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Segmentation of left and right ventricles plays a crucial role in quantitatively analyzing the global and regional information in
the cardiac magnetic resonance imaging (MRI). In MRI, the intensity inhomogeneity and weak or blurred object boundaries are
the problems, which makes it difficult for the intensity-based segmentation methods to properly delineate the regions of interests
(ROI). In this paper, a hybrid signed pressure force function (SPF) is proposed, which yields both local and global image fitted
differences in an additive fashion. A characteristic term is also introduced in the SPF function to restrict the contour within the
ROI. The overlapping dice index and Hausdorff-Distance metrics have been used over cardiac datasets for quantitative validation.
Using 2009 LVMICCAI validation dataset, the proposed method yields DSC values of 0.95 and 0.97 for endocardial and epicardial
contours, respectively. Using 2012 RVMICCAI dataset, for the endocardial region, the proposed method yields DSC values of 0.97
and 0.90 and HD values of 8.51 and 7.67 for ED and ES, respectively. For the epicardial region, it yields DSC values of 0.92 and
0.91 and HD values of 6.47 and 9.34 for ED and ES, respectively. Results show its robustness in the segmentation application of the
cardiac MRI.

1. Introduction

Cardiac MRI is a noninvasive imaging methodology, which
is used to obtain the anatomical data of a heart for clinical
diagnosis of cardiovascular analysis [1]. In cardiac MRI,
volumetric analysis of left ventricle (LV) and right ventricle
(RV) is an initially quantified method to diagnose cardiac
contractile function. A detailed understanding of the cardiac
contractility is essential in the quest to prevent, diagnose, and
treat heart-related disorders [2, 3]. Therefore, segmentation
of LV and RV plays a crucial role in the detection and
prevention of the heart attacks, which is a common cause of
mortality in this century.Manual segmentation is a hectic and
time-consuming job for both radiologists and cardiologists.
Moreover, it can lead to a high number of false positives due
to human errors, such as fatigue and distractions. Therefore,
a computer-aided diagnosis (CAD) system is needed, which
can assist both radiologists and cardiologists to accurately
segment LV and RV boundaries in cardiac MRI.

To date, numerous segmentation methods [4–16] have
been proposed to segment either one or both LV and RV. In
MRI, weak or blurred edges and intensity inhomogeneities
are the problems, which make it difficult for the intensity-
based segmentation methods to properly extract the regions
of interests (ROI). Therefore, accurate segmentation of LV
and RV is still an open challenge to the researchers in the area
of medical image segmentation.

Active contours are one of thosemethods used to segment
LV and RV in cardiacMRI. Active contourmodel also known
as snakes was introduced by Kass et al. in late 80s in which
a curve is evolved towards object boundaries to delineate
a region of interest [17]. Since then, active contours have
been adapted abundantly in numerous image segmentation
techniques. The basic idea of the active contours is to control
the deformable curve and restrict it to the object boundary by
minimizing a force known as a balloon force.

There are many variants of active contours, which are
classified as edge-based [15–20] and region-based methods
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[21–30]. These methods have been contemplated for image
segmentation, where their points of interest are beneficial.
Edge-based methods use image gradient information to
deform the level set curve towards the object boundary.
However, these types of methods are not effective on images
with weak edges, noise, and blurred boundaries. On the other
hand, region-basedmodels use a region-based descriptor that
exploits image statistical information to evolve the contour.
Among all region-basedmethods, Chan-Vese [23] is a broadly
utilized method that is able to properly segment images with
homogeneous regions. However, this method is unable to
generate acceptable segmentation results in the presence of
intensity inhomogeneity, which is a well-known problem in
medical imaging.

A region-based active contour method proposed by Min
et al. adopts an intensity-based global division algorithm
[31]. In this method, two intensity means are computed for
inner and two for the outer region. Therefore, it showed
better performance compared to Chan-Vese method [23].
However, this method is also unable to produce acceptable
segmentation results in the presence of intensity inhomo-
geneity. Numerous methods have proposed a viable solution
to segment inhomogeneous regions by introducing image
local information in their models [22–26].

A local binary fitting (LBF) method for image segmenta-
tion is proposed by Yezzi Jr. et al. in the context of intensity
inhomogeneity [32]. In this method, a Gaussian kernel
is introduced in the energy formulation to exploit image
local information. A localized active contour method (LAC)
is devised by Lankton and Tannenbaum in which global
region-based methods are reformulated by replacing global
means with image local information [28]. These methods
can segment intensity inhomogeneous regions, unlike their
global counterparts. However, the techniques explained in
these methods are sensitive to the position of initial contour.
Moreover, they also have high computational cost due to the
complicated local information in their formulation.

Recently, hybrid methods [27–31] gained popularity
among region-based methods. These methods either com-
bine both region (local or global) and edge information or
both local and global region information in their energy
formulations. In [33], Zhang et al. proposed a method
which combines the advantages of edge-based and region-
based active contours. In this paper, a region-based signed
pressure force (SPF) function is also introduced which uti-
lizes image global intensity means from Chan-Vese method
[23]. This method adapts similar approach from geodesic
active contour (GAC) model. However, in their model the
edge-indicator function is replaced with a region-based SPF
function; moreover, the traditional regularization function is
also replaced with a Gaussian smoothing. This method only
uses global image intensity information; therefore, it is unable
to segment intensity inhomogeneous images.

In [34], Wang et al. introduced a new energy formulation
in which image local and global information from LBF and
Chan-Vese methods are incorporated in an additive manner.
Thismethod is capable of handling intensity inhomogeneities
and yields better segmentation results compared to the state-
of-the-art methods. However, this method is sensitive to the
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Figure 1: Region of interest in short axis cardiac MRI.

position of initial contour. Moreover, for different types of
images, the scaling constant for the additive local and global
intensity distributor varies; therefore, it is very difficult to
choose the correct value. Recently, Liu e al. [13] and Yang et
al. [14] proposed active contour segmentation methods for
cardiac MRI data. These methods segment endocardial and
epicardial boundaries by using level set formulation.

In this paper, a hybrid region-based active contour
method is proposed to segment left and right ventricles
in a cardiac MRI. The main contribution of this work is
the formulation of new SPF function, which incorporates
both local and global image intensity information. Local and
global intensity information is obtained from Lankton and
Tannenbaum [28] and Min et al. [31] methods, respectively.
Global intensity term in the proposed SPF function helps to
segment objects with big intensity difference and the local
intensity term plays its role to segment objects with intensity
inhomogeneity.The integration of local and global intensities
has overcome the limitations of Lankton and Tannenbaum
and Min et al. methods, that is, sensitivity towards the
initial position of contour and inability to segment intensity
inhomogeneous regions. In the proposedmethod, a Gaussian
kernel is also used to regularize the level set and eliminate the
need of expensive reinitialization.

In order to understand the qualitative results discussed in
the result section, it is necessary to understand the physical
structure of both ventricles inside cardiac MRI. In short axis
view of heart MRI, the myocardium is the dark area between
two concentric circles surrounded by LV and RV. Figure 1
shows LV and RV along with other important regions in
cardiac MRI. Epicardium is a wall between myocardium,
surrounded organs, and tissues. Endocardiumwall covers the
LV and RV cavity. In the presence of grey level blood flow and
intensity inhomogeneity, segmentation of endocardium is a
quite challenging task for both cardiologists and radiologists
to quantify the cardiac contractile function. In this paper, a
segmentation method is proposed which is able to segment
intensity inhomogeneous regions and delineate weak object
boundaries. Consequently, it helps to segment endocardium
and epicardium walls for both left and right ventricles.

This paper is organized as follows. Background and
previousmethods are briefly discussed in Section 2.Themain
idea and formulation of the proposed method are presented



Computational and Mathematical Methods in Medicine 3

in Section 3. Experimental results and comparisons are
shown in Section 4. Quantitative analysis with the state-of-
the-art methods is discussed in Section 5. Finally, conclusion
and future work are given in Section 6.

2. Related Work and Background

2.1. Chan-Vese Method. Chan and Vese [23] proposed a
region-based active contour method based on Mumford-
Shah [22]. Let 𝐼 : Ω ⊂ 𝑅2 be an input image, 𝜙 : Ω ⊂ 𝑅2
a level set function, and 𝐶 a closed curve corresponding to
the zero level set: 𝐶 = {𝑥 ∈ Ω | 𝜙(𝑥) = 0}. The Chan-Vese
formulation is defined as follows:

𝐸CV (𝐶, 𝑐1, 𝑐2)
= 𝜆1 ∫

Ω

𝐼 (𝑥) − 𝑐12𝐻𝜀 (𝜙 (𝑥)) 𝑑𝑥
+ 𝜆2 ∫

Ω

𝐼 (𝑥) − 𝑐22 (1 − 𝐻𝜀 (𝜙 (𝑥))) 𝑑𝑥 + 𝜇𝐿 (𝐶)
+ 𝐴 (in (𝐶)) ,

(1)

where 𝐿(𝐶) represents the length of the curve, which is used
to regularize the contour 𝐶. 𝐴(in(𝐶)) represents the area
inside the curve 𝐶. 𝑐1, 𝑐2 are image intensities inside and
outside of the curve 𝐶. 𝜇 ≥ 0, V ≥ 0, and (𝜆1, 𝜆2) > 0
are scaling constants and 𝐻𝜀(𝜙) is the regularized Heaviside
function which is defined as

𝐻𝜀 (𝜙) = 12 (1 +
2
𝜋 arctan(𝜙𝜀 )) , (2)

where constant 𝜀 controls the smoothness of the Heaviside
function. By minimizing (1) with respect to 𝑐1, 𝑐2, and 𝜙 using
the steepest gradient descent [35] the following definitions
and solution equations are acquired:

𝑐1 = ∫Ω 𝐼 (𝑥)𝐻𝜀 (𝜙 (𝑥)) 𝑑𝑥∫
Ω
𝐻𝜀 (𝜙 (𝑥)) 𝑑𝑥 , (3)

𝑐2 = ∫Ω 𝐼 (𝑥) (1 − 𝐻𝜀 (𝜙 (𝑥))) 𝑑𝑥∫
Ω
(1 − 𝐻𝜀 (𝜙 (𝑥))) 𝑑𝑥 , (4)

𝜕𝜙
𝜕𝑡 = (−𝜆1 (𝐼 − 𝑐1)

2 + 𝜆2 (𝐼 − 𝑐2)2 + 𝜇 div( ∇𝜙∇𝜙)

− V)𝛿𝜀 (𝜙) .
(5)

In (5), 𝛿𝜀(𝜙) is a smooth version of the Dirac delta function,
which is defined as

𝛿𝜀 (𝜙) = 𝜀
𝜋 (𝜙2 + 𝜀2) , (6)

where constant 𝜀 controls the width of the Dirac delta func-
tion. This method is widely used to segment the images with
uniform intensity distribution. However, it cannot properly
segment images with intensity inhomogeneity.

2.2. Min et al. Method. In [31], a region-based active contour
method with modified global region term is proposed to
solve complicated intensity difference problem in Chan-
Vese method. The proposed energy function computes two
intensity means (big and small) for inside and two for
outside of curve 𝐶. This extra information from new means
provides better segmentation experience compared to Chan-
Vese method. However, this method is sensitive to noise.
Their energy functional based on a novel region-based term
is defined as follows:

𝐸MIN (𝜙, 𝑐1, 𝑐2, 𝑑11, 𝑑12, 𝑑21, 𝑑22) = ∫
Ω
𝐻𝜀 (𝐼 (𝑥) − 𝑐1)

⋅ (𝐼 (𝑥) − 𝑑11)2𝐻𝜀 (𝜙 (𝑥)) 𝑑𝑥
+ ∫
Ω
(1 − 𝐻𝜀 (𝐼 (𝑥) − 𝑐1)) (𝐼 (𝑥) − 𝑑12)2

⋅ 𝐻𝜀 (𝜙 (𝑥)) 𝑑𝑥 + ∫
Ω
𝐻𝜀 (𝐼 (𝑥) − 𝑐2)

⋅ (𝐼 (𝑥) − 𝑑21)2 (1 − 𝐻𝜀 (𝜙 (𝑥))) 𝑑𝑥
+ ∫
Ω
(1 − 𝐻𝜀 (𝐼 (𝑥) − 𝑐2)) (𝐼 (𝑥) − 𝑑22)2

⋅ (1 − 𝐻𝜀 (𝜙 (𝑥))) 𝑑𝑥,

(7)

where 𝐻𝜀(𝐼(𝑥) − 𝑐𝑖) is a division function based on the
intensity means from both inside and outside of object at𝑖 = 1, 2. By minimizing (7) with respect to 𝑑11, 𝑑12, 𝑑21, and𝑑22, using the steepest gradient descent [35], the following
definitions are acquired:

𝑑11 = ∫Ω𝐻𝜀 (𝐼 (𝑥) − 𝑐1) 𝐼 (𝑥)𝐻𝜖 (𝜙 (𝑥)) 𝑑𝑥∫
Ω
𝐻𝜀 (𝐼 (𝑥) − 𝑐1)𝐻𝜖 (𝜙 (𝑥)) 𝑑𝑥 , (8)

𝑑12 = ∫Ω (1 − 𝐻𝜀 (𝐼 (𝑥) − 𝑐1)) 𝐼 (𝑥)𝐻𝜖 (𝜙 (𝑥)) 𝑑𝑥∫
Ω
(1 − 𝐻𝜀 (𝐼 (𝑥) − 𝑐1))𝐻𝜖 (𝜙 (𝑥)) 𝑑𝑥 , (9)

𝑑21 = ∫Ω𝐻𝜀 (𝐼 (𝑥) − 𝑐2) 𝐼 (𝑥) (1 − 𝐻𝜖 (𝜙 (𝑥))) 𝑑𝑥∫
Ω
𝐻𝜀 (𝐼 (𝑥) − 𝑐2) (1 − 𝐻𝜖 (𝜙 (𝑥))) 𝑑𝑥 , (10)

𝑑22

= ∫Ω (1 − 𝐻𝜀 (𝐼 (𝑥) − 𝑐2)) 𝐼 (𝑥) (1 − 𝐻𝜖 (𝜙 (𝑥))) 𝑑𝑥∫
Ω
(1 − 𝐻𝜀 (𝐼 (𝑥) − 𝑐2)) (1 − 𝐻𝜖 (𝜙 (𝑥))) 𝑑𝑥 , (11)

where 𝑑11 and 𝑑12 are big and small intensity means inside
the contour. Similarly, 𝑑21 and 𝑑22 represent the big and small
intensity means outside the contour.

By using four values of intensity means, unlike Chan-
Vese method, this method fairly improves segmentation
accuracy. Figure 2 shows segmentation of a complicated
(texture like) region using both Chan-Vese [23] and Min et
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(a) (b)

Figure 2: Segmentation of a complicated (texture like) region. (a) Segmentation result of the Chan-Vese method and (b) segmentation result
of Min et al. method.

(a) (b)

Figure 3: Process of taking local information, where green circle is a circular mask. (a) is a local interior region; (b) shows local exterior
regions and the small dot is point 𝑥.

al. [31] methods. Figure 3(a) shows that Chan-Vese method
produces an unacceptable segmentation result. This method
takes small black dots as separate regions that lead to an
unacceptable segmentation of the big rectangular region,
which is the actual region of interest. In turn, Min et al.
method is able to properly segment the rectangular region as
shown in Figure 2(b).

2.3. Zhang et al. Method. Primarily an edge-indicator func-
tion was proposed in GACmethod [19] to segment an object
by evolving the level set curve towards object boundaries.
However, this method was not able to segment global struc-
ture of the object. In [26], Li et al. proposed a region-based
segmentation method, which combines the advantages of
GACandChan-Vesemethods. In thismethod, a region-based
signed pressure force (SPF) function is introduced to replace
the edge-indicator function in GAC method. SPF function
helps to segment global structure of the given image using
intensity means from inside and outside of the curve. A
Gaussian kernel is used to regularize the level set, which also
removes the need of its reinitialization. Let 𝐼 : Ω ⊂ 𝑅2 be

the given image and 𝜙 : Ω ⊂ 𝑅2 a level set curve; then the
solution to their energy functional is defined as

𝜕𝜙
𝜕𝑡 = spf (𝐼 (𝑥)) ⋅ 𝛼 ∇𝜙 , (12)

where 𝛼 > 0 is a scaling parameter and spf(𝐼) is the SPF
function, which is defined as

spf (𝐼) = 𝐼 (𝑥) − (𝑐1 + 𝑐2) /2
max ((𝑥) − (𝑐1 + 𝑐2) /2) . (13)

In (13), the value of the SPF function is in the range [−1, 1]. It
shrinks the contour when it is defined outside and expands
when defined inside of the object. 𝑐1 and 𝑐2 are the image
intensity means defined in (3) and (4), respectively.

2.4. Localized Chan-Vese Method. In [23], Chan and Vese
proposed a local active contour method in which different
well-known global active contour models are remodeled by
replacing the global statistical information in their energy
functionals with the local ones. This method can reformulate
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any global region-based model to be mimicked as a local
model. Let 𝐼 : Ω ⊂ 𝑅2 be the given image and 𝐶 be a closed
curve corresponding to zero level set:𝐶 = {𝑥 ∈ Ω | 𝜙(𝑥) = 0}.
The energy functional is defined as follows:

𝐸LCV = ∫
Ω𝑥

𝛿𝜀 (𝜙 (𝑥)) ∫
Ω𝑦

𝐵 (𝑥, 𝑦)
⋅ 𝐹 (𝐼 (𝑦) , 𝜙 (𝑦)) 𝑑𝑦 𝑑𝑥
+ 𝜆∫
Ω𝑥

∇𝐻𝜀 (𝜙 (𝑥)) 𝑑𝑥,
(14)

where𝐻𝜀(𝜙) and 𝛿𝜀(𝜙) are smooth versions of Heaviside and
Dirac delta functions, defined in (2) and (6). 𝐵(𝑥, 𝑦) is a mask
function which helps to detect the local regions in terms of
radius 𝑟 defined as follows:

𝐵 (𝑥, 𝑦) = {{{
1, 𝑥 − 𝑦 < 𝑟,
0, otherwise. (15)

𝐵(𝑥, 𝑦) will be 1 when point 𝑦 is within the mask of radius𝑟 centered at 𝑥; otherwise, it will be 0. In Figure 3, the local
neighborhood is shown in green and the contour is shown in
red. The process to compute the local intensity information
for both regions inside and outside of the contour is shown
in Figures 3(a) and 3(b), respectively.

The energy function 𝐹(𝐼(𝑦), 𝜙(𝑥)) is reformulated by
replacing the global means 𝑐1 and 𝑐2 with local means 𝑢1 and𝑢2, as follows:
𝐹 (𝐼 (𝑦) , 𝜙 (𝑥)) = 𝐻𝜀 (𝜙 (𝑦)) 𝐼 (𝑦) − 𝑢12

+ (1 − 𝐻𝜀 (𝜙 (𝑦))) 𝐼 (𝑦) − 𝑢22 .
(16)

By substituting 𝐹(𝐼(𝑦), 𝜙(𝑥)) in (14) following localized
energy function is formulated:

𝐸LCV = ∫
Ω𝑥

𝛿𝜀 (𝜙 (𝑥)) ∫
Ω𝑥

𝐵 (𝑥, 𝑦)
⋅ (𝐻𝜀 (𝜙 (𝑦)) 𝐼 (𝑦) − 𝑢12
+ (1 − 𝐻𝜀 (𝜙 (𝑦))) 𝐼 (𝑦) − 𝑢12) 𝑑𝑦 𝑑𝑥
+ 𝜆∫
Ω𝑥

∇𝐻𝜀 (𝜙 (𝑥)) 𝑑𝑥,

(17)

where 𝑢1 and 𝑢2 are the local intensity means inside and
outside of the contour, respectively.These intensities localized
by mask function 𝐵(𝑥, 𝑦) at point 𝑥 are defined as

𝑢1 =
∫
Ω𝑦
𝐵 (𝑥, 𝑦) 𝐼 (𝑦)𝐻𝜀 (𝜙 (𝑦)) 𝑑𝑦
∫
Ω𝑦
𝐵 (𝑥, 𝑦)𝐻𝜀 (𝜙 (𝑦)) 𝑑𝑦 (18)

𝑢2 =
∫
Ω𝑦
𝐵 (𝑥, 𝑦) 𝐼 (𝑦) (1 − 𝐻𝜀 (𝜙 (𝑦))) 𝑑𝑦
∫
Ω𝑦
𝐵 (𝑥, 𝑦) (1 − 𝐻𝜀 (𝜙 (𝑦))) 𝑑𝑦 . (19)

This method is capable of segmenting images with inten-
sity inhomogeneities. However, it is sensitive to the initial
position of the contour.

3. The Proposed Method

In this paper, a novel region-based active contour method
is formulated, which uses both local and global image
statistical information. An energy functional is devised using
a new region-based SPF function based on Lankton and
Tannenbaum [28] and Min et al. [31] intensity terms, which
drives the zero level set curve towards the object boundary.
During the curve evolution, its movement depends on the
sign of the SPF function, which moves inwards if SPF is
positive and outwards if it is negative. Let 𝐼 : Ω ⊂ 𝑅2 be
the given image and 𝜙 : Ω ⊂ 𝑅2 a level set curve; then the
proposed energy functional is defined as

𝐸𝐿𝐺 (𝜙) = 𝜆𝐿𝐿𝐺 (𝜙) + V𝐴𝐿𝐺 (𝜙) , (20)

where V ≥ 0 and 𝜆 > 0 are the scaling constants. 𝐿𝐿𝐺(𝜙) is a
length and 𝐴𝐿𝐺(𝜙) is an area term, defined as

𝐿𝐿𝐺 (𝜙) = ∫
Ω
spf𝐿𝐺 (𝐼) 𝛿𝜀 (𝜙) ∇𝜙 𝑑𝑥,

𝐴𝐿𝐺 (𝜙) = ∫
Ω
spf𝐿𝐺 (𝐼)𝐻𝜀 (−𝜙) 𝑑𝑥.

(21)

In the above equations,𝐻𝜀(𝜙) and 𝛿𝜀(𝜙) are smooth versions
of the Heaviside and Dirac delta functions, which are defined
in (2) and (6), respectively. The energy 𝐴𝐿𝐺(𝜙) controls the
inner force, which computes the region information inside
and outside of the curve and evolves the curve towards
the object boundary. In turn, 𝐿𝐿𝐺(𝜙) term deals with the
curvature of the object boundary and regularizes the curve.
spf𝐿𝐺(𝐼) is the proposed SPF function, which incorporates
local and global characteristics from Kass et al. [17] and
Lankton and Tannenbaum [28] methods, respectively. Like
a traditional SPF function, the value of the proposed SPF
function is in the range [1, −1]. The only difference is that it
uses both local and global intensity means in its formulation.
The proposed SPF function is defined as

spf𝐿𝐺 (𝐼) = 𝑤 (spf𝐺 (𝐼)) + (1 − 𝑤) spf𝐿 (𝐼) , (22)

where spf𝐺(𝐼) and spf𝐿(𝐼) are global and local SPF functions,
respectively. 𝑤 is a scaling constant whose value lies in 0 ≤𝑤 ≤ 1. It decides which SPF term will play a key role during
the contour evolution.When𝑤 is close to 0 then spf𝐿(𝐼)with
the local terms will be dominant. In turn, when𝑤 is close to 1
then spf𝐺(𝐼)with the global termswill be dominant. Selection
of the parameter 𝑤 depends on the type of image used for
the segmentation. If the given image has a uniform intensity
distribution then 𝑤 should be close to 1. In turn, if the given
image has intensity inhomogeneity then𝑤 should be close to
0. The global SPF function spf𝐺(𝐼) used in (22) is defined as
follows:

spf𝐺 (𝐼) = (𝐼 (𝑥) − 𝐼GFI)𝑀𝑘
max (𝐼 (𝑥) − 𝐼GFI) , (23)

where 𝐼GFI is a global fitted image defined as

𝐼GFI = (𝑑11 + 𝑑12)𝐻𝜀 (𝜙 (𝑥))
+ (𝑑21 + 𝑑22) (1 − 𝐻𝜀 (𝜙 (𝑥))) , (24)
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where 𝑑11, 𝑑12, 𝑑21, and 𝑑22 are the global intensity means,
which are defined in (8), (9), (10), and (11), respectively.
Similarly, the local SPF spf𝐿(𝐼) used in (22) is defined as

spf𝐿 (𝐼) = (𝐼 (𝑥) − (𝑢1 + 𝑢2) /2)𝑀𝑘
max (𝐼 (𝑥) − (𝑢1 + 𝑢2) /2) , (25)

where 𝑢1 and 𝑢2 are the local intensity means, which are
defined in (18) and (19), respectively. In (23) and (25), a
characteristic term 𝑀𝑘 is used to restrict the evolution of
the contour inwards (towards the region of interest), which
is defined as

𝑀𝑘 (𝑥) = {{{
Ω → 1, 𝑘 = 0
𝜙 (𝑥) > 0, 𝑘 ̸= 0, (26)

where 𝑘 is a nonnegative integer. By minimizing (20) with
respect to 𝜙 using the steepest gradient descent [30], the
following solution is obtained:
𝜕𝜙
𝜕𝑡
= 𝛿𝜀 (𝜙) (𝜆 div(spf𝐿𝐺 (𝐼) ⋅ ∇𝜙∇𝜙) + V spf𝐿𝐺 (𝐼)) ,

(27)

where spf𝐿𝐺(𝐼) is the proposed SPF function which incor-
porates both local and global intensity information in an
additive manner as defined in (22).

In the traditional level set methods [12, 14, 15], the level
set function is reinitialized after each time step for smooth
transitions during the curve evolution process. In [13], an
energy penalization term is introduced by Liu et al., which
maintains the level set function as a signed distance function
(SDF) to remove the need of reinitialization. In this paper, a
Gaussian kernel is used, which not only regularizes the level
set curve but also removes the computationally expensive
reinitialization step. For outmoded level set methods, it is
essential to initialize level set function as a signed distance
function (SDF). The initial level set function is defined as

𝜙 (𝑥, 𝑡 = 0) =
{{{{{{{{{

−𝜌 𝑥 ∈ Ω0 − 𝜕Ω0
0 𝑥 ∈ 𝜕Ω0
𝜌 𝑥 ∈ Ω − Ω0,

(28)

where 𝜌 > 0 is a constant (in this paper 𝜌 = 2). Finally,
the iterative steps of the proposed method are summarized
as follows:

(1) Initialize the level set function 𝜙 using 𝜙(𝑥, 𝑡 = 0)
from (28).

(2) Initialize the characteristic term 𝑀𝑘 using 𝑀0 from
(25).

(3) Compute 𝑑11, 𝑑12, 𝑑21, 𝑑22, 𝑢1, and 𝑢2 using (8), (9),
(10), (11), (18), and (19), respectively.

(4) Compute𝑀𝑘 from (26) and spf𝐿𝐺(𝐼) using (22).
(5) Solve the partial differential equation for 𝜙 using (27).
(6) Stop if the level set function from the solution is

stationary. Otherwise, go to step (3) and iterate.

4. Experimental Results

The proposed method is validated on 15 training and 15
validation datasets from the MICCAI 2009 [36] for left
ventricle segmentation. Using Test 1 dataset from MICCAI
2012 [37] proposedmethod is also validated for right ventricle
segmentation, respectively. These datasets contain cardiac
MRI short axis volumetric data along with their respective
ground truths. The proposed method is implemented in
MATLAB 8.5 version in Windows 8 environment using
2.97GHz Intel Core-i7 processor with 4GB RAM.

4.1. Parameters Selection. For the proposed method the
following parameters are used for all the experiments: 𝜆 = 1,
V = 0.002 × 255 × 255, Δ𝑡 = 1.0, 𝑟 = 10, 𝑤 = 0.03,
and 𝜀 = 1.5. It is critical to properly tune the parameter𝑤, which controls the level segmentation of homogeneous
and inhomogeneous regions. 𝑤 ranges between 0 and 1; it is
chosen small for intensity inhomogeneous objects while for
homogenous intensity regions 𝑤 is chosen near to 1.

Initially, the proposed method has been tested on both
synthetic and real images. Figure 4 shows the qualitative
segmentation comparison with the state-of-the-art using the
synthetic images. Column (a) shows the original images
with the initial contour, columns (b), (c), and (d) show the
segmentation results using the Lankton and Tannenbaum
[28], LBF [25], and proposed method, respectively. Similarly,
the segmentation results using the real images are shown in
Figure 5. Column (a) shows the original images with the ini-
tial contour, columns (b), (c), and (d) show the segmentation
results using the Lankton and Tannenbaum [28], LBF [32],
and proposed method, respectively. Results show that the
proposedmethod yields high accuracy compared to the state-
of-the-artmethods, which are unable to properly segment the
regions of interest.

4.2. Endocardium Segmentation. The proposed method is
used to delineate the endocardial boundaries of both LV and
RV from cardiac MRI. Figure 6 demonstrates the segmenta-
tion results of both left and right ventricles from the cardiac
MRI using two different databases [33, 38], where columns
(a) and (d) show the images with the initial contours from
the MICCAI 2009 [36] and MICCAI 2012 [37] databases,
respectively. Columns (b) and (e) show intermediate segmen-
tation results using the proposed method. In turn, columns
(c) and (f) showfinal segmentation results using the proposed
method.

Figure 7 shows the left ventricle segmentation using
the cardiac MRI from the MICCAI 2009 [36] database.
Similarly, Figure 8 shows the right ventricle segmentation
using the cardiac MRI from the MICCAI 2012 [37] database.
The qualitative comparison of the segmentation results of
the proposed method with the LBF [25] and Lankton and
Tannenbaum [28] methods is also shown in Figures 7 and
8. In Figures 7 and 8, column (a) shows the original images
with the initial contour, column (b) shows the ground truths,
columns (c), (d), and (e) show segmentation results of the
LBF [25], Lankton and Tannenbaum [28], and proposed
method, respectively. It is evident from the results that
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(a) (b) (c) (d)

Figure 4: Image segmentation using synthetic images. (a) Original image with the initial contour, (b) Chan and Vese method [23], (c) LBF
method [32], and (d) the proposed method.

the proposed method yields better segmentation than both
Lankton and Tannenbaum and LBF methods.

4.3. Epicardium Segmentation. The proposed method is also
used to segment epicardial contours of both ventricles (LV
and RV). In [13], Liu et al. adapted the anatomical knowl-
edge of the heart in his model and proposed a two-step
method, where both epicardial and endocardial contours
are represented by a single level set function. Inspired by
the work of Liu et al. [13], the proposed method can also
segment epicardial and endocardial contours at the same
time but, instead of two steps, it can properly delineate both
contours (ED and EP) in single step level set evolution.
Figure 9 explains the complete segmentation process. The
contour is initialized with two circular level sets manually
as shown in Figure 9(a), one inside ventricles and one near
the endocardial boundary. After the evolution process, the
final contours (epicardial and endocardial) will capture both
RV and LV as shown in Figure 9(b). Furthermore, more
experiments are also performed on single ventricle in order
to extract epicardial and endocardial contours. Figure 10
illustrates the process of single ventricle segmentation, where
Figure 10(a) shows the initial contours, Figure 10(b) shows the
ground truth, and Figure 10(c) shows the final segmentation
result using proposed method.

5. Discussion

5.1. Quantitative Analysis. Dice coefficient (DSC) and Haus-
dorff-Distance (HD) metrics are used for the quantitative
analysis and comparison with the state-of-the-art methods.
DSC measures how well segmentation 𝑆 overlaps the ground
truth 𝐺. Segmentation results have high accuracy when DSC
value is close to 1. DSC is defined as

DSC (𝐺, 𝑆) = 2 Ω𝐺 ∩ Ω𝑆Ω𝐺 + Ω𝑆 , (29)

where Ω𝐺 is the ground truth region and Ω𝑆 is the seg-
mented region. HD is the second statistical measure used for
the quantitative evaluation in this paper. It is the distance
between the segmented region and the ground truth contour.
Segmentation results have high accuracy when the HD value
is close to 0. HD is defined as

HD (𝐺, 𝑆)
= max(max

𝑖
{𝑑 (𝑔𝑖, 𝑆)} ,max

𝑗
{𝑑 (𝑠𝑗, 𝐺)}) , (30)

where the ground truth 𝐺 and the segmented region 𝑆
contain a group of points 𝐺 = {𝑔1, 𝑔2, 𝑔3, . . . , 𝑔𝑛} and 𝑆 =
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(a) (b) (c) (d)

Figure 5: Image segmentation using real images. (a) Original image with the initial contour, (b) Chan and Vese method [23], (c) LBFmethod
[32], and (d) the proposed method.

{𝑠1, 𝑠2, 𝑠3, . . . , 𝑠𝑛}, respectively, and 𝑑 is the distance from 𝑔𝑖
to the nearest point on the region 𝑆.

Figure 11 shows DSC and HD value of LV cardiac MRI
segmentation based on Figure 7. Similarly, Figure 12 shows
the DSC and HD value of RV cardiac MRI segmentation
based on Figure 8. It shows that proposed method gets
minimum HD values and highest DSC value compared to
other intensity-based methods.

The segmentation accuracy of the proposed method
is being validated with cardiac application based methods

using DSC and HD metrics as shown in Table 1 using the
training dataset from MICCAI 2009 [36]. Table 2 shows a
segmentation accuracy comparison between the proposed
method and the state of the art using DSC metrics on
validation dataset from MICCAI 2009 [36]. It shows that
the proposed method yields highest DSC value among all
methods, which means the segmentation results of proposed
method are closest to their respective ground truths. In
Table 3, cardiac MRI MICCAI 2012 [37] test dataset is used
to compute DSC and HDmetrics to compare the accuracy of
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(a) (b) (c) (d) (e) (f)

Figure 6: Segmentation of left and right ventricles. (a) Original images fromMICCAI 2009 database [36] with the initial contour, (c) original
images fromMICCAI 2012 database [37] with the initial contour, ((b) and (e)) intermediate results using the proposed method, and ((c) and
(f)) final segmentation results using proposed method.

the proposed method with the state of the art. It shows that
the proposed method yields better segmentation accuracy
compared to previous methods.

5.2. Selection of Parameters 𝑤 and 𝑟. Parameter 𝑤 plays an
essential role in the proposed segmentation method. This
parameter deals with themeasure of local and global intensity
force during the segmentation process. The local SPF force
is scaled with a (1 − 𝑤) parameter and the global SPF force
is scaled with 𝑤 parameter, where 0 ≤ 𝑤 ≤ 1. When
the input image is affected by the intensity inhomogeneity,
the value decided for 𝑤 should be near 0 to diminish the
interference of global SPF. Similarly, if the image has uniform
intensity distribution and it is affected by the noise, then the

selected value of 𝑤 should be near 1 to make global SPF force
dominant.

The parameter 𝑟 > 0 plays an important role in
segmenting local structure of an image. If the image has one
or more objects with complex structures, then a small value
of 𝑟 is chosen. In turn, for images with large objects and fairly
simple structure, big value of 𝑟 is chosen. In this paper, for
the images which have the objects with complex structures,
the chosen value of 𝑟 is between 4 and 8. In turn, for large
objects, a value between 12 and 20 is chosen.

6. Conclusion

In this paper, a new region-based active contour method
is presented to segment both left and right ventricles in
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(a) (b) (c) (d) (e)

Figure 7: Segmentation of LV using MICCAI 2009 database [36]. (a) Original image with the initial contour, (b) ground truth, (c) LBF
method [32], (d) Chan and Vese method [23], and (e) the proposed method.
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(a) (b) (c) (d) (e)

Figure 8: Segmentation of RV using MICCAI 2012 database [37]. (a) Original image with the initial contour, (b) ground truth, (c) LBF
method [25], (d) Lankton and Tannenbaum method [28], and (e) the proposed method.
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(a) (b)

Figure 9: Segmentation of endocardial and epicardial contours using proposed method. (a) Initialization contours. (b) Final segmentation
result.

Table 1: Results of training dataset for 2009 LV MICCAI [36].

Patient HD DSC
Endo Epi Endo Epi

SC-HF-I-5 1.4425 1.0095 0.9942 0.97
SC-HF-I-6 0.2578 0.2686 0.9923 0.9985
SC-HF-I-7 0.3712 0.4221 0.994 0.9902
SC-HF-I-8 0.3833 0.3869 0.997 0.9908
SC-HF-NI-7 0.9954 1.035 0.9923 0.9951
SC-HF-NI-11 0.6446 0.5569 0.9843 0.9915
SC-HF-NI-31 0.438 0.3719 0.9884 0.9922
SC-HF-NI-33 0.6774 0.573 0.9894 0.9912
SC-HYP-6 0.733 0.5577 0.9846 0.9944
SC-HYP-7 0.9363 1.2184 0.979 0.9707
SC-HYP-8 0.4615 0.5653 0.9936 0.9885
SC-HYP-37 0.6303 0.6469 0.994 0.9872
SC-N-5 1.0042 0.5513 0.9897 0.9913
SC-N-6 0.7766 0.4009 0.9863 0.991
SC-N-7 0.2243 0.8215 1 0.9886

cardiacMRI.The energy functional is based on a new region-
based SPF function, which is formulated using both local
and global statistical information in an additive manner. A
selection parameter 𝑤 plays an important role in switching
between local and global SPF functions. The local part
of the SPF function helps to accurately segment intensity
inhomogeneous images. In turn, the global part of SPF
function helps to segment homogeneous images with or
without noise. The global intensity mean from Min et al.
method is used to construct global SPF function. It helps to
segment complex intensity regions which are not segmented
by traditional global region-based active contours like Chan-
Vese method.

Finally, a Gaussian kernel is used to regularize the level set
curve after each time step, which also eliminates the need of
expensive reinitialization. Experimental results demonstrate
that the proposed method can efficiently segment LV and
RV separately or together in cardiac MRI. Furthermore, a
quantitative comparison of the proposed method with the
state-of-the-art methods demonstrates that the proposed
method yields better segmentation accuracy.
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(a) (b) (c)

Figure 10: Segmentation endocardial and epicardial contours using proposed method. (a) Initialization contours, (b) ground truth, and (c)
final segmentation result.
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Figure 11: DSC (a) and HD (b) values for LV cardiac MRI segmentation based on Figure 7.



14 Computational and Mathematical Methods in Medicine

Proposed method
LBF method
Lankton and Tannenbaum method

0.0

0.2

0.4

0.6

0.8

1.0

D
SC

 v
al

ue

2 3 4 5 61
Images

(a)

Proposed method
LBF method

0

1

2

3

4

5

6

H
D

 v
al

ue

2 3 4 5 61
Images

Lankton and Tannenbaum method

(b)

Figure 12: DSC (a) and HD (b) values for LV cardiac MRI segmentation based on Figure 8.

Table 2: Mean (± standard deviation) of DSC metric: left ventricle segmentation results of different methods using 2009 LV MICCAI [36]
validation dataset.

Group [39] [40] [41] [13] Proposed method
DSC (endo) 0.89 ± 0.03 0.89 ± 0.03 0.89 ± 0.04 0.92 ± 0.03 0.95 ± 0.03
DSC (epi) 0.94 ± 0.02 0.93 ± 0.03 0.92 ± 0.02 0.95 ± 0.01 0.97 ± 0.01

Table 3: Mean (± standard deviation) of DSC and HD metrics: right ventricle segmentation results of different methods averaged over ED
(end-diastole) and ES (end-systole) using 2012 RV MICCAI [37] test dataset.

[42] [10] [13] Proposed method
ED ES ED ES ED ES ED ES

Endo (DM) 0.86 (0.11) 0.69 (0.11) 0.88 (0.11) 0.77 (0.18) 0.90 (0.15) 0.82 (0.13) 0.97 (0.09) 0.90 (0.10)
Endo (HD mm) 7.70 (3.74) 11.16 (5.53) 7.69 (6.03) 10.71 (7.69) 7.51 (5.47) 10.50 (8.03) 8.51 (6.83) 7.67 (5.36)
Epi (DM) 0.88 (0.08) 0.77 (0.17) 0.90 (0.08) 0.82 (0.13) 0.89 (0.08) 0.83 (0.12) 0.92 (0.07) 0.91 (0.11)
Epi (HD mm) 7.93 (3.72) 11.72 (5.44) 8.02 (5.96) 11.52 (7.70) 9.36 (8.19) 12.58 (9.03) 6.47 (4.32) 9.34 (6.69)
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