5 and 10 mM, respectively. After infection, cells were incubated for 5 min 
without aeration and then aerobically at 37 °C. For thin-section EM, cells were fixed 4.5 h post infection (p.i.) with 
3% (v/v) glutaraldehyde and sections were prepared as previously described38. The micrographs were taken with 
JEOL1200EX electron microscope operating at 80 kV.

Electron cryo-microscopy and tomography.  For electron cryo-microscopy and tomography, unfixed 
infected cells and 10 nm gold clusters were added to an electron microscopy grid 4.5 h p.i. and the grid was 
plunge-frozen in a liquid ethane-propane mixture. Data were collected on a Tecnai Polara electron microscope 
(Thermo Fischer) operating at 300 kV at liquid nitrogen temperature and equipped with a 4k × 4k CCD camera 
(Gatan) mounted behind an energy filter (Gatan) operating at zero-loss mode (20 eV slit). For two-dimensional 
imaging, a series of 40 images (total dose of 80 e−Å−2) was acquired at 12 µm under focus and images were com-
putationally aligned in IMOD39. Images were high-pass filtered to 10000 Å−1 to remove low frequency features 
arising from variations in sample thickness. For three-dimensional tomographic reconstruction of viral aggre-
gates, a tilt series was collected from −60° to +60° in 4° increments at 12 µm under focus, with a maximum 
dose of 70 e−Å−2 in SerialEM40 and reconstructed in IMOD using the gold clusters as fiducial markers. Template 
matching and sub-tomogram averaging of ordered condensate regions was performed in Jsubtomo41,42, taking 
into account the missing wedge of tomographic reconstructions. Averages were low pass filtered to 80 Å−1 for 
visualization.

Property

Maturation State

Procapsid Mature virus

PDB Code 1cd316 2bpa18

Space Group I213 P21

Unit cell dimensions

  a, b, c/Å; 774.00, 774.00, 774.0 305.58, 360.78, 299.4

  α, ß, γ/° 90.00, 90.00, 90.00 90.00, 92.89, 90.00

Outer Radius/Å 176 171

Outer Diameter/Å 352 342

Outer Spherical Volume/Å3 22, 836, 345.90 20, 944, 834.90

Table 1.  Summary published crystal data for phiX174.
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Serial femtosecond crystallography.  Diffraction data were collected at the Linac Coherent Light Source 
(LCLS) of SLAC National Accelerator Laboratory (Menlo Park, CA, USA) on the Coherent X-ray Imaging (CXI) 
beamline26. Intact cells were injected at room temperature using a Gas Dynamic Virtual Nozzle25 at a flow rate 
of 50 µl min−1. X-ray pulses were of 50 fs duration with 2.0 × 1012 photons per pulse and a beam diameter of c.a. 
2 μm. In order to calculate the X-ray wavelength, electron energies were converted to photon energies, based on 
the undulator parameter K43.

Femtosecond diffraction snapshots were recorded at 120 Hz on the downstream position Cornell-SLAC pixel 
array (CSPAD) detector27 at a sample-detector distance estimated to be 2.49 m.

Pseudo-powder pattern generation.  Approximately 2000 images with diffraction were derived from the 
output streams. Diffraction spots were then manually selected from these diffraction images and the correspond-
ing pixel coordinates recorded (Ginn, unpublished software). Vectors between pairs of spots were generated using 
cppxfel30, and a histogram showing the frequency of the occurrence of the lengths of these vectors was termed the 
“pseudo-powder pattern”. This method has been described previously44.

Crystal symmetry determination and packing analysis.  Packing of the procapsid (PDB 1cd3)16 and 
mature capsid (PDB 2bpa)18 asymmetric units was visualised using PyMOL45.
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