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Abstract: Long non-coding RNAs (lncRNAs) have been well known for their multiple functions in the
tumorigenesis, development, and prognosis of breast cancer (BC). Mechanistically, their production,
function, or stability can be regulated by RNA binding proteins (RBPs), which were also involved in
the carcinogenesis and progression of BC. However, the roles and clinical implications of RBP-related
lncRNAs in BC remain largely unknown. Therefore, we herein aim to construct a prognostic signature
with RBP-relevant lncRNAs for the prognostic evaluation of BC patients. Firstly, based on the RNA
sequencing data of female BC patients from The Cancer Genome Atlas (TCGA) database, we screened
out 377 differentially expressed lncRNAs related to RBPs. The univariate, least absolute shrinkage
and selection operator (LASSO), and multivariate Cox regression analyses were then performed to
establish a prognostic signature composed of 12-RBP-related lncRNAs. Furthermore, we divided
the BC patients into high- and low-risk groups by the prognostic signature and found the overall
survival (OS) of patients in the high-risk group was significantly shorter than that of the low-risk
group. Moreover, the 12-lncRNA signature exhibited independence in evaluating the prognosis of
BC patients. Additionally, a functional enrichment analysis revealed that the prognostic signature
was associated with some cancer-relevant pathways, including cell cycle and immunity. In summary,
our 12-lncRNA signature may provide a theoretical reference for the prognostic evaluation or clinical
treatment of BC patients.

Keywords: breast cancer; RNA binding protein; long non-coding RNA; prognostic signature

1. Introduction

Female breast cancer (BC) has become the leading cause of global cancer incidence in
2020, with approximately 2.3 million new cases and 685,000 deaths [1]. Metastasis and local
or distant recurrence of tumors are the leading causes of mortality for BC patients [2]. BC is
a highly heterogeneous tumor on the molecular level. Through the PAM50 classification
system based on a 50-gene expression signature, current clinical practice has usually
classified BC into five subtypes, including luminal A, luminal B, HER2-enriched, normal-
like, and basal-like (triple-negative BC) [3]. However, as there is a heterogeneity of treatment
response within the same subtype [2], the BC subtype still needs more exploration to obtain
a higher therapeutic effect. Therefore, there is an urgent requirement to discover more
prognostic signatures, which can stratify female BC patients to improve the prognosis of
high-risk patients and minimize the overtreatment of low-risk patients.

RNA binding proteins (RBPs) are proteins that are highly conserved in evolution [4].
Through their RNA-binding domains, RBPs can directly bind with coding or non-coding
RNAs and regulate their metabolic process, including RNA splicing, polyadenylation,
localization, translation, and degradation [5,6]. Consequently, abnormal expression and
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function of RBPs, which are usually observed in various cancers, lead to the promotion
or inhibition of tumorigenesis and progression [6]. Long non-coding RNAs (lncRNAs)
are a type of non-coding RNAs with a length of more than 200 nucleotides. They are
broadly involved in the regulation of gene expression by modulating chromatin architecture,
transcription, mRNA stability, translation, and post-translational modifications [7]. In
breast cancer, lncRNAs extensively affect cancer cell proliferation, metastasis, apoptosis,
metabolism, immune evasion, and drug resistance [8]. Furthermore, the aberrant expression
of lncRNAs endows them to predict the prognosis of breast cancer [9,10].

Accumulating studies have demonstrated RBPs regulate lncRNA generation at the
transcriptional or post-transcriptional level in various cancers. As an RNA binding pro-
tein, the heterogeneous nuclear ribonucleoprotein E1 (hnRNP E1) binds to a nucleic acid
structural element within exon 12 of PNUTS pre-RNA. It suppresses the splicing of the
lncRNA-PNUTS isoform, which regulates epithelial-mesenchymal transition (EMT) and
tumor progression through interaction with miR-205 as a competitive sponge [11]. Human
antigen R (HuR), another RBP whose function has been extensively explored, not only phys-
ically interacts with and stabilizes lncRNAs, such as NEAT1 [12] and lncRNA-HGBC [13],
but also recruits let-7-Ago2 complex to lncRNAs and promotes their degradation, in-
cluding lncRNA-p21 [14] and HOTAIR [15]. Through the recruitment of the CCR4-NOT
deadenylase complex, a critical component of the cytoplasmic RNA decay machinery,
IGF2BP1 promotes degradation of HULC [16], and Tristetraprolin (TTP) may promote de-
cay of HOTAIR [17,18], respectively. However, lncRNA NEAT1 is destabilized by AUF1 [19]
and PABPN1 [20] but stabilized by SPSF1 [21] through different mechanisms. Interest-
ingly, one recent genome-wide analysis of lncRNA half-lives in humans revealed that
RBP-lncRNA interactions mainly enhance the stability of lncRNA with only one exon [22].
Additionally, N6-methyladenosine (m6A) writers and erasers, as well as readers, are all
RBPs that modulate m6A modification and function of lncRNAs [23], primarily by affecting
their stability and changing their expression levels [24–26]. Recently, RBP has also been
reported to regulate the transcription of lncRNA. For example, ZC3H4, a CCCH zinc finger
domain-containing RBP, occupies broad promoter regions and represses non-coding tran-
scription events in human cells [27]. With WDR82 that binds Ser5-phosphorylated RNA
Pol II, ZC3H4 forms a complex that suppresses lncRNAs transcribed from enhancers and
promoters by transcription termination, which is activated by the inefficiently spliced first
exon of lncRNAs [28]. Collectively, RBPs can function as regulatory proteins and control
the expression of lncRNAs in multiple ways.

Although autophagy, aerobic glycolysis, stemness, and immune-related lncRNA prog-
nostic signatures have been developed for the prognosis evaluation of breast cancer [29–32],
the RBPs-related lncRNA predictive risk model for breast cancer remains unknown. There-
fore, our study aimed to develop a valuable prognostic signature based on RBP-related
lncRNAs for female BC patients. We have systematically identified lncRNAs that were cor-
related with the expression of RBPs in BC. With 12-RBP-related lncRNAs, we constructed
a prognostic signature, which can serve as an independent prognostic biomarker for BC
patients. Furthermore, we found the prognostic signature was tightly connected with im-
mune checkpoints and tumor mutational burden (TMB). In total, our study developed an
RBP-related lncRNA signature to predict the prognosis of female BC patients and provided
a theoretical basis for the treatment of BC.

2. Materials and Methods
2.1. Acquisition and Processing of Data

The transcriptome profiling, simple nucleotide variations, and the corresponding
clinical information of BC patients were downloaded from The Cancer Genome Atlas
(TCGA) database (https://portal.gdc.cancer.gov, accessed on 7 November 2020). Addi-
tionally, the disease-specific survival (DSS) information of TCGA-BRCA (breast invasive
carcinoma) was downloaded from the University of California, Santa Cruz (UCSC) Xena
database (http://xena.ucsc.edu/, accessed on 1 November 2021). Then, we also obtained
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the PAM50 subtype information of TCGA-BRCA [33]. The protein expression data of BC
patients were collected from the Clinical Proteomic Tumor Analysis Consortium (CPTAC)
database (https://cptac-data-portal.georgetown.edu/study-summary/S015, accessed on
2 August 2021). Since there are rare male breast cancer patients in the TCGA database, we
kept breast cancer samples only from female patients (1096 tumor tissues and 112 normal
tissues). Patients with overall survival (OS) < 30 days were excluded to ensure the accuracy
of the prognostic analysis in our study. Furthermore, the 842 cases with complete clinical
information were retained for further analysis.

2.2. Identification of Differential Expressed RBP-Related lncRNAs in BC Tissues

Differentially expressed genes were calculated by R package DESeq2 (P.adj < 0.05) [34].
The differentially expressed proteins between BC tumor and normal tissues were identified
by the t-test and Benjamini–Hochberg method (FDR < 0.05). In addition, we also collected
2283 RBP genes from the previous study [35]. Differentially expressed RBP genes were
strictly identified with consistent protein and mRNA expression data. The Pearson correla-
tion coefficient |R| > 0 and p-value < 0.05 were considered as significant. The lncRNAs
with |log2 (fold change)| > 1 and P.adjust < 0.05 were identified as differentially expressed
lncRNAs. To filter low-expressed lncRNAs, we retained differential expression lncRNAs
that were expressed in at least 80% of the tumor samples. The correlation between RBP
genes and differentially expressed lncRNAs was evaluated by the Pearson correlation
analysis, and the RBP-related lncRNAs were identified according to the standard of the
|R| > 0.4 and the p-value < 0.001.

2.3. Construction of the RBP-Related Prognostic Signature

The 842 cases with complete clinical information were used as the entire cohort. With
the R package caret [36], all cases were randomly assigned into the training (n = 590) and
validation dataset (n = 252) at a ratio of 7:3 [37]. The differences in clinical features of the
patients between these two datasets were analyzed by the Fisher’s exact test. The prognostic
lncRNAs associated with RBP were identified based on a univariate Cox regression analysis
for OS with the R package survival in the training dataset [38]. Then, some tightly correlated
lncRNAs of them were deleted by the least absolute shrinkage and selection operator
(LASSO) to avoid over-fitting of the model by using the R package glmnet [39]. Then, the
RBP-related lncRNA signature was constructed through the multivariate Cox regression
analysis according to the lowest Akaike information criterion (AIC) value. Additionally,
the risk score was calculated as the following formula: Risk score = Σ(Expi ∗ Coefi). The
Coef represents the coefficients of each lncRNA, and the Exp represents the expression
level of each lncRNA.

2.4. Assessment and Validation for the Prognostic Value of the RBP-Related lncRNA Signature

The training dataset was categorized into high- and low-risk groups based on the
median risk score. Similarly, the validation dataset and entire cohort were also classified
into high- and low-risk groups based on the median risk score of the training dataset,
respectively. Subsequently, the Kaplan–Meier survival analysis and log-rank test were
used to assess the difference in OS or DSS between the high- and low-risk groups. The
time-dependent receiver operating characteristic (ROC) curves at 1-, 3-, and 5-year OS
were performed by the R package survivalROC (survivalROC package version v.1.0.3,
https://cran.r-project.org/web/packages/survivalROC/index.html, accessed on 22 De-
cember 2020).

2.5. Clinical Correlation Analysis for Risk Score

We firstly performed the Kaplan–Meier survival analysis and log-rank test to evalu-
ate the differences in OS between the high- and low-risk groups in different subgroups
stratified by several clinical features based on the entire cohort, including age (≥60 years
old, <60 years old), TNM stage (stage I–II, stage III–IV), T stage (T1–2, T3–4), N stage (N0,
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N1–3), M stage (M0), and PMA50 subtypes (luminal A, normal-like, basal-like, luminal
B, and HER2-enriched). As the number of patients in the M1 stage was only 15, the sur-
vival analysis was not performed. Furthermore, the univariate Cox, multivariate Cox, and
ROC curve analyses for OS were used to assess the independent prognostic value of the
RBP-related lncRNA signature based on the risk score and above clinical features.

2.6. Functional Enrichment Analysis

Functional annotation of RBP genes related to the lncRNAs in the prognostic signature
was performed by R package ClusterProfiler [40]. The terms of Gene Ontology (GO) or
Kyoto Encyclopedia of Genes and Genomes (KEGG) with P.adjust < 0.05 were considered
to be significantly enriched. Additionally, the gene set enrichment analysis (GSEA) between
the high- and low-risk groups in the entire cohort was executed based on the KEGG
pathway (c2.cp.kegg.v7.4.symbols.gmt) with the GSEA software (v.4.1.0; http://www.
broadinstitute.org/gsea/index.jsp, accessed on 18 March 2021). The pathways with the
normalized enrichment score |NES| > 1 and FDR < 0.05 were taken to be significantly
enriched.

2.7. Correlation between the Risk Score and Tumor Mutational Burden

The tumor mutational burden (TMB) was defined as the total number of gene mu-
tations per million bases. Only 3 types of mutations were considered in our analysis,
including single-nucleotide polymorphism (SNP) and insertion-deletion (InDel) mutations.
The TMB value of each patient was calculated by using the Perl programming language.
Moreover, we divided BC patients with risk scores into high- and low-TMB groups ac-
cording to the optimal cut-point of the TMB determined by the surv_cutpoint function of
the survminer package (survminer package version v.0.4.8, https://rpkgs.datanovia.com/
survminer/index.html, accessed on 6 November 2020). The correlation between the risk
score and TMB was evaluated by the Spearman correlation analysis, and the difference in
TMB between high- and low-risk groups was calculated with the Wilcoxon test.

2.8. Statistical Analysis

All the analyses were performed in the R software (version v.4.0.2, https://www.
r-project.org/, accessed on 22 June 2020). The DESeq2 and t-test were used to identify
differentially expressed genes and proteins between the two different groups, respectively.
The Pearson or Spearman methods were used to perform a correlation analysis. Fisher’s
exact test was used to evaluate the difference of categorical variables in two different groups.
The differences in numerical variables between two different groups were calculated with
the Wilcoxon test. Statistical significance was set at p < 0.05 unless otherwise stated.

3. Results
3.1. Identification of Differentially Expressed lncRNAs Associated with RBPs in Female BC
Patients

The differentially expressed lncRNAs associated with RBP in BC are identified as in
Figure 1A. We gathered a total of 1800 differentially expressed RBP genes by comparing
1096 BC samples with 112 normal samples from the TCGA database. Then, 249 differentially
expressed RBPs were identified by comparing 103 BC samples and three normal samples
from the CPTAC database. By taking the intersection of transcriptome profiling and
proteomic datasets, we obtained 152 RBP genes. Finally, 119 RBP genes were screened
out by positive statistical significance. Therefore, here we used the mRNA expression
level of these RBP genes to represent their protein expression for subsequent analysis.
We also filtered out 1150 differentially expressed lncRNAs widely expressed in tumors.
Subsequently, 377 RBP-related lncRNAs were identified based on the Pearson correlation
coefficient |R| > 0.4 and p-value < 0.001.

http://www.broadinstitute.org/gsea/index.jsp
http://www.broadinstitute.org/gsea/index.jsp
https://rpkgs.datanovia.com/survminer/index.html
https://rpkgs.datanovia.com/survminer/index.html
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Figure 1. Identification of differential expressed lncRNAs related to RBPs and establishment of a 
12-lncRNA prognostic signature. (A) The flowchart for identification of RBP-related lncRNAs. (B) 
Forest plot of univariate Cox regression analysis for the 22 RBP-related lncRNAs correlated with 
the OS of BC patients in the training dataset. (C) The LASSO coefficient profiles of the 22 
prognosis-associated lncRNAs. The upper abscissa represents the number of lncRNAs with 
non-zero coefficients under the corresponding lambda. (D) The cross-validation graph shows the 

Figure 1. Identification of differential expressed lncRNAs related to RBPs and establishment of a 12-
lncRNA prognostic signature. (A) The flowchart for identification of RBP-related lncRNAs. (B) Forest
plot of univariate Cox regression analysis for the 22 RBP-related lncRNAs correlated with the OS of
BC patients in the training dataset. (C) The LASSO coefficient profiles of the 22 prognosis-associated
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lncRNAs. The upper abscissa represents the number of lncRNAs with non-zero coefficients under
the corresponding lambda. (D) The cross-validation graph shows the optimal parameter selection
with minimum criteria in the LASSO model. The first black dashed line shows the best parameter
(lambda). The upper abscissa represents the number of lncRNAs with non-zero coefficients under
the corresponding lambda. (E) Forest plot of the multivariate Cox regression analysis for the 12 RBP-
related lncRNAs. (F) The coefficients of the 12 lncRNAs from multivariate Cox regression analysis.

3.2. Development of the RBP-Associated lncRNA Signature

The entire cohort containing 842 BC cases was randomly assigned into the training
dataset (n = 590) and the validation dataset (n = 252). The clinical features are presented in
Table S1, which showed the clinical characteristics of patients in these two datasets were
similar (p-value > 0.05). We identified the 22 lncRNAs significantly associated with OS
from 377 RBP-related lncRNAs by a univariate Cox regression analysis in the training
dataset (Figure 1B). These significant lncRNAs were subjected to a LASSO Cox regression
analysis for avoiding the overfitting of the model, and 18 candidate lncRNAs were selected
for further analysis (Figure 1C,D). Finally, 12 lncRNAs for constructing the prognostic
signature were screened out via a multivariate Cox regression analysis (Figure 1E). The
specific description and coefficients of these lncRNAs are displayed in Table 1 and Figure 1F.

Table 1. The coefficients of 12 RBP-related lncRNAs based on the multivariable Cox regression
analysis in the training dataset.

Gene Symbol Ensembl ID Genomic Location Coefficient

LINC02408 ENSG00000203585 Chr12:67,443,105–67,590,771 0.007062056
AL121790.2 ENSG00000259087 Chr14:37,556,158–37,567,095 0.00683141
AL589765.4 ENSG00000249602 Chr1:151,763,384–151,769,501 0.003727625

LINC00460 ENSG00000233532 Chr13:106,374,477–
106,384,315 0.001867941

YTHDF3-AS1 ENSG00000270673 Chr8:63,167,725–63,168,442 0.00146521
CYTOR ENSG00000222041 Chr2:87,454,781–87,636,740 0.000252682

LINC01016 ENSG00000249346 Chr6:33,867,506–33,896,914 −0.000429308
CD2BP2-DT ENSG00000260219 Chr16:30,354,665–30,357,116 −0.001513116
LINC00987 ENSG00000237248 Chr12:9,240,003–9,257,960 −0.003223765
U73166.1 ENSG00000230454 Chr3:50,260,303–50,263,358 −0.004631155

USP30-AS1 ENSG00000256262 Chr12:109,052,349–
109,053,984 −0.015207547

AC068473.4 ENSG00000267409 Chr18:79,610,747–79,612,303 −0.048280801

Note: the reference genome version used for the genomic location was GRCh38. Chr: chromosome.

3.3. Evaluation and Validation for the Prognostic Ability of the RBP-Related lncRNA Signature

Subsequently, the risk score of each case in the entire cohort was calculated with the
coefficients and expression levels of these 12 lncRNAs. BC patients in the training dataset
were categorized into high- and low-risk groups based on the median value of the risk
score (risk score = −1.3618) (Figure 2A). The OS and survival status of patients between
high- and low-risk groups are depicted in Figure 2B, which showed the high mortality in
the high-risk group. Furthermore, we performed the Kaplan–Meier analysis and found that
patients in the low-risk group had longer OS than that of the high-risk group (Figure 2C).
The time-dependent ROC curves were used for evaluating the prediction efficiency of the
prognostic signature. Furthermore, the area under the curve (AUC) values for 1-, 3-, and
5-year OS reached 0.870, 0.796, and 0.791, respectively (Figure 2D).
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Figure 2. Evaluation and verification for the prognostic value of the RBP-related lncRNA signature.
(A) Risk scores for BC patients of the high- and low-risk groups in the training dataset. (B) The
scatterplot of overall survival time and status of BC patients in the high- and low-risk groups from
the training dataset. (C) The OS curve for BC patients in the high- and low-risk groups of the training
dataset. (D) The time-dependent ROC curves at 1-, 3-, and 5-year OS of the 12-lncRNA prognostic
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signature in the training dataset. (E) Risk scores for BC patients of the high- and low-risk groups in
the validation dataset. (F) The scatterplot of overall survival time and status of BC patients in the
high- and low-risk groups from the validation dataset. (G) The OS curve for BC patients in the high-
and low-risk groups of the validation dataset. (H) The time-dependent ROC curves at 1-, 3-, and
5-year OS of the 12-lncRNA prognostic signature in the validation dataset.

To test the prognostic capability of the RBP-related lncRNA signature, we used the
median risk score of the training dataset (risk score = −1.3618) to divide the validation
dataset and the entire cohort into the high- and low-risk groups, respectively. The distribu-
tions of risk score and survival status of patients between high- and low-risk groups in the
validation dataset are displayed in Figure 2E,F. The result of the overall survival analysis
suggested that patients in the high-risk group had a poorer prognosis than those in the
low-risk group (Figure 2G). The AUC values of ROC curves at 1-, 3-, and 5-year OS were
0.849, 0.744, and 0.718, respectively (Figure 2H). The distribution diagrams of risk score
and survival status of the entire cohort are shown in Figure S1A,B. The heatmap for the
expression levels of the 12-RBP-related lncRNAs for each patient is presented in Figure
S1C. Patients in the high-risk group had a shorter OS (Figure S1D). The ROC curves for
risk score demonstrated that the AUC values for 1-, 3-, and 5-year OS were 0.867, 0.785,
and 0.772, respectively (Figure S1E).

Besides the OS, we also analyzed the differences in DSS of high- and low-risk groups
in all three datasets. Overall, the low-risk group indicated a higher survival probability of
patients (Figure S2A–C). Moreover, the AUC values of the 1-, 3-, and 5-year ROC curves
for risk score were also greater than 0.7 in all circumstances (Figure S2D–F). These results
confirmed that the 12-RBP-related lncRNA prognostic signature could predict the survival
outcomes of BC patients.

To further test the prognostic power of the 12-RBP-related lncRNA signature, we
set a signature based on the 10 most differentially expressed genes (DEGs). Most of the
coefficients of the top 10 DEGs based on the multivariable Cox regression analysis were not
significant (Table S2). When we classified BC patients into high- and low-risk groups with
the same method, the result of the overall survival analysis was not significantly different
between the two groups in the validation dataset (Figure S3). Furthermore, the AUC values
were much lower than those of the 12-RBP-related lncRNA signature.

3.4. Relationship between the Prognostic Signature and Clinical Features

To assess the broad applicability for prognosis of the 12-lncRNA signature, we per-
formed the stratification survival analysis to confirm its prognostic ability in various
subgroups of the 842 cases in the entire cohort. The OS of patients in the low-risk group
was higher than that of the high-risk group in the subgroups classified by age, TNM stage,
T stage, N stage, and M stage (Figure 3). As for the PAM50 subtype, we found that patients
in the high-risk groups had a poorer prognosis in these subtypes, including luminal A,
normal-like, and basal-like (Figure S4A–C). However, there was no significant difference
in survival analysis between high- and low-risk groups in the remaining subtypes, like
luminal B and HER2-enriched (Figure S4D,E).
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Figure 3. Kaplan–Meier survival analyses for BC patients of the high- and low-risk groups in the
different clinical subgroups. The OS curve for BC patients of the high- and low-risk groups in the
different subgroups stratified by clinical features based on the entire cohort, including age < 60 years
old (A), age ≥ 60 years old (B), stage I–II (C), stage III–IV (D), T1–2 (E), T3–4 (F), N0 (G), N1–3 (H),
and M0 (I).

Cox regression analyses for OS were conducted to confirm the risk score of the 12-
lncRNA signature can be regarded as an independent indicator of prognosis for BC patients.
In the training dataset, the univariate Cox analysis showed that the risk score of the 12-
lncRNA signature was associated with the prognosis of BC patients (Figure 4A), and
the multivariate Cox analysis implied that the prognostic ability of the risk score was
unrelated to clinical parameters, such as age, TNM stage, T stage, N stage, M stage, and
PAM50 subtype (Figure 4B), indicating the risk score can be taken as an independent
prognostic indicator for BC patients. Similarly, Cox regression analyses showed that the
risk score was still an independent prognostic indicator for BC patients in the validation
dataset and entire cohort (Figure 4C–F).
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(G), validation dataset (H), and entire cohort (I).

The AUC values at the 5-year OS of the risk score were also higher than those of other
clinical parameters, such as age, stages, and subtype in all conditions (Figure 4G–I). These
results suggested that the 12-lncRNA signature for BC patients had better performance in
prognostic accuracy.
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3.5. Construction of Co-Expression Network and Functional Enrichment Analysis for Exploring
Biological Processes Relevant to the Prognostic Signature

To explore the biological process relevant to the 12-lncRNA signature, we constructed
the co-expression network of these lncRNAs and 33 related RBPs according to the correla-
tion analysis result (Figure 5A and Table S3). In line with expectations, the 33 RBP genes
were majorly enriched in some ncRNA-related processes, including ncRNA processing
and the ncRNA metabolic process (Figure 5B). To further test the physical association
between these lncRNAs and RBPs, we performed lncRNA–RBP interactions in silico by
the lncPro [41], which can predict the lncRNA–protein interaction based on the sequence
analysis and generate an interaction score. A score over 50 indicates the possibility of an
interaction between the lncRNA and protein. We found the majority of these lncRNAs
(11 of 12) could potentially be bound by at least one co-expressed RBP (Table S4), further
supporting the connection of biological function between the lncRNA signature and RBPs.

We also investigated which biological processes were associated with the risk score
to reveal the possible mechanisms that affected the prognosis of BC patients. In total,
480 differentially expressed genes were identified between the high- and low-risk groups
in the entire cohort. A GO enrichment analysis revealed that these genes were primarily
enriched in some biological processes related to immunity, such as T cell differentiation,
regulation of lymphocyte activation, and lymphocyte differentiation. The top 20 terms
are shown in Figure 5C. The KEGG pathway enrichment analysis also demonstrated that
these differentially expressed genes were mainly enriched in some pathways associated
with immunity, such as cytokine–cytokine receptor interaction, natural killer cell mediated
cytotoxicity, and the chemokine signaling pathway (Figure S5A).

Moreover, the GSEA analysis was used to further explore the pathways associated
with the prognostic signature. We discovered that some immune-related pathways were
enriched in the low-risk group (Figure S5B), which suggested that the tumor tissues in the
low-risk group may have a higher immune infiltration degree. Whereas several cancer-
related pathways, like cell cycle and citrate cycle (TCA cycle) pathways, were enriched in
the high-risk groups (Figure S5C). Interestingly, we uncovered that ubiquitin-mediated
proteolysis, RNA degradation, and basal transcription factors pathways, which may be
regulated by lncRNAs, were also enriched in the high-risk group (Figure S5C).

3.6. Association between the Prognostic Signature and Immune Checkpoint Genes or TMB

To further elucidate the relationship between the 12-lncRNA signature and immunity,
we compared the expression levels of the 48 immune checkpoint genes [42] between high-
and low-risk groups. Interestingly, we found that except for 11 genes whose expression
changes were not significant, the remaining 37 genes were significantly up-regulated in
the low-risk group (P.adjust < 0.05) (Table S5). Compared with the high-risk group, some
representative immune checkpoint genes, including PD-1, PD-L1, CTLA4, BTLA, LAG3,
TIGIT, and TIM3, were significantly increased in the low-risk group (Figure 6A).

Since TMB is highly related to tumor immunogenicity, we also investigated the rela-
tionship between risk score and TMB. The Kaplan–Meier survival curve implicated that
TMB was associated with the poor prognosis of BC patients (Figure 6B). Furthermore, we
found that TMB was significantly positively correlated with risk score (Figure 6C) and the
TMB values in the high-risk groups were also significantly higher than those in the low-risk
group (Figure 6D), which may explain the worse prognosis of patients of high-risk groups.
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biological processes with the significant enrichment of the differentially expressed genes between the
high- and low-risk groups in the entire cohort.
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plot shows the expression levels of some representative immune checkpoint genes between the high-
and low-risk groups in the entire cohort. (B) The OS curve for BC patients in the high- and low-TMB
groups based on the mutation data. (C) The correlation analysis between TMB and risk score. (D) The
violin plot shows the difference in TMB between the high- and low-risk groups. *** P.adjust < 0.001.

4. Discussion

BC is a family of tumors with variable molecular features and responses to ther-
apy [3,43]. However, the traditional clinicopathological prognostic variables and the few
molecular prognostic markers are insufficient to reflect the biological and clinical hetero-
geneity of BC [43]. Thus, the exploration of potential prognostic biomarkers is urgently
required for the guidance of the individualized treatment and management of BC patients.
As a kind of protein that can function via interaction with target RNAs, multiple RBPs
have been found to be dysregulated and relevant to the prognosis of BC patients [44–46].
Furthermore, the prognostic signature constructed by three RBPs has also been established
in BC [47]. Although the expression of lncRNAs has been widely regulated by RBPs at the
transcription or post-transcription level [11–21,27,28], the prognostic value of lncRNAs asso-
ciated with RBPs in BC remains largely unknown. Consequently, we herein addressed this
by constructing a prognostic signature for BC patients based on the RBP-related lncRNAs.

In this study, we initially identified 377 RBP-related lncRNAs in female BC patients
based on the RNA-seq and proteomic data (Figure 1A). Next, we divided the entire cohort
into a training dataset and a validation dataset. Subsequently, through the univariate,
LASSO, and multivariate Cox regression analyses in the training dataset, we screened
out 12-RBP-related lncRNAs that were related to the prognosis of BC patients. Based on
the expression of these 12 lncRNAs in the training dataset, we constructed a prognostic
signature and calculated the risk score. Furthermore, we evaluated the signature in the
training dataset and verified it in the validation dataset and entire cohort. Our analyses
showed the risk score was associated with a worse prognosis of patients and could be



Genes 2022, 13, 345 14 of 18

taken as an independent prognostic indicator. Moreover, the survival analyses in various
subgroups stratified by clinical features (age, stages, and PAM50 subtype) revealed the
signature had broad applicability. Additionally, the AUC value of the ROC curves for risk
score was greater than that of other clinical features, indicating the 12-lncRNA signature
had higher accuracy.

Among these 12 lncRNAs constructing the prognostic signature, LINC02408,
AL589765.4, AL121790.2, YTHDF3-AS1, LINC00460, and CYTOR functioned as risk factors
for the prognosis of BC patients, while AC068473.4, USP30-AS1, U73166.1, LINC00987,
CD2BP2-DT, and LINC01016 acted as protective factors. The previous studies have un-
covered that LINC00460 is a strong risk marker of BC [48] and can promote breast cancer
progression by sponging miR-489-5p [49]. Similarly, CYTOR (also known as LINC00152)
can increase cell proliferation, migration, and invasion of BC and is related to the bad
outcome of BC patients [50,51]. Furthermore, in accordance with our findings, some other
studies mainly based on the bioinformatics analysis have also reported that LINC02408 [52]
and YTHDF3-AS1 [53] are connected with the poor prognosis of BC patients, but USP30-
AS1 [54], U73166.1 [55], and LINC01016 [30] can be taken as the protective factors of
prognosis. Therefore, as the above evidence supported, the 12 screened RBP-related lncR-
NAs may be tightly connected with the prognosis of BC patients.

Through the Pearson correlation analysis, we found 33 RBP genes were tightly con-
nected with the 12 lncRNAs in the prognostic signature. Notably, some of these RBPs
have been reported to affect the development and prognosis of BC. For example, PES1 can
promote BC growth by differentially regulating the transcriptional activity and protein
stability of ERα and ERβ, as well as the expression of their target genes [56]. Another
RBP, ANXA1, which promotes the progression of BC by facilitating the Treg cell-mediated
anti-tumor immunity, is associated with the poor survival of BC patients and a higher
risk of breast malignancy [57,58]. Additionally, SRPK1 is essential for the invasion and
metastasis of BC [59], and DKC1 is relevant to the unfavorable clinical features and worse
prognosis of BC patients [60]. However, high CAP1 expression may predict a good clinical
outcome in BC [61]. Furthermore, we found 33 RBP genes were closely associated with
the ncRNA processing and metabolic process (Figure 5B), indicating their potential ability
in influencing the abundance of lncRNAs. For instance, as one of these RBPs, SAFB (also
known as SAFB1) has multiple binding sites across the lncRNA MALAT1, and SAFB knock-
down significantly increased the expression level of MALAT1 [62]. Taken together, 33 RBPs
might function in breast cancer progression by regulating the generation or process of the
12 lncRNAs in the signature.

To further understand biological processes and potential mechanisms that lead to
differences in the survival of patients in the high- and low-risk groups, we performed the
GO and KEGG enrichment analyses, as well as the GSEA analysis. The results showed many
immune-related pathways were enriched in the low-risk groups (Figures 5C and S5A,B).
Therefore, we speculated that patients in the low-risk group exhibited an active immune
status. On the contrary, the result of the GSEA analysis showed the cell cycle and citrate
cycle (TCA cycle) pathways were enriched in the high-risk groups (Figure S5C). The above
findings may help to explain a better prognosis of patients in the low-risk group than that of
patients in the high-risk group.

Targeting immune checkpoints can provide new insights for the treatment of cancer,
and immune checkpoint inhibitors, such as atezolizumab and nab-paclitaxel, have been
approved for the first-line therapy of PD-L1–positive metastatic triple-negative BC [63].
Besides, increasing studies also demonstrated the role of some other novel immune check-
point inhibitors in the treatment of BC [64]. Thus, we deeply analyzed the expression of
48 immune checkpoint genes in the high- and low-risk groups and found the expression
levels of 37 immune checkpoint genes were significantly higher in the low-risk group.
These findings indicate patients in the low-risk groups may benefit from immune check-
point therapy. Consistent with one previous study [65], the BC patients with high TMB
had shorter survival (Figure 6B). Furthermore, we also discovered the TMB values were
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positively correlated with the risk scores of BC patients (Figure 6C,D), which testified the
prognostic value of our 12-lncRNA signature, at least in part. Additionally, previously
conducted studies have elucidated cancer cells with higher TMB are more likely to generate
potent immunogenic neoantigens, which leads to T cell priming and improves the chance
of an effective host immune treatment response [66]. Therefore, other immunotherapy
methods other than immune checkpoint treatment may be more suitable for the BC patients
in the high-risk group.

In summary, our study identified and validated a reliable prognostic signature based
on the 12-RBP-related lncRNAs, which possesses independent prognostic significance for
female BC patients. Meanwhile, we also discovered the prognostic signature was related to
the expression of immune checkpoint genes and TMB. Thus, this signature may be utilized
to improve the prognosis of BC patients. Although our study was based on a large sample
of multi-omics data, there were certain limitations. The BC cases used in our research
were only derived from the public databases (retrospective cohort). Therefore, further
validation in the prospective cohort can validate the prognostic accuracy of the signature.
Additionally, the carryout of function and mechanism studies for these 12 lncRNAs can
further support their clinical applications. Nonetheless, the 12-lncRNA signature in our
study can potentially be used as a risk marker to assess the prognosis of BC patients.

5. Conclusions

We established an RBP-related lncRNA signature for evaluating the prognosis of
female BC patients. The prognostic signature, verified for accuracy, wide-scale applicability,
and independence, was associated with tumor immunity. Therefore, this lncRNA signature
could serve as a promising prognostic biomarker, which may provide the theoretical
foundation for personalized prognostic management and individualized therapies of BC
patients.
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