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Abstract

Small molecule modulators of protein–protein interactions (PPIs) are being pursued as novel anticancer, antiviral and
antimicrobial drug candidates. We have utilized a large data set of experimentally validated PPI modulators and developed
machine learning classifiers for prediction of new small molecule modulators of PPI. Our analysis reveals that using random
forest (RF) classifier, general PPI Modulators independent of PPI family can be predicted with ROC-AUC higher than 0.9,
when training and test sets are generated by random split. The performance of the classifier on data sets very different from
those used in training has also been estimated by using different state of the art protocols for removing various types of bias
in division of data into training and test sets. The family-specific PPIM predictors developed in this work for 11 clinically
important PPI families also have prediction accuracies of above 90% in majority of the cases. All these ML-based predictors
have been implemented in a freely available software named SMMPPI for prediction of small molecule modulators for
clinically relevant PPIs like RBD:hACE2, Bromodomain_Histone, BCL2-Like_BAX/BAK, LEDGF_IN, LFA_ICAM, MDM2-Like_P53,
RAS_SOS1, XIAP_Smac, WDR5_MLL1, KEAP1_NRF2 and CD4_gp120. We have identified novel chemical scaffolds as inhibitors
for RBD_hACE PPI involved in host cell entry of SARS-CoV-2. Docking studies for some of the compounds reveal that they can
inhibit RBD_hACE2 interaction by high affinity binding to interaction hotspots on RBD. Some of these new scaffolds have
also been found in SARS-CoV-2 viral growth inhibitors reported recently; however, it is not known if these molecules inhibit
the entry phase.
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INTRODUCTION
Protein–protein interactions (PPI) govern large number of
cellular processes such as growth, cell survival, cell adhesion,
signal transduction, apoptosis, host–pathogen interactions and
immune regulation [1, 2]. Deregulations of PPIs are known to
be associated with a number of different physio-pathologies
such as cancer development, infectious diseases, neurological
disorders, inflammation and oxidative stress disorders. There-
fore, modulation of PPIs by small molecule inhibitors is being
increasingly recognized as a therapeutic intervention strategy
in disease biology and drug discovery research. Choice of PPIs
as targets for novel drugs have several additional advantages
compared with targeting single proteins or enzymes in terms of
better selectivity or lower off target specificity and lower chances
of developing resistance [3, 4].

Despite being attractive drug targets, as per a study published
in 2011, out of more than 645 000 disease associated PPIs in
the human interactome, only about 2% have been targeted for
drug development [5]. PPI interfaces are much less conserved
compared with active sites of enzymes, lack well defined binding
pockets, have larger typically flat interface area (1000–2000 Å2)
and high hydrophobicities. Hence, PPI modulators (PPIMs) pose
the challenge of low oral bioavailability and low cell permeability
associated with large hydrophobic molecules [4]. However, dur-
ing the last decade, several studies on binding energy landscape
of PPIs and emergence of the concept of interaction hot spots
(regions on PPI interface with dominant contribution to binding
affinity in terms of residues whose mutation results in bind-
ing energy change by at least 2 kcal/mol) have opened up the
possibilities of targeting PPI hotspots [6, 7] for modulating PPIs
using low molecular weight compounds. Experimental studies
have revealed that interaction hotspots of PPIs can be success-
fully targeted by certain class of drug such as low molecular
weight chemical compounds [8] for inhibiting several PPI fam-
ilies, thus solving the oral bioavailability and cell permeability
problems.

Since design of successful PPI modulators requires special
considerations such as correct identification of interaction
hotspots for targeting the small molecule, despite use of
advanced techniques such as screening of fragment libraries,
gene editing-based validation and proteolysis targeting chimera
(PROTAC) approach, the success rate for the high throughput
screening for PPIs modulators remains low as compared with
drugs targeting enzymes or single protein receptors [4]. Another
crucial difference between design strategy for PPI modulators
and single protein targets is the absence of a native ligand in
case of PPI interfaces, which becomes a bottleneck for in silico
PPI inhibitor design efforts, as here no structural analogs of
natural ligands (small molecules) can be used as starting points.

Even though structure-based methods, such as docking and
MD simulations, have been extensively used to screen large
libraries of compounds against the target enzyme or PPI part-
ner protein [9], identification of completely novel scaffolds by
docking remains a challenge, because of large flat interaction
interfaces involving PPIs and poor correlation between dock-
ing scores and experimental binding affinities [10]. In recent
years, machine learning (ML) is gaining popularity in drug dis-
covery studies [11–14]. It has been used both in combination
with docking where it is employed to replace the classical scor-
ing functions for evaluation of docked poses [15, 16] and also
as a self-sufficient technique for virtual screening, where ML
models based on both protein and ligand features [17, 18] or
only ligand features have been trained [19] using a known data

set of experimentally identified compound libraries. Interest-
ingly, recent study by Morrone et al. [16] have shown that RF
classifiers trained using only ligand features perform as well
as models trained on both protein and ligand features using
deep learning (DL)-based methods. Sieg et al. [11] have also ana-
lyzed the data sets used for benchmarking of the ML methods
for structure-based virtual screening and have observed that
because of bias in data set construction, ligand features have
much more dominant contribution toward the performance of
those ML predictors compared with protein structure features.
Based on these analysis, Sieg et al. [11] have proposed guide-
lines for avoiding bias while constructing training and test data
sets for developing ML classifiers. All these studies highlight
the importance of proper bias control measures for identify-
ing features which govern the performance of ML classifiers.
Therefore, ML approaches can be used to identify potential PPI
modulators from large compound libraries using ligand fea-
tures and in the next step to compute intensive docking, and
simulation studies can be carried out for lead optimization
[20] and subsequent experimental validation of PPI modula-
tors.

However, in contrast to large number of ML-based studies
for the identification of drugs targeting single protein enzymes
or receptors, there are very few reports on the development
of ML methods for prediction of PPI modulators. Hamon et al.
[21] have analyzed the properties of 40 orthosteric inhibitors
of PPIs and used the DRAGON descriptors with Support Vec-
tor Machine (SVM) approach to enrich the chemical libraries
for PPIs. Jana et al. [22] have built ML models for classifying
modulators for three major classes of PPIs, namely Mdm2/P53,
Bcl2/Bak and c-Myc/Max. However, despite the availability of
increasing amount of experimental data on PPI modulators in
the intervening years, efforts toward the development of ML-
based computational methods for identification and design of
PPI modulators have not kept pace with increase in experimental
data on new scaffolds targeting novel clinically relevant PPI
families.

Therefore, in the present work, we have used a large data set
of experimentally characterized small molecule PPI modulators
to train hierarchical ML classifiers which can first identify poten-
tial PPI inhibitors from large compound libraries, and then in the
next stage, class-specific predictors can predict PPI modulators
for 11 different families of PPIs. The best performing ML clas-
sifiers developed in this study for prediction of Small Molecule
Modulators of PPI have been implemented in a software package,
SMMPPI. Finally SMMPPI software has been used to search large
antiviral compound libraries for molecules which can inhibit the
interactions between RBD of SARS-CoV-2 and hACE2, thus can be
of therapeutic relevance for inhibiting cell entry of SARS-CoV-2.

MATERIAL AND METHODS
Data sets used for development of the ML predictor and
its benchmarking

Data sets for building ML classifiers for binary prediction
of PPI inhibitors

The data on experimentally characterized small molecule mod-
ulators of PPIs were retrieved from PPI modulator databases
such as iPP-DB [23] and 2P2Idb v2 [24], Hanson et al. study
[25]. This provided a total set of 2578 PPIMs targeting 27 dif-
ferent PPI families, from which redundancy was removed (for
details see Supplementary Methods, see Supplementary Data
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available online at http://bib.oxfordjournals.org/) by clustering
the chemical structures of the molecules using Butina cluster-
ing module of RDKIT based on chemical structure similarity
as measured by Tanimoto score with RDK fingerprints and a
clustering radius of 0.9 [26]. The resulting 1324 non-redundant
molecules were divided into training (75%) and independent
testset (25%). For the negative set, decoys were picked from
ChemBL [27] compounds targeting Single proteins (for details
see Supplementary Methods, see Supplementary Data available
online at http://bib.oxfordjournals.org/).

Data sets for building ML classifiers for prediction
of class-specific PPI inhibitors

To build PPI class-specific classifiers, the original data set of 2578
PPIMs was clustered with 0.8 as the Tanimato Score cutoff (for
details, see Supplementary Methods, see Supplementary Data
available online at http://bib.oxfordjournals.org/) and the non-
redundant compounds of each class become the positive set
for the respective PPI family. For a given family, all the PPIMs
belonging to other remaining classes form the negative set pool
from which an equal number of compounds are randomly picked
as negative set.

Feature vector for encoding chemical structures
of PPI modulators

The two types of feature vectors, namely physico-chemical
property descriptors and features representing chemical
structure fingerprints (ECFP4) of the small molecules, are
calculated with Openbabel [28] and RDKIT [26] using SMILES as
input. Supplementary Methods, see Supplementary Data avail-
able online at http://bib.oxfordjournals.org/, section provides
additional details.

Development of ML models

All ML models development and benchmarking was done using
Weka Toolbox [29]. The model’s performance parameters were
calculated and plotted using ‘ROCR’ package [30] and the tSNE
plot is prepared using ‘tsne’ package [31] in R.

RESULTS AND DISCUSSION
Figure 1 shows a schematic depiction of the workflow of the
current study. As described in Materials and methods section,
chemical structures for a non-redundant data set of 1324 PPI
modulators were compiled from publicly available PPI modu-
lator databases. These 1324 compounds have been shown to
modulate PPIs for 27 different PPI families and the number of
PPI modulators varied from as high as 361 for Bromodomain
and Histone PPI family to as low as 1 for E2 and E1 PPI family
(Figure 2). In order to develop a general purpose ML classifier
which can distinguish chemical structures of the modulators
of various types of PPIs from other types of molecules which
target single proteins, all these 1324 known PPI modulators were
selected as positive data and negative data sets of different
sizes, which were obtained from ChEMBL. While 75% of the
positive and negative data were used for training/validation of
the ML classifiers, remaining 25% were kept aside for using as
independent test set. Effect of different type of feature vectors
used to encode chemical structures and types of ML algorithms
on the performance of PPIM predictor was analyzed.

Effect of feature vectors on performance
of ML classifiers

In order to identify the types of feature vectors which can
best represent chemical structures for ML-based prediction of
PPI modulators, RF classifiers were developed using physico-
chemical descriptor-based feature vectors as well as Morgan
fingerprint-based feature vectors. RF classifier was chosen for
this task as RF classifier has been known to have superior
performance in several chemoinformatics applications. The
non-redundant data set of 993 known PPI modulators was
used as positive data, while the equal number of single protein
targeting inhibitors obtained from ChEMBL database was used
as negative data set to train and validate the RF classifier.
Supplementary Figure S1, see Supplementary Data available
online at http://bib.oxfordjournals.org/, shows Leave One-Out
(LOO), 2-fold and 10-fold cross validation (CV) results for RF best
prediction of PPI modulators using physicochemical property
descriptors (Supplementary Table S1, see Supplementary Data
available online at http://bib.oxfordjournals.org/) as feature
vectors, while corresponding results using Morgan circular
fingerprint feature vectors are shown in Figure 3A. Morgan
Fingerprint with a radius size of 2 (radius size of 2 was observed
to be performing best after trying other sizes) was used. As can
be seen from Supplementary Figure S1, see Supplementary Data
available online at http://bib.oxfordjournals.org/, and Figure 3A,
the ROC-AUC values for physicochemical property descriptors
as feature vectors vary from 0.77 for 2-fold CV to 0.81 for LOO,
while ROC-AUC values significantly increases to the range
of 0.87–0.93 when Morgan fingerprint feature vector is used.
Supplementary Table S2, see Supplementary Data available
online at http://bib.oxfordjournals.org/, lists PR-AUC and various
other statistical parameters such as SN, SP, FPR, MCC and F1
score at optimum score cutoff for these two different types of
fingerprints. As can be seen while Morgan fingerprint feature
vector-based predictor shows a sensitivity of 0.77 at FPR of 0.18
for 2-fold CV, the classifier using descriptor-based feature vector
shows a sensitivity and an FPR of 0.72 and 0.30, respectively, for
2-fold CV. Other parameters such as MCC, F1 score and PREC at
optimum cutoff as well as PR-AUC values also show superior
performance of Morgan fingerprint feature vector-based RF
classifier. These results indicate that ECFP fingerprints can
better capture the patterns in chemical structures, which can
distinguish potential PPI modulators from other compounds
targeting single proteins. Hence, Morgan circular fingerprints
were used in all subsequent studies.

Comparison of the performance of different
ML classifiers

It is known that the performance of different ML algorithms
often varies depending on the data set which has been used
to train and validate the model. In order to identify the best
performing ML algorithm on the PPI modulator data set,
the performance of the RF classifier for the identification
of PPI modulator was compared with three other widely
used ML algorithms, namely NaiveBayes, Sequential Minimal
Optimization (SMO) and SMO with Radial Basis Function Kernel
(SMO-RBF). NaïveBayes is a relatively simplistic algorithm based
on Bayes theorem. SMO is optimized training of SVM based on
maximum distance calculation between input points. Radial
Basis Kernel with SMO provides an additional strength to model
by better accounting non-linear dependence of features [32].
All calculations for evaluation of performance of ML classifier

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbab111#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbab111#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbab111#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbab111#supplementary-data
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Figure 1. Flowchart depicting hierarchical design of generalized and family specific predictors for identification of modulators of PPI.

were carried out based on training using equal positive and
negative data set, and Morgan circular fingerprints were used.
In addition to the above-mentioned ML classifiers, performance
of a DL-based method for prediction of PPI modulator was
also investigated, because in recent years, several studies
have reported improved performance of DL-based methods
for chemoinformatics problems dealing with large sized and
high-dimensional data [33–35]. Figure 3B shows 10-fold CV
ROC curve for RF and NaiveBayes predictors, while for SMO
and SMO-RBF, only TPR and FPR values at optimum cutoff are
shown. It also shows ROC curves for LOO and n-fold CV for
the DL-based Dl4jMlp classifier of Weka toolbox with default
settings. Table 1 shows ROC-AUC, PR-AUC, SN, SP, FPR, MCC
and F1 score values for all five prediction methods. As can
be seen, out of the 4 conventional ML algorithms, RF, which
is a tree-based algorithm, is found to have best performance.
In 10-fold CV, RF classifier has ROC-AUC of 0.93 corresponding
to a TPR of 84% at FPR of 88%, while NaiveBayes classifier has
ROC-AUC of 0.83 corresponding to a TPR of 70% at FPR of 19%
(Figure 3B). The SMO-RBF classifier has a TPR of 77% at FPR of
16% in 10-fold CV test, while SMO has TPR of 76% at FPR of 28%.
Thus, RF and SMO-RBF show significantly better performance
compared with NaiveBayes and SMO classifiers in terms FPR at
optimum cutoff. The same trend is reflected in other statistical
measures. The ROC-AUC values for LOO, 2-fold and 10-fold
CV for the Dl4jMlp classifier are in the range 0.78–0.80 and

corresponding TPR and FPR at optimum cutoff are 77 and
28% respectively. Thus, for the PPI modulator data set, DL-
based classifier shows lower prediction accuracy compared
with RF and SMO-RBF methods. This counter intuitive obser-
vation may be because of the PPI modulator data set being
comparatively smaller in size. It is also possible that the
performance of DL classifier can be improved by varying the
parameters such as the number of epochs, layers, iteration
number, etc., which we have not investigated in the current
study as default setting of Weka toolbox was used. In order
to demonstrate that the observed differences in performances
of ML classifiers are statistically significant, we have compared
the ROC curves of the respective algorithms and computed
the D-score for the difference in AUCs and associated P-value
using Bootstrap test which is a standard statistical method to
compare any two ROC curves. D-statistic and P-values for AUC
differences between RF versus Naïve-Bayes and RF versus DL
have been provided in Supplementary Table S3, see Supplemen-
tary Data available online at http://bib.oxfordjournals.org/. As
can be seen, the P-values are of the order of 10−16 indicating
statistically significant differences in AUCs. Thus, our analysis
of the role of feature vectors and ML classifiers revealed
that RF classifier with Morgan circular fingerprints as feature
vectors shows the best performance for ML-based prediction
of PPI modulators using chemical structure information
alone.

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbab111#supplementary-data


SMMPPI: an ML-based approach 5

Figure 2. Family wise distribution of non-redundant PPI modulators in the compiled non-redundant data set. Representative three dimensional structures for eight

important families with available 3D structures in PDB are shown with insets showing the interface region.

Table 1. Performance of different types of ML algorithms and DL for prediction of PPI modulators

ML Algorithm Positives Negatives CV Sens Spec FPR Prec F1-Score MCC ROC AUC PRC AUC

RF 993 993 2-Fold 0.77 0.82 0.18 0.81 0.79 0.60 0.87 0.87
993 993 10-Fold 0.84 0.88 0.12 0.88 0.86 0.72 0.93 0.92
993 993 LOO 0.84 0.88 0.12 0.88 0.86 0.72 0.93 0.92

NaiveBayes 993 993 2-Fold 0.69 0.77 0.23 0.73 0.73 0.46 0.81 0.80
993 993 10-Fold 0.70 0.81 0.19 0.75 0.75 0.50 0.83 0.82
993 993 LOO 0.69 0.80 0.20 0.75 0.75 0.50 0.83 0.82

SMO 993 993 2-Fold 0.73 0.68 0.32 0.70 0.71 0.42 0.71 0.65
993 993 10-Fold 0.76 0.72 0.28 0.74 0.74 0.47 0.74 0.74
993 993 LOO 0.76 0.72 0.28 0.74 0.74 0.49 0.74 0.68

SMO-RBF 993 993 2-Fold 0.71 0.83 0.17 0.77 0.77 0.54 0.77 0.71
993 993 10-Fold 0.77 0.84 0.16 0.83 0.81 0.62 0.81 0.75
993 993 LOO 0.78 0.85 0.15 0.81 0.81 0.62 0.81 0.75

Deeplearning 993 993 2-Fold 0.75 0.68 0.32 0.71 0.72 0.43 0.78 0.76
993 993 10-Fold 0.77 0.72 0.28 0.74 0.74 0.48 0.81 0.79
993 993 LOO 0.75 0.72 0.28 0.73 0.73 0.47 0.80 0.79

Benchmarking on external test set

For further benchmarking of our method, the best perform-
ing RF-based predictor of PPI modulators was tested on the
external positive and negative data sets, which had not been
used in the training of the RF classifier. Figure 3C and D shows

ROC and Precision-Recall curves for RF-based prediction of PPI
modulators on balanced as well as imbalanced data sets. The
performance of the model on data sets having negative data 10
times the positive data was evaluated, because typical chem-
ical libraries in which this classifier will be used to search
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Figure 3. Training and validation of different ML classifiers developed using ECFP fingerprints as feature vectors (A) ROC Plot for n-fold CV of the RF Classifier built with

Fingerprints (FP) of chemical structures as feature vectors. (B) ROC curves depicting comparison of the performance of different types of ML algorithms for prediction

of PPI modulators-RF and Naïve Bayes, DL. For SMO and SMO-RBF modules of weka, the softwares gives the binary output for two classes, hence no ROC curve could be

plotted due lack of continuous scores. Performance of RF Classifier built with Morgan Circular Fingerprints on external test data sets. (C) ROC curve (D) Precision-Recall

(PR) curve.

for PPI modulators are expected to contain negative data sev-
eral folds higher than the positive data. As can be seen from
Figure 3C and D and Supplementary Table S4, see Supplemen-
tary Data available online at http://bib.oxfordjournals.org/, for
the balanced data sets, the ROC-AUC and PR-AUC values are
0.94 and the TPR and FPR values at optimum cutoff are 84
and 12%, respectively, indicating high prediction accuracy on
balanced data sets. On the imbalanced data set with 1:10 ratio
of positive and negative data, the ROC-AUC remains almost
the same (0.95), but the PR-AUC increases to 0.98 because of
increase of precision at high recall values (Figure 3D). This is due
to the decrease of FPR to 9% at the same TPR of 84% (Supple-
mentary Table S4, see Supplementary Data available online at
http://bib.oxfordjournals.org/). These results indicate that even
on external test data sets, the RF classifier for prediction of PPI
modulators shows high prediction accuracy both on balanced
as well as imbalanced data sets. Comparison of the pair-wise

distances between all the compounds in our training, validation
and test data sets (Supplementary Figure S2, see Supplementary
Data available online at http://bib.oxfordjournals.org/) indicate
that vast majority of the pairs in our data set have Tanimoto
score below 0.7, and for a given Tanimoto score, the num-
ber of positive–positive, negative–negative and positive–negative
pairs are almost equal. Thus, distinction between positive and
negative points in our data set is not a trivial task.

Assessing bias in model training/testing
and evaluation of alternate splitting strategy

Several recent studies on evaluation of performances of chemi-
cal structure fingerprint-based ML classifiers have revealed that
high prediction accuracy of such classifiers can potentially arise
from over-fitting and memorization rather than true learning
and ability for generalization across chemical space to deal with

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbab111#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbab111#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbab111#supplementary-data
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unseen data. As our RF classifier for prediction of PPIMs showed
very good accuracy, we wanted to analyze the effect of bias in
splitting of data into training and test sets and redundancy
in training and test data sets arising from the presence of
clusters of compounds with similar scaffolds, on ROC-AUC
values. Wallach et al. [36] have recently analyzed all ML-based
bioactivity predictions carried out using ECFP4 fingerprints
and have defined asymmetric validation embedding (AVE) as
a measure of bias and have also proposed a debiasing algorithm
which can split the data into training and test sets to eliminate
AVE bias. Martin et al. [37] have also proposed recently a ‘realistic
split’ strategy based on ligand clustering where the training
set is built with compounds starting from largest cluster and
proceeding successively to smaller cluster until 75% of the
compounds are included in training set. The remaining small
clusters including singletons constitute the realistic held-out
test set. Thus, held-out test sets were constructed using random
split as before and debiasing approaches such as AVE split as
well as realistic split. RF classifiers were trained and tested
using these validation and test sets. ROC-AUC values for the on
validation set as well as test sets with three different splitting
strategies were compared (Table 2A and B). As can be seen, the
RF classifier which has ROC-AUC values above 0.9 both on
validation as well as test set has AVE bias value of 0.28, thus
indicating the presence of bias in training and test set split. After
debiasing using AVE split approach, while validation set ROC-
AUC is 0.94, the ROC-AUC on held-out test set reduces to 0.83.
Similarly for realistic split, debiasing validation and test set ROC-
AUCs are 0.96 and 0.71, respectively. Even though the test set AUC
values for random split are higher because of the presence of
bias, our RF classifier on debiased test sets have AUCs above 0.7,
thus indicating that our RF classifier can predict with reasonable
accuracy even on difficult cases involving data sets very different
from those used in training and validation. In order to analyze
the effect of data redundancy on prediction results, different
non-redundant data sets were generated by clustering the
compounds (2578 positives and 2578 negatives) at Tanimoto
score cutoffs ranging from 0.9 to 0.6, and for each data set,
performance of RF classifiers were analyzed for three different
splitting strategies and training/test set splits with 1:1 and 3:1
ratios. It is interesting to note that upon removal of redundancy
by lowering the Tanimoto score cut off for clustering, the
AVE bias with random split also reduces significantly and
blind test ROC-AUC for random split also approach closer to
AUC values obtained from AVE or realistic splitting approach
(Table 2A and B). Supplementary Figure S3, see Supplementary
Data available online at http://bib.oxfordjournals.org/, shows
ROC curves for the RF classifiers for prediction of general PPIMs
on non-redundant data set clustered with Tanimoto score of
0.7 and different types of splitting strategies to remove bias.
These results suggest that the removal of redundancy could
also be a simplistic debiasing strategy. Both AVE split and
realistic split debiasing methods attempt to maximize the
distance between training and test sets in chemical space.
However, certain types of biological data such as general PPIMs
may contain groups/scaffolds which bind and interact with a
specific PPI family and positive data set in such cases might be
clustered. Since our general PPIM data set contains a number
of PPI families with certain families having fewer number of
positive data, the entire chemical space representing some
particular PPIM families might be completely excluded from
the training set in AVE or realistic splitting strategy, which may
result in skewed performance like the 3:1 realistic-splitting
with clustering at 0.9 Tanimato score giving blind test AUC of

0.58, but it increases to 0.73 upon clustering at 0.7 Tanimoto
cutoff (Table 2B). This could be observed more clearly when
we repeated this exercise of bias removal for a particular
family, namely Bromodomain_Histone PPI. Since distant clusters
corresponding to multiple PPI targets will be absent in this case,
realistic spitting with clustering at 0.9 Tanimoto score results in
a test set AUC of 0.77 compared with 0.58 in case of general
PPIM data set (Supplementary Table S5, see Supplementary
Data available online at http://bib.oxfordjournals.org/). It may
be noted that both AVE and random split give higher AUC
values for Bromodomain_Histone PPI data set compared with
general PPI. Thus, it is necessary to take the biological context
of the problem into consideration while training and testing ML
classifiers.

PPI family-specific classifiers

The generalized ML classifiers for identification of PPI mod-
ulators discussed above can identify potential PPI modulators
from large libraries of compounds. However, for experimental
validation of predictions from such generalized predictors, it
will be necessary to predict which PPI complex the predicted
modulator is likely to target. Therefore, it is necessary to develop
PPI family-specific ML classifiers which can be used in a hierar-
chical way along with generalized predictor for PPI modulators
discussed earlier. Even though information about the PPI family
was available for all 1324 PPI modulators in our data set, the
number of known modulators for many of the PPI families
was not adequate for developing class-specific predictors of PPI
modulators. PPI family-specific predictors were developed for
7 PPI families for which at least 40 compounds were available
in our non-redundant data set of PPI modulators. In addition,
classifiers were also developed for 4 other PPI families for which
a number of compounds available were in the range of 18–26.
These families are Bromodomain_Histone, BCL2-Like_BAX/BAK,
LEDGF_IN, LFA_ICAM, MDM2-Like_P53, RAS_SOS1, XIAP_Smac,
RBD_hACE2, WDR5_MLL1, KEAP1_NRF2 and CD4_gp120. As dis-
cussed in Materials and methods section, for PPI families with
sufficient amount of data (more than 40 non-redundant com-
pounds), total data set for each PPI family was divided into train-
ing/validation set and test set in 3:1 ratio. For any given PPI fam-
ily, the negative data set was chosen from all other PPI families.
The Morgan circular fingerprints were used as feature vectors
and RF classifiers were developed by LOO and n-fold CV on the
training and validation data sets for each of the 11 PPI families.
Figure 4A and B and Supplementary Figure S4, see Supplemen-
tary Data available online at http://bib.oxfordjournals.org/, show
the ROC curves for these 11 family-specific PPI predictors, while
ROC-AUC, PR-AUC and all other statistical parameters are listed
in Table 3. As can be seen, in CV as well as independent external
test data sets, all the 11 classifiers have ROC-AUC and PR-
AUC values above 0.90 and at optimum cutoff predictions have
sensitivity above 85% with specificity values above 80% except
for KEAP_NRF classifier where the optimum sensitivity is 78%
and specificity is 89%. The lower performance for this class is pri-
marily due to the very limited number of compounds available
for this training this class. These results indicate that our RF clas-
sifiers for prediction of class-specific PPI modulators have very
high prediction accuracy. In order to increase the chemical space
of the negative set, RF classifiers were also trained with unequal
sized positive and negative data sets. For each class, the negative
data size was restricted to 5 times positive data because of the
availability of limited amount of PPI modulator data for differ-
ent families. It is interesting to note that, with training using

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbab111#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbab111#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbab111#supplementary-data
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Table 2. Dependence of ROC-AUC of RF classifier for general PPIM prediction on various types of unbiased splitting of the data into training and
test set (A) Training:Test = 1:1 (B) Training:Test = 3:1

A

Tanimoto
cutoff for
clustering

AUC-CV
(random
splitting)

AUC-blind
testing
(random split)

AVE bias
(random
split)

AUC-CV
(AVE split)

AUC blind
testing (AVE
split)

AUC-CV
realistic-split

AUC blind
testing
realistic-split

0.90 0.91 0.90 0.28 0.94 0.83 0.96 0.71
0.80 0.85 0.86 0.19 0.91 0.71 0.91 0.78
0.70 0.78 0.80 0.12 0.88 0.66 0.82 0.77
0.60 0.74 0.76 0.07 0.81 0.68 0.78 0.75

B

Tanimoto
cutoff for
clustering

AUC-CV
(random
splitting)

AUC-blind
testing
(random split)

AVE bias
(random
split)

AUC-CV
(AVE split)

AUC blind
testing (AVE
split)

AUC-CV
realistic-split

AUC blind
testing
realistic-split

0.90 0.92 0.92 0.32 0.94 0.71 0.97 0.56
0.80 0.88 0.87 0.22 0.93 0.68 0.92 0.67
0.70 0.82 0.84 0.13 0.86 0.69 0.86 0.73
0.60 0.77 0.77 0.09 0.82 0.71 0.84 0.64

unbalanced data sets also, all the classifiers have very good pre-
diction accuracy (Supplementary Figures S5–S8, see Supplemen-
tary Data available online at http://bib.oxfordjournals.org/, and
Supplementary Table S6). Since relatively less amount of exper-
imental data was available for training of some of the family-
specific classifiers, learning curves were analyzed for all the
family-specific classifiers and also the general PPIM classifier
to validate data set sizes (Supplementary Figure S9, see Supple-
mentary Data available online at http://bib.oxfordjournals.org/).
As can be seen, in case of General PPIM predictor as well as
majority of the family-specific classifiers except RAS_SOS1, per-
centage of true positive predictions increases with increase of
training data set only upto 40% of the training data, after that
there is saturation indicating convergence of learning. However,
in case of PPI classes for which less data were available for
training, the learning curve has not converged and percentage of
correct predictions increase from 60 to 80% as amount of training
data increases from 40 to 100%. In case of CD4_gp120, learning
curve has converged despite having less data for training. The
RF-based ML classifiers developed in the current study can be
used hierarchically to first identify potential PPI modulators and
then use PPI family-specific classifiers to predict which specific
PPI family a given compound is likely to modulate.

Even though for class-specific prediction of PPI modulators,
the number of PPI families is limited, and most of the PPI fami-
lies covered have clinical implications, while many are targets
for designing cancer therapeutics. Bromodomain and Histone
interactions involve binding of Bromo domains to acetylated
histones, and thereby, bromodomains mediate the binding of
several protein complexes such as histone acetytransferases,
chromatin remodeling complexes, specific and general tran-
scription factors, etc., to chromatin and have role in gene activa-
tion and regulation [38]. Because of their implications in cancer
and inflammation, several groups have been working to design
drugs targeting this PPI [39]. Likewise, P53 is a tumor suppres-
sor gene which is inhibited after its binding to MDM2. Hence,
inhibitors of p53 and MDM2 interaction help in restoring the p53
function. Some of the compounds such as CGM097 (Novartis) and
MK-8242 (SCH 900242) (Merck) have also entered clinical trials
[40]. Bcl and Bax interaction is another widely studied target for
the development of cancer therapeutics. This interaction decides

the fate of cell by regulating the signals for programmed cell
death [41]. In addition to the PPIs controlling tumor suppres-
sive genes/proteins, interaction between intracellular adhesion
molecule-1 (ICAM-1) and leukocyte function-associated antigen-
1 (LFA-1) controls autoimmune diseases because of its role in
T-Cell activation and their migration to target tissues. In view
of the potential implications in organ transplantation and other
autoimmune diseases, some molecules targeting ICAM-1 and
LFA-1 interaction are in clinical trials [42]. XIAP_Smac also has
role in apoptosis [43], while LEDGF and IN interaction is the
target for designing antivirals, specifically anti-HIV compounds
as the interaction of human LEDGF with HIV Integrase has role
in integration of the viral genome into the host chromatin.
Molecules, such as raltegravir, inhibit LEDGF_IN PPI complex and
thus help in blocking replication of the virus [44]. In view of
the wide application of PPI inhibitors, the family-specific PPI
modulator predictors developed in the current study can serve
as a valuable resource for quickly screening large compound
libraries against these PPI targets to find novel inhibitors in drug
discovery research.

Comparison of performance with other similar
resources

As mentioned in Introduction section, we developed SMMPPI
because no other ML tool for prediction of PPI modulators has
been developed incorporating recent experimental data. Since
our model has been trained on much larger data set compared
with older resources such as PPI-Hunter and PPIMPred, it will
not be fair to use the same test data for benchmarking the
performance of all three methods. Therefore, we have only com-
pared performance measures reported by those tools to the
corresponding measures for SMMPPI on latest test data set. PPI-
Hunter, an SVM-based tool trained on a small data set of 40
non-redundant PPI modulators carries out a binary prediction
on whether a compound is PPI modulator or not using a feature
vector of 11 physiochemical properties [21]. It was reported that
PPI-Hunter had a sensitivity of 63% and specificity of 100% in n-
fold CV on the small training positive data set of only 40 PPIM
compounds with a negative set of 1018 compounds from NCI-
Diversity Set II. In contrast to that, because of training using

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbab111#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbab111#supplementary-data
http://bib.oxfordjournals.org/
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbab111#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbab111#supplementary-data
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Figure 4. (A) ROC curves of RF classifiers for prediction of family specific PPI modulators for Bromodomain_Histone, BCL2-Like_BAX/BAK, LEDGF_IN and LFA_ICAM PPI

families. (B) ROC curves of RF classifiers for prediction of family specific PPI modulators for MDM2-like_P53, RAS_SOS1, XIAP_Smac and RBD_hACE2 PPI families.

a much larger data set and use of Morgan circular fingerprints
as feature vectors, our general PPI modulator predictor shows a
sensitivity and specificity of 84 and 91%, respectively, on large
independent test data sets with as high as 3641 compounds
(Figure 3C and Supplementary Table S4, see Supplementary Data
available online at http://bib.oxfordjournals.org/). PPIMPred is
the only other ML-based predictor for class-specific prediction of
PPI modulators [22]. It can predict small molecule modulators for
MDM2_p53, BCL2_Bak and c-Myc_Max using an SVM model and
10 physiochemical properties as feature vector. Jana et al. have
reported that the MDM2_p53 predictor of PPIMPred, which was
developed using a small data set of 40 non-redundant (clustered
with Tanimoto score cutoff of 0.8, same as used in the current
study) PPI modulators, had ROC-AUC of 0.62 corresponding to a
sensitivity and specificity of 40 and 80%. As discussed earlier,
our RF predictor for modulators for MDM2_p53 has ROC-AUC of
0.97 corresponding to a sensitivity and specificity of 88 and 93%,

respectively. For Bcl2_Bak, PPIMPred classifier trained with 100
Bcl2_Bak modulators had an ROC-AUC of 0.80 with a sensitivity
of less than 80% at specificity of 80%, while our Bcl2_Bak pre-
dictor had ROC-AUC of 0.96 corresponding to a sensitivity and
specificity of 83 and 92%. Thus, for MDM2_p53 and Bcl2_Bak,
the class-specific predictors developed in the current study have
superior performance. We have not developed a class-specific
predictor for c-Myc_Max because of paucity of data for this PPI
family. The other major difference between our class-specific
PPI modulator predictors and those from PPIMPred is the choice
of negative data set, which covers PPI modulators from 26 PPI
families unlike the negative set of PPIMPred which comprised of
only three PPI families apart from inhibitors of single proteins
from ChEMBL. Thus, because of training using latest large data
sets of PPI modulators, the general and class-specific predictors
developed in the current study outperform all other available
tools for prediction of PPI modulators.

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbab111#supplementary-data
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Figure 4. Continued.

Search for PPI modulators in commercial compound
libraries

One of the applications of the ML-based PPI modulator predic-
tors developed in the current work would be to quickly screen
large commercially available compound libraries like those from
ChemDiv Inc., etc., to select smaller set targeting a specific PPI.
The first library selected was the ChemDiv PPI CDI Library 2.0
[45] consisting of a total of 2 22 447 compounds. Search of this
library using our general PPI modulator predictor revealed that
33 436 compounds belonging to diverse chemical scaffolds can
be ranked as high scoring PPI modulators. Interestingly, despite
discarding more than 80% of the compounds off the list, the
compounds selected by our predictor retain most of chemical
diversity represented in the original library. tSNE plot (Figure 5)
depicting coverage of chemical space shows that the selected
compounds (green) set covering the almost all the chemical
space occupied by the original library with remaining com-
pounds shown in pink color. Similarly, our general PPIM predictor
could identify 15 743 compounds as potential antiviral com-
pounds out of 87 043 compounds in Chemdiv Antiviral library.

We also filtered the specific PPI libraries from ChemDiv with
our class-specific PPI predictors. Search in the ChemDiv MDM2-
p53 interaction inhibitors library containing 21 903 compounds
with our MDM2-p53 PPI predictor, a set of 4697 compounds (21%)
were predicted as potential inhibitors of the MDM2_p53 interac-
tion, while 17 206 compounds were rejected by the ML classifier.
Similarly for ChemDiv library of small molecule modulators and
inhibitors of Bromodomains, a set of 2062 compounds out of
5816 were selected by our ML-based approach for predicting
modulators of Bromodomain_Histone PPI. In view of the var-
ious known clinical applications of these two PPIs inhibitors,
the enriched sets identified by our ML methods can serve as
very good starting points for experimental screening studies to
identify drugs targeting these PPIs.

Identification of novel inhibitors for RBD:hACE2
interaction

While this work on the development of ML classifiers for pre-
diction of PPI modulators was in progress, the emergence of
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Table 3. Performance of RF model for family specific prediction of PPI modulators

PPI family model Testing Positives Negatives Sens Spec FPR Prec F1-Score MCC ROC AUC PRC AUC

Bromodomain_Histone 10-Fold CV 211 211 0.91 0.87 0.13 0.91 0.89 0.77 0.95 0.94
Testset 70 70 0.91 0.81 0.19 0.91 0.87 0.73 0.94 0.93

BCL2-Like_BAX/BAK 10-Fold CV 60 60 0.83 0.92 0.08 0.83 0.87 0.75 0.96 0.97
Testset 20 20 0.8 0.9 0.1 0.8 0.84 0.7 0.92 0.94

LEDGF_IN 10-Fold CV 58 58 0.93 0.84 0.16 0.93 0.89 0.78 0.96 0.97
Testset 20 20 0.85 0.85 0.15 0.85 0.85 0.7 0.97 0.97

LFA_ICAM 10-Fold CV 35 35 0.94 0.94 0.06 0.94 0.94 0.89 0.99 0.99
Testset 12 12 0.92 1 0 0.92 0.96 0.92 0.99 0.99

MDM2-Like_P53 10-Fold CV 73 73 0.88 0.93 0.07 0.88 0.9 0.81 0.97 0.97
Testset 24 24 0.88 0.92 0.08 0.88 0.89 0.79 0.93 0.96

RAS_SOS1 10-Fold CV 30 30 0.83 0.87 0.13 0.83 0.85 0.7 0.93 0.95
Testset 10 10 0.6 0.9 0.1 0.6 0.71 0.52 0.82 0.83

XIAP_Smac 10-Fold CV 58 58 0.98 0.95 0.05 0.98 0.97 0.93 0.98 0.97
Testset 19 19 0.95 0.95 0.05 0.95 0.95 0.89 0.97 0.96

RBD_hACE2 10-Fold CV 21 21 0.86 0.95 0.05 0.86 0.9 0.81 0.93 0.96
WDR5_MLL1 10-Fold CV 18 18 0.83 0.89 0.11 0.83 0.86 0.72 0.94 0.95
KEAP1_NRF2 10-Fold CV 18 18 0.78 0.89 0.11 0.78 0.82 0.67 0.93 0.94
CD4_gp120 10-Fold CV 26 26 0.96 0.96 0.04 0.96 0.96 0.92 0.99 0.99

Figure 5. tSNE plot depicting structural diversity of PPI modulators predicted

by RF classifier from ChemDiv PPI Library. Clustering has been carried out

using Morgan Circular Fingerprints of the compounds. The positive training

compounds are shown in green while all ChemDiv Library compounds are shown

in pink with selected compounds by classifier shown in green.

COVID19 and elucidation of the structure of SARS-CoV-2 spike
protein in complex with hACE2 revealed that RBD:hACE2 PPI
could be an important target for the development of novel
antiviral molecules to block cell entry of this virus. Even though
a large number of in silico studies have been carried out using
docking and atomistic simulations on RBD:hACE2 complex, we
have attempted to develop a ligand-based PPI inhibitor predictor
for this newly identified PPI family by training an ML classi-
fier using the available experimental data on RBD:hACE2 small
molecule inhibitors. It is encouraging to note that our RBD_

hACE2 classifier can predict the inhibitors of this interaction
with a sensitivity of 86% and a specificity of 95% (Figure 4B).
We also tested our RBD_hAC2 classifier on an independent data
set of 91 inhibitors of SARS-CoV2 viral growth experimentally
identified by Huang et al. [46]. Even though targets of these 91
inhibitors are unknown, some of these compounds are very
likely to be inhibiting the virus growth by targeting the viral
RBD and human ACE2 interaction. Interestingly, 20 out of these
91 compounds were predicted as RBD:hACE2 inhibitors by our
RBD_hACE2 classifier. This provided further evidence on predic-
tion accuracy of our ML classifier for an extremely important
PPI target. As our ML-based approach is much faster and more
easy to use as compared with docking, the classifier can serve
as good filtering step to reduce the size of the compound library
for or experimental validation or compute intensive structure-
based docking and simulation studies as a second layer of in silico
screening.

We have here applied our RBD_hACE2 classifier to identify
novel inhibitors for this interaction. We screened the SARS-CoV2
ChemDiv compound Library consisting of 21 145 compounds
with our general PPI classifier which eliminated large number
of compounds from this set and selects 4033 compounds
as enriched set for potential PPI modulators. Then, these
4033 compounds are screened with our RBD_hACE2 classifier
to predict new scaffold which can inhibit this interaction.
Supplementary Figure S10, see Supplementary Data available
online at http://bib.oxfordjournals.org/, shows screenshots
depicting the usage of SMMPPI for identification of novel
inhibitors of RBD:hACE2 interactions. This screening resulted in
a set of 674 compounds (SMMPPI_Suppl_Data Sheet) which are
most likely to be targeting RBD:hACE2 complex. Our analysis
revealed that these compounds belong to 319 structurally
diverse clusters (with 0.6 as Tanimato similarity cutoff).
Figure 6 shows representative compounds from some of the
scaffolds/clusters. Out of these 319 clusters, 5 clusters contain
compounds similar to already known inhibitors of RBD:hACE2
or SARS-CoV2 viral growth from the two published experimental
studies [25, 46], while all the remaining 314 clusters represent the
novel classes of compounds identified with potential to target
RBD:hACE interaction. Cluster 120 consisting of 2 compounds
shares similarity with Paredrine (4-(2-Aminopropyl)phenol)

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbab111#supplementary-data
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Figure 6. (A) Novel scaffolds which are predicted as inhibitors of RBD:hACE2 interaction by the ML approach. Representatives from some of clusters with similarity to

known FDA Approved drugs are shown in bold. (B) Shows the cluster 167 representative compound (yellow sticks) docked onto RBD pocket 2 with residue Q493 shown

in red sticks. The inset box shows the interacting residues of docked compound in red sticks with res Y453 shown in pink. The two hydrogen bonds formed are shown

with green dashed lines indicated by arrows.

which has been used as an eye solution for dilation of pupils
and controls the release of aqueous humor. Cluster 21 contains
6 compounds with piperidin and indole groups such as the
thalidomide drug with immunomodulatory and antineoplastic
properties, employed to treat myeloma. Cluster 98 contains 2
compounds sharing similarity with ORAP, an antipsychotics
with ability to block dopaminergic recpetors on neurons. These
results provide interesting clues on repurposing of known
drugs for other indications to treat COVID 19. These sets of 674
compounds are interesting candidates for experimental studies.

In order to decipher the mechanistic basis of inhibition/-
modulation of RBD:hACE2 interactions by these 674 molecules
identified by SMMPPI, we carried out structural modeling for
all these compounds in the binding interface of the crystal
structure of RBD:hACE2 complex (PDB ID: 6M0J). It may be
noted that structural modeling was carried out based on
the assumption of orthosteric mode of action, but some of
these compounds might be allosteric modulators as well.
Similarly, the orthosteric modulator can bind to either RBD
or to hACE2. However, analysis of binding interface of the
complex has revealed that solvent exposed helical segments
from hACE2 bind to a slightly concave surface of RBD with
three sites which interact with residues of hACE2, thus can
be interaction hotspots. Thus, it is likely that orthosteric
inhibitors can bind to interaction hotspot 2 (Figure 6B) which
consists of functionally important residue GLN 493 and
TYR 453 involved in hydrogen bonding interactions between

SARS-CoV-2 RBD and hACE2. It has been reported that residue
GLN 493 makes significant contribution to binding affinity of
RBD:hACE interaction and is a crucial determinant of higher
binding affinity of RBD:hACE2 interaction in case of SARS-CoV-
2 RBD compared with SARS-CoV [47]. Hence, all 674 molecules
were docked onto site 2 on RBD using the OpenEye Docking
Software [48] (Supplementary Methods, see Supplementary Data
available online at http://bib.oxfordjournals.org/). The docked
poses were analyzed to check for possible interactions between
hotspot residue GLN 493 and the docked ligands. Out of the 314
novel scaffolds or clusters identified by SMMPPI, compounds
belonging to 229 clusters had contacts (<3.5 Å distance between
any two atoms) with GLN 493, and thus they can potentially
block interaction of SARS-CoV-2 RBD with hACE2. Out of these
229 cluster representatives, 5 had OpenEye docking score lower
than −6 kcal/mol, thus indicating that they could be high affinity
binders to RBD (Supplementary Table S7, see Supplementary
Data available online at http://bib.oxfordjournals.org/). The
interactions of the top scoring compound (cluster 167) are shown
in Figure 6B, which is docked into the RBD pocket 2 with a
binding affinity score of −7.3 kcal/mol. Interestingly, the docked
compound formed hydrogen bonds with TYR 453 and GLU 406.
In addition, the docked compound had interactions with K417,
L455, Y495, S494, R403, Q493, G496 and Y505 of which Y495,
Q493 and G496 are known to significantly contribute to binding
energy of RBD-hACE interaction [47]. The crystal structure
of RBD:hACE2 reveals two crucial hydrogen bonds between

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbab111#supplementary-data
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RBD_GLN493:hACE2_LYS31 and RBD_TYR453:hACE2_HIS34
(Supplementary Figure S11, see Supplementary Data available
online at http://bib.oxfordjournals.org/). The top scoring small
molecule modulator predicted by SMMPPI and OpenEye docking
binds to the same binding hotspot residues of RBD by making
hydrogen bonds with TYR453 and GLU406. These results depict
mechanistic basis of the inhibition of RBD:hACE2 interactions
by small molecules. Similar analysis of other scaffolds with
good docking score can identify novel inhibitors of SARS-
CoV-2 cell entry, thus providing additional candidates for
experimental validation. The current docking study shows how
our hierarchical ML-based method SMMPPI can be combined
with structure-based analysis to finally shortlist a set of 10–20
for further experimental validation.

Comparison of SMMPPI with docking

In structure-based drug discovery, protein-ligand docking has
been the widely used strategy to screen large compound libraries
against a target protein. The major advantage of docking is that it
can be used based on first principle to search for new inhibitors
and predict their binding sites, even in cases where no known
inhibitors are there for the given target or binding site on the
target is unknown. Even though docking is often used to filter
large compound libraries for potential inhibitors, docking score
often has poor correlation with experimental binding affinity
values and successful prediction of inhibitors by completely
automated docking is a difficult task. Therefore, during the last
decade, ML-based scoring functions have been developed using
known protein-ligand inhibitor data sets. Recent benchmarking
studies by Morrone et al. [16] on DUD-E data set revealed that for
binder versus non-binder prediction on single proteins/enzymes
as targets, ML-based scoring functions (AUC 0.83) performed
better compared with scoring functions used in docking (AUC:
0.70). However, as discussed earlier, the apparently superior
performance of ML-based methods can often arise from bias
in construction of training and test data sets, and such ML
methods may not perform well on data sets which are very
much different from those used in training. Therefore, compar-
ison of the performance of docking approach with ML methods
also requires construction of unbiased data sets [11]. Unlike
single protein targets, additional complexity associated with
flat interaction interfaces of PPIs [4] and lack of a reference
small molecule substrate or native ligand to guide the search
strategy, pose major challenges for prediction of modulators of
PPIs by docking. Availability of experimentally validated data
set of 25 inhibitors for RBD_hACE and a set of 250 compounds
which do not inhibit RBD_hACE2 interactions [25] gave us the
opportunity to evaluate the performance of a docking approach
for this PPI. Docking of these compounds on to the interaction
interface of RBD using OpenEye software revealed that out of the
25 inhibitors (binders to RBD) in positive data set, 16 compounds
docked to the site with docking score in the range of −2 to
−3 kcal/mol, while remaining nine compounds were rejected
as potential binders. On the other hand, out of the 250 non-
binders, only 84 were rejected by docking, and out of the remain-
ing 166 known non-binders which docked to the RBD, ∼82%
showed binding score equal to or better than docking scores of
the 16 known binders (Supplementary Figure S12B, see Supple-
mentary Data available online at http://bib.oxfordjournals.org/).
Supplementary Figure S12A, see Supplementary Data available
online at http://bib.oxfordjournals.org/, shows ROC plot based on
docking score for 182 compounds which could be docked. Thus,
performance of the docking approach is only marginally better

than random with ROC-AUC of 0.52. In contrast to docking, ML-
based methods trained on known experimental data can identify
PPIMs for a given PPI target using conserved patterns in known
data. The RF classifier for the prediction of RBD_hACE2 inhibitors
was developed using 25 known inhibitors as positive data for
training. However, the 250 experimentally validated negative
data set, which have not been used in training our ML model,
can be used to compare the performance of RBD_hACE2 RF
classifier and docking approach for their ability to reject inactive
compounds. As can be seen from ROC curve for the RBD_hACE2
RF classifier on this data set, the performance of ML-based
approach is superior to docking with AUC value of 0.93. Also,
the ML model took just 3 s for screening these 250 molecules,
while docking took 1 h 25 min on a desktop workstation. Hence,
search of large compound libraries using ML is computation-
ally inexpensive. Even though enrichment by ML over baseline
docking is apparent, lack of additional active compounds beyond
those used in training is a caveat to our claim. Also, as discussed
in the earlier section on assessment bias in training/testing
of ML models, superior performance of ML over docking could
also arise from similarities between compounds present in the
training and test data sets used for performance assessment of
ML method. In practice, performance of SMMPPI may degrade
when testing sets contain very different molecules from those
used in training. In future, similar analysis using unbiased data
sets from other PPI families with more numbers of positive and
negative data can be carried out for a systematic comparison of
docking and ML for prediction PPI modulators.

Even though the ability of docking methods to pick active
compounds from large libraries is limited, docking studies have
been successfully used in structure-based lead optimization
where chemical structures in the neighborhood of a given scaf-
fold are to be explored in the binding site of a target. Therefore,
the method utilized in the current work for predicting novel
inhibitors of RBD:hACE2, where docking is used in the second
stage to filter compounds with favorable interactions in the
binding site after first stage screening involving ML methods
could be a powerful strategy for identification of small molecule
modulators of PPIs.

CONCLUSION
PPIs are increasingly becoming focus for drug discovery due to
their extensive involvement in controlling a plethora of disease
associated pathways, higher target selectivity of PPI inhibitors
and lower probability of drug resistance [5]. Development of
newer technologies for discovery of PPI inhibitors have resulted
in the experimental characterization of large number of small
molecule modulators of various families of PPIs [49]. In the
current study, we have utilized these large data sets of PPI
modulators and used a data driven approach to develop ML
models for in silico prediction of small molecule modulators
of PPI. Detailed benchmarking using n-fold CV and completely
independent testing on held out data sets have revealed that RF
classifier with ECFP4 fingerprints outperforms other ML classi-
fiers including DL-based methods. However, it is possible that
high prediction accuracy of the RF classifier arises from pos-
sible bias in construction of training and test sets by random
split and in case of unseen data performance may be lower.
Additional benchmarking using a number of recently proposed
methods for construction of unbiased training and test sets
revealed that the ML classifier developed in the current study
can perform with reasonable accuracy even on data sets very

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbab111#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbab111#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbab111#supplementary-data
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different from those used in training. The general and family-
specific predictors of PPI modulators have been implemented in
a hierarchical manner to discriminate between modulators of
PPI and inhibitors of single protein targets in large compound
libraries in the first stage, while PPI family-specific RF classi-
fiers are used in the second stage to predict modulators for 11
different PPI classes with high accuracy. These 11 PPI families
not only include several complexes associated with cancer but
also RBD:hACE2 associated with cell entry of SARS-CoV-2. To
the best of our knowledge, this is the first ML-based method to
identify new antivirals for inhibiting cell entry of SARS-CoV-2.
Successful identification of 20 out of 91 experimentally validated
SARS-CoV-2 viral growth inhibitors from independent data is
an encouraging result for the predictions by SMMPPI. However,
in absence of any additional experimental data, it is unclear
if these molecules would inhibit virus activity in entry phase.
Using this RBD: hACE2 predictor, we have identified more than
300 novel small molecule scaffolds, some of which are known
drugs, which can be repurposed for SARS-CoV-2. By combining
structure-based docking method with results from ML-based
screening, we have identified a small set of 5 compounds for
experimental validation in collaborative studies. While a poten-
tial caveat of the current study is lack of experimental validation
of predicted new molecules, the ML classifiers developed in the
current study are most efficient tools for high throughput in silico
screening of large compound libraries for prioritizing smaller
compound lists for compute intensive docking and atomistic
simulations to decipher mechanistic details of the modulation
of PPIs and subsequent experimental validation. The prediction
models developed in this study have been made freely available
as downloadable script SMMPPI. Apart from its utility in dis-
covery of new antivirals as demonstrated in this work, SMMPPI
will be a valuable resource for ML-based discovery of anticancer
molecules.

Availability of software

The SMMPPI program package with documentation and test
input/output files is available for download from http://www.
nii.ac.in/smmppi.html.

Data Availability

All datasets and scripts used in this study are available for
download from http://www.nii.ac.in/smmppi.html.

Key Points
• Currently available machine learning (ML)-based com-

putational tools for prediction of PPI modulators cover
only three PPI families and have not been updated
to keep pace with the increase in the volume of
experimental data.

• SMMPPI has been developed for an ML-based predic-
tion of small molecule modulators of PPI using a large
data set of experimentally validated PPIs. Benchmark-
ing of SMMPPI using different feature vector represen-
tation of chemical compounds and different ML algo-
rithms including deep learning revealed that random
forest classifier with ECFP4 fingerprints as feature
vectors has highest prediction accuracy.

• Family-specific PPIM predictors have also been imple-
mented in SMMPPI for 11 clinically important PPI

families covering anticancer and antiviral drug targets
including SARS-CoV-2 RBD_hACE2 PPI. Currently, no
other tool is available for prediction of PPIMs for 9 out
of these 11 clinically important classes of PPIs.

• Finally, as a test case using SMMPPI, we have identified
novel chemical scaffolds as inhibitors for RBD_hACE2
PPI and some of these new scaffolds are in agree-
ment with chemical scaffolds of SARS-CoV-2 viral
growth inhibitors reported in independent experi-
mental studies outside our training data.

Supplementary Data

Supplementary data are available online at Briefings in Bioin-
formatics.
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