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Abstract

Identifying gene-gene interaction is a hot topic in genome wide association studies. Two fundamental challenges are: (1)
how to smartly identify combinations of variants that may be associated with the trait from astronomical number of all
possible combinations; and (2) how to test epistatic interaction when all potential combinations are available. We
developed AprioriGWAS, which brings two innovations. (1) Based on Apriori, a successful method in field of Frequent Itemset
Mining (FIM) in which a pattern growth strategy is leveraged to effectively and accurately reduce search space, AprioriGWAS
can efficiently identify genetically associated genotype patterns. (2) To test the hypotheses of epistasis, we adopt a new
conditional permutation procedure to obtain reliable statistical inference of Pearson’s chi-square test for the 2|f
contingency table generated by associated variants. By applying AprioriGWAS to age-related macular degeneration (AMD)
data, we found that: (1) angiopoietin 1 (ANGPT1) and four retinal genes interact with Complement Factor H (CFH). (2) GO
term ‘‘glycosaminoglycan biosynthetic process’’ was enriched in AMD interacting genes. The epistatic interactions newly
found by AprioriGWAS on AMD data are likely true interactions, since genes interacting with CFH are retinal genes, and GO
term enrichment also verified that interaction between glycosaminoglycans (GAGs) and CFH plays an important role in
disease pathology of AMD. By applying AprioriGWAS on Bipolar disorder in WTCCC data, we found variants without
marginal effect show significant interactions. For example, multiple-SNP genotype patterns inside gene GABRB2 and GRIA1
(AMPA subunit 1 receptor gene). AMPARs are found in many parts of the brain and are the most commonly found receptor
in the nervous system. The GABRB2 mediates the fastest inhibitory synaptic transmission in the central nervous system.
GRIA1 and GABRB2 are relevant to mental disorders supported by multiple evidences.
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Introduction

Gene-gene interactions have been proposed as one potential

explanation of the well-known problem of missing heritability [1],

and a recent report [2] has quantitatively demonstrated that

possibility. Researchers have long attempted to identify interac-

tions, with methods ranging from evolutionary genetic studies

[3,4], systems biology studies of model microbes [5] and

quantitative genetic studies of inbred model organisms, to linkage

[6] and association studies in human populations [7–14]. Although

the definitions of the term ‘‘epistasis’’ used by biologists (Batson

1909) [15] and statisticians (Fisher 1918) [16] are different, they

have the same consequences regarding different distributions of

genotype patterns among different phenotypes.

The main obstacle of interaction analysis is that the large

number of multi-locus genotype combinations generated from

large numbers of genetic variants is too high for current

computational resources. This is in fact a well-known computa-

tional problem, known in the field of computer science as the

‘curse of dimensionality’ [17]. In this work we developed

AprioriGWAS, a tool to address this problem. This tool is based

on a successful algorithm in the field of computer science, Apriori

[18].

Apriori was originally designed for supermarket data mining to

assist shop owners in designing the layout of displayed products.

Given customers’ transactions, the algorithm can identify sets of

items that frequently co-exist in transactions. For example, by

knowing that customers usually buy milk and bread together, the

shop owner can put them near each other in the store.

Before describing the algorithm, we briefly give definitions of a

few key terms: item is defined as an individual product, for

example, bought by a customer; itemset stands for a set of items

purchased together; length of itemset is defined as the number of

items in the itemset. The process of growing a short itemset to a

longer itemset is referred to as pattern growth. Generally, the key

insights of Apriori are that: (1) frequent itemset with many items can

be gained by growing itemset of short length; and (2) since subsets

of any frequent itemset should also be frequent during pattern
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growth, itemsets predicted not to have any effect can be dropped

during pattern growth, thereby significantly reducing the search

space. In the case of GWAS, the number of individual genotypes is

analogous to the number of transactions in supermarket data. The

genotype of a variant is an item, and genotype combinations of

different variants are an itemset, here also called a genotype

pattern. Instead of just finding frequent genotype patterns, we

want to find genotype patterns with different frequencies in cases

and controls. We call them differential genotype patterns. While

Apriori originally works on one database to find the most frequent

itemsets, we are interested in patterns with different frequencies in

two databases (cases and controls). To assess whether a pattern

should be retained during pattern growth, we make use of the

proportion test [19] (Methods).

Interaction among variants is carried out after obtaining all

differential genotype patterns. We test the possibility of interaction

among variants involved in a differential genotype pattern by

conducting Pearson’s Chi-square test for the contingency tables

composed of all genotype patterns found for variants and phenotypes

(Methods). In this step, we try to distinguish whether a differential

pattern is caused by variants with marginal effects or by interaction

effect. The process of pattern growth helps to narrow down the

number of variant combinations to be tested for interaction effect.

Using simulations following Marchini et al’s procedure [11], we

demonstrate that AprioriGWAS can approximately achieve the

same coverage of associated patterns as an exhaustive search, but

with far lower CPU time.

Determining all potential combinations that are statistically

associated with disease does not automatically identify genuinely

interacting genes. The daunting number of all combinations of

variants heavily increases the load of multiple tests and mixes

genuine signals with noise. As summarized by Anderson [20], in

the regression model with two main effects terms and one

interaction term, there is no exact permutation method for testing

the significance of the interaction term. Buzkova et al [21]

proposed a parametric bootstrap test for gene-gene and gene-

environment interactions, which unfortunately is not practical for

very large numbers of possible combinations of variants. Com-

puter simulation [22] shows that whenever a trait is controlled by

more than a single factor, it becomes possible for a neutral variant

together with a major-effect variant as a pattern to be more

strongly associated with the trait than with any of the causative

factors [13]. These indirect associations are true associations for

statistical purposes, and can be indistinguishable from medical

causative associations [22]. To distinguish general association and

interaction effects, we developed a new conditional permutation test to

distinguish genuine interactions from the artifacts generated by the

combination of a major-effect variant with a neutral variant

(Methods). We demonstrate that our new approach has a

magnitude lower false discovery rate (FDR) compared with regular

permutation, while maintaining comparable power.

We applied AprioriGWAS to age-related macular degeneration

(AMD [MIM 153800]), which has been deemed a good example of a

small number of common variants explaining a large proportion of

heritability [1]. Among the most significant patterns, we found six

pairs of retinal genes interacting with each other. An exciting example

is the interaction of a gene involved in an AMD treatment target,

ANGPT1, with another important AMD gene, CFH. Overall, the

potentially interacting genes were enriched in glycosaminoglycan

biosynthetic process (p~1:39|10{6). Many studies have shown that

the interaction between glycosaminoglycans (GAGs) and CFH plays

an important role in the disease pathology of AMD. We also applied

AprioriGWAS to bipolar disorder; we found potential interactions

inside individual gene (8 out of 18 genes are related with mental

disorder) and interactions across gene or chromosomes. Further

results will be presented in full later.

The remainder of this paper is organized as follows. In the next

section we introduce the AprioriGWAS algorithm for mining

possible interaction variants, as well as the conditional permuta-

tion approach for testing interactions. We then evaluate the

performance of AprioriGWAS with simulated data and compare it

with logistic regression implement in Epistasis function of PLINK.

Lastly we demonstrate applications of AprioriGWAS to AMD and

WTCCC bipolar data and exciting findings from both datasets.

Materials and Methods

Original Apriori Algorithm
Historically, the Apriori algorithm can be traced back to the

seminal paper published by IBM Research in 1993 [18]. The

concept of the main technique is that a subset of frequent itemset

should also be frequent. Based on this concept, frequent itemset

with more items may be found by stepwise growth of smaller

frequent itemset, which saves substantial computational resources.

Interested readers may refer to their original paper [18] for a

professional description or to our own longer report [23] for

illustrative descriptions. Here we briefly outline the main steps.

Suppose one wants to mine frequent itemset with length no more

than n. Apriori will usually scan dataset in n rounds (unless there is

no new frequent itemset generated in a certain round before n,

thereby forcing the algorithm to halt). In the first round, it will

initiate the 1-itemsets that are frequent. In each subsequent round,

it will take the frequent itemset generated in the last round as

starting point and grow any itemset by adding one more item.

Retention of the new itemset will be decided by firstly predicting

how likely it will be and then, given a positive prediction, by

checking the actually supporting transactions. Finally, the collec-

tion of all frequent itemset in all rounds will be reported.

Algorithm of AprioriGWAS
In this paper, genotype patterns are defined as genotype

combinations of different variants. We use integer numbers as ids

Author Summary

Genes do not operate in vacuum. They interact with each
other in many ways. Therefore, to figure out genetic
causes of disease by case-control association studies, it is
important to take interactions into account. There are two
fundamental challenges in interaction-focused analysis.
The first is the number of possible combinations of genetic
variants easily goes to astronomic which is beyond current
computational facility, which is referred as ‘‘the curse of
dimensionality’’ in field of computer science. The other is,
even if all potential combinations could be exhaustively
checked, genuine signals are likely to be buried by false
positives that are composed of single variant with large
main effect and some other irrelevant variant. In this work,
we propose AprioriGWAS that employees Apriori, an
algorithm that pioneers the branch of ‘‘Frequent Itemset
Mining’’ in computer science to cope with daunting
numbers of combinations, and conditional permutation,
to enable real signals standing out. By applying Aprior-
iGWAS to age-related macular degeneration (AMD) data
and bipolar disorder (BD) in WTCCC data, we found
interesting interactions between sensible genes in terms of
disease. Consequently, AprioriGWAS could be a good tool
to find epistasis interaction from GWA data.

AprioriGWAS Effectively Detects Gene-Interaction
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of variants; then we can have, for instance, a pattern like

46AT_609GG_1099CC, denoting a pattern composed of a variant

with id 46 and genotype AT combined, a variant with id 609 and

genotype GG, and a variant with id 1099 and genotype CC. The

key goal is to find genotype patterns that have a significant

frequency difference in cases and controls (called differential

patterns in this paper).

The algorithm of AprioriGWAS is divided into two steps. First,

detecting differential genotype patterns by an Apriori-like

strategy. Obviously, the same set of variants can lead to several

differential genotype patterns. Second, testing interaction among

a set of variants by testing association of all possible combina-

tions of genotype patterns against case/control status. The first

step helps to narrow down the combinations of variants need to

be tested. Due to multiple test problems and potential association

of single variants involved in the differential genotype pattern,

we adopt a new conditional permutation in the second step to

control the marginal effect of single variants for testing of variant

interactions.

1) Detecting differential genotype patterns. The first step

of AprioriGWAS generally follows the flow of the original Apriori

described above. Genotype patterns start from one single

genotype, then, in each subsequent round, genotype pattern

growth occurs by adding one more genotype of a new variant.

Explicitly, for a given pattern length, we scan each pattern in the

candidate set against all candidate genotypes of the remaining

variants to see whether a variant should be included. The main

difference is that the criteria of predicting whether the growth of a

pattern should be retained is replaced by a proportion test [19]

that fits the scenario of case/control studies.

Essentially, the proportion test is to test whether a genotype

pattern has the same frequency between cases and controls

(H0 : pcase~pcontrol vs H1 : pcase=pcontrol ). We denote the geno-

type frequency in the union of cases and controls by p. In the

following equation, pcase, pcontrol and p are respective estimates of

pcase, pcontrol and p. Then we have

z~
pcase{pcontrolffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

p(1{p)( 1
ncase

z 1
ncontrol

)
q

Under the null hypothesis of no difference in frequencies, the

square of the statistic, Z2 follows a chi-square distribution with one

degree of freedom.

For a pattern potentially being significant, it must contain sub-

patterns with moderate marginal effect to pass the proportion test

at the initial round. However, it is possible that some sub-patterns

with no marginal effect could contribute to interacting modules

[24]. (In particular, single variant can be deemed as a pattern with

size 1.) We thus face a trade-off here: too strict a threshold of the

proportion test will exclude potential patterns that contain sub-

patterns without marginal effect, whereas too relaxed threshold

will end up with too many candidates to test. To balance this

trade-off, we add ad hoc criteria for pattern growth. The idea is that

we assume that the genotype pattern with more than one variant

without marginal effect is not likely to be useful, while the pattern

with just one variant is more likely to be. For example, for a

pattern with length = 3, if all of its 2-item sub-pattern are not

significant, we assume that this pattern cannot be significant and

will remove it from the candidates; however, if all of its 1-item sub-

pattern are not significant, we still retain this pattern as potential

target. Formally, when pattern length is not greater than one, both

differential patterns and non-differential patterns with relatively

high frequency will be kept in the candidate set for pattern growth.

When pattern length exceeds one, only differential patterns will be

used in the next round of pattern growth.

2) Testing genotype pattern association against case/

control status. After obtaining a list of differential genotype

patterns by the innovative pattern-growth algorithm, we generate

a 2|fð Þ contingency table for variants involved in differential

genotype patterns. The two columns stand for cases and controls;

f rows are for the genotype patterns composed of the involved

variants to be tested. To prevent potential problems of a sparse

contingency table, we aggregate genotype patterns rare in both

cases and controls into one group. We thereby have f {1ð Þ major

patterns, plus an extra row of rare patterns. Then we assess the

global deviation from randomness by Pearson’s chi-square test

with f {1ð Þ degrees of freedom.

3) Control family-wise error rate by conditional

permutation. In genome wide association studies, more than

100,000 variants are generally tested. For gene-gene interaction

studies, the possible combination for testing is even higher. With

large numbers of tests being carried out, we need to correct for

multiple testing to keep the global significance level under control.

Various solutions have been demonstrated on published data.

Permutation tests are widely used in genomic studies. However, as

it has been summarized by Anderson [25] and further investigated

by Buzkova et al [21], both regular permutation and traditional

conditional permutation are not valid to test gene-gene or gene-

environment interactions. Before proposing our new development,

and to keep the paper self-contained, we summarize their insight

as follows. We first consider a test for interaction between the

effects of a single genetic variant and an environmental exposure E

on a phenotype Y. (E could be another genetic variant), as

described by:

log it P½Y~1�ð Þ~azbGGzbEEzc E|Gð Þ ð1Þ

The null hypothesis is that the interaction term has no effect

c~0ð Þ while G and E may have effects. To test whether c~0, a

regular permutation test would permute all outcomes Y to give

Y �. In the permuted dataset, Y � is independent of G and E and

E|G. However, in equation (1), it is not necessary that Y be

independent of G and E. Buzkova et al’s simulation showed that

regular permutation is not valid to test interaction in such a

situation. On the other hand, for the null hypothesis of one

categorical main effect (e.g. E has an effect on the outcome of Y),

one may be interested in comparing the null hypothesis of

log it P Y~1½ �ð Þ~azbEE to the full alternative (1), testing

bG~c~0. Traditional conditional permutation, which permutes

Y within individual strata of E, is not valid for specifically testing

no interaction (Anderson [20]). Thus, Buzkova et al [21] proposed

a parametric bootstrap test for gene-gene and gene-environment

interactions. In principle, the authors fix G and E and generate Y �

for each individual as a binary variable satisfying

log it p Y �~1½ �ð Þ~âazb̂bGGzb̂bEE

Where âa and b̂bG , b̂bE are estimated from the original data under

the null model of (1). Then the authors compute the test statistic

for the simulated sample and repeat the process many times to

obtain the test statistic’s distribution under the null hypothesis.

Correspondingly, the significance level of an observed value could

be evaluated from simulated test statistics. Applying the parametric

bootstrap strategy for all pairs of candidates would be computa-

tionally unaffordable for whole genome analysis. In addition, the

main effect of individual variants will be removed in a regression

AprioriGWAS Effectively Detects Gene-Interaction
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model. However, for Pearson’s Chi-Squared test of the contin-

gency table, the main effect of individual variants and their

interaction effect are mixed. We therefore propose a new

conditional permutation strategy below.

Test statistics and null hypothesis. As described above, we get a 2|f

contingency table for variants involved in differential genotype

patterns, and then do a Pearson’s Chi-Squared test for the 2|f

contingency table. Our test statistic is the p-value of the Pearson’s

Chi-Squared test of the contingency table.

The null hypothesis H0 is that, conditional on the individual main

effect of the variant with highest marginal effect (higher than that of

all other variants in the pattern), there is no extra interaction among

the variants that contribute to the association level. Precisely

speaking, for any significance level, a, of marginal effect,

H0 að Þ~ NoInteractionDp vð Þ~að Þ, where p vð Þ denotes the p-value

of variant v in single marker test, and v has the highest marginal

effect compared with other involved variants in the pattern.

To test whether H0 að Þ holds, our test statistic is the p-value of

Pearson’s Chi-Squared test of the contingency table composed of

all variants in the pattern, conditional on the p-value of v,

P tableDp vð Þ~að Þ, and generate its null distribution using the

conditional permutation described below.

A modified conditional permutation. Formally, the procedure is as

follows: assuming variant v has the strongest marginal effect among

the variants involved in a given differential pattern, we retain the

association of v with the phenotype outcome Y (i.e., when the labels

of individuals change, v will change accordingly), and permute Y to

yield Y �. By this permutation, Y � is independent of all other

variants, but keeps its dependency with v. This permutation thereby

yields the null distribution of the p-value of Pearson’s Chi-Squared

test of the contingency table when a main effect of v is present.

More precisely: we use N to denote the vectors composed of

1,2, . . . ,n where n is the sample size, and use m to denote the number

of variants. A permutation is denoted by a mapping p : N?N.

Suppose the phenotype and genotype data before permutation are

y1 x1,1 � � � xv,1 � � � xm,1

y2 x1,2 ' xv,2 � � � xm,2

..

. ..
. ..

. ..
. ..

. ..
.

yn x1,n � � � xv,n � � � xm,n

0
BBBB@

1
CCCCA

Then after permutation it may be:

yp 1ð Þ x1,1 � � � xv,p 1ð Þ � � � xm,1

yp 2ð Þ x1,2 � � � xv,p 2ð Þ � � � xm,2

..

. ..
. ..

. ..
. ..

. ..
.

yp nð Þ x1,n � � � xv,p nð Þ � � � xm,n

0
BBBBB@

1
CCCCCA

As in the standard procedure, for each permutated dataset, we

repeat the whole process of mining patterns, getting the smallest p-

value for the contingency table. By generating many permuted

datasets, the empirical distribution of test statistics under null

hypothesis is obtained. Correspondingly, the p-values in observed

data are calculated as the proportions of permuted test statistics that

are at least as extreme as the observed value.

As explained above, performing parametric bootstrap tests for

each pair of variants would be computationally expensive; now the

same problem applies to our initial strategy. To make the test of

interaction feasible for GWAS data, some computational tricks

have to be employed. Since different variants with the same

significance level of marginal effect will share the same null

distribution, it is feasible to calculate the null distributions in

advance and use that for each variant. We therefore choose to

group variants with a similar level of marginal effects and use the

same threshold for each group. For example, variants with p-value

between (0.001,0.0001) in the single marker test will use the same

threshold calculated in advance from the null distribution. We

thereby obtain the table of thresholds for patterns composed of

variants with different categories of marginal effect and make use

of them as a lookup table during the analysis.

Formally, we calculate the table of thresholds as follows. For

variants with p-values in the single marker test of less than 0.001,

we set one threshold for each order of magnitude (i.e., from 10{n

to 10{ nz1ð Þ, where n§3 n$3). For all other variants with p-value

larger than 0.001 (e.g, 0.1), we treat them as one extra group. For

each group of variants we choose the lower limit of the p-value to

do conditional permutation. For example, in the analysis of AMD

data, among 103,611variants, 62 variants have p-values within

(0.001, 0.0001), 8 variants have p-values in (1024, 1025), one

variant has a p-value in (1025, 1026), one variant has a p-value in

(1026, 1027), and all others have p-values exceeding 1023. We

choose the most significant one in each class, and do a conditional

permutation for that variant, thereby obtaining the critical value

for the contingency table composed of variants no more significant

than the lower limit of each class. We then compare results from

the non-permuted dataset with the pre-calculated lookup table to

obtain the significant combinations of variants.

Effect Models in Data Simulation
Theoretical two-locus interaction models. To make our

methods more comparable with existing methods, we adapt

Marchini et al’s [11] two-locus interaction models. To keep the

paper self-contained, we briefly describe the procedure here.

Table 1–3 describes three two-locus interaction models. Capital-

ized letters denote the disease allele. In Model 1, the odds of

disease increase multiplicatively with genotype both within and

between loci. With increasing numbers of the disease allele in a

genotype, odds of having the disease increase multiplicatively. The

odd of disease for the genotype combination at two interacting loci

is the product of the two within-locus effects. Model 2 and 3

require that both loci have at least one copy of the disease

associated allele for the odds to increase beyond the baseline level.

The difference is that in Model 2 each additional copy of the

disease-associated allele further increases the odds by a multipli-

cative factor, whereas in Model 3, additional copies of disease-

associated alleles do not further increase the risk.

For power simulations, we adopt all the parameters (allele

frequencies pA and pB, prevalence of disease p and parameter l)

and definitions from Marchini et al’s work [11]. For more details,

please see supplements of their paper [11]. To make this paper

self-contained, the definition of these parameters are listed below:

Table 1. Model 1: Multiplicative effects within and between
loci model.

bb Bb BB

aa a a (1+h) a (1+h)2

Aa a(1+h) a (1+h)2 a (1+h)3

AA a(1+h)2 a (1+h)3 a (1+h)4

Theoretical models (adopted from Marchini et al [11]) for data simulations.
doi:10.1371/journal.pcbi.1003627.t001

AprioriGWAS Effectively Detects Gene-Interaction
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p~P Dð Þ~
X

gA ,gB

P DDgA,gBð ÞP gA,gBð Þ

l~
P DD1Að Þ
P �DDD1Að Þ

�
P DD0Að Þ
P �DDD0Að Þ{1

We set disease prevalence to 0.1, parameter l ranges from 0.2, 0.3,

0.5 to 0.7, and the two interacting loci (A and B) have population

allele frequencies 0.05, 0.1, 0.2, and 0.5.

Epistasis models in classical textbook simulated based on

HapMap genotype. In addition to the theoretical interaction

models heavily used in the literatures that aim to develop new

statistical methods for gene interactions, we also simulate

phenotype practically studied interaction models using real

genotypes.

In classical textbooks on genetics, a technique to detect epistasis

(usually in animal or plant breeding practice) is to check whether

the proportions in an F2 population fit theoretical predictions of

hypothetical interaction type (Table 4). Although that are

practices in breeding studies instead of human studies, the well-

studied models still serve as established genetic template for

simulations that may be closer to real traits. Among the six

classical models, there are three models, i.e., Duplicate dominant,

Duplicate recessive, and Dominant & recessive interaction, that contain

two distinct phenotype values (in contrast to the other three with

more than two values) (Table 4). Here, as described in standard

textbooks, the term ‘‘Duplicate dominant’’ denotes the scenario that a

single mutated allele in any of the two focal genes will cause

phenotypic change; ‘‘Duplicated recessive’’ denotes the case that a

homozygote genotype in any of the two focal genes will cause

phenotypic change; ‘‘Dominant & recessive interaction’’ denotes the

events that either a single mutated allele in the first focal gene or

no mutated allele in the first gene together with a mutated allele in

the second gene will lead phenotypic change. We deem these two

phenotype values as indicators of case or control and simulate

phenotype based on real genotype from unrelated CEU samples of

HapMap III (http://hapmap.ncbi.nlm.nih.gov) (sample size 180).

We simulate 1000 datasets for each model and calculate powers as

described above.

Real Data
Age-related Macular Degeneration (AMD) data. The

AMD dataset analyzed in this paper was published by Klein et al

[26]. This dataset contains 103,611 SNPs (after primer QC)

genotyped for 96 affected individuals and 50 controls. We

removed SNPs containing more than four missing genotypes.

After filtration, 96,607 SNPs remained. Then we applied

AprioriGWAS with the default parameter setting on further

quality-controlled data.

WTCCC Bipolar Disorder data. Bipolar disorder data used

is available from WTCCC [27]. We take 1868 bipolar disorders

versus 2938 controls genotyped on 393,271 SNPs for our genotype

pattern search.

Method Evaluation
Coverage of differential patterns comparison. To quan-

titatively estimate how many genuine differential patterns could be

detected by AprioriGWAS, we compared significant differential

patterns (pattern length = 2, significance level, p,0.0001) detected

by the default setting of AprioriGWAS with an exhaustive search in

3200 simulated datasets. Coverage is defined as the percent of

differential patterns detected in each simulated dataset.

Power comparison with logistic regression. To assess the

power of different methods, we simulated 1000 cases and 1000

controls genotyped at 1,000 variants with a single pair of causative

interacting loci. For each model and combination of parameters,

we simulated 200 datasets. The power for each model and

parameters is thus defined as the number of datasets from which

we find the two simulated interaction variants divided by the total

number of simulated datasets (here 200). To make a fair

comparison of power, we control family-wise type I error by

conducting permutation for both methods. Controlling the FDR

(False Discovery Rate) of AprioriGWAS is done by conditional

permutation, as stated above.

Results

Simulation Shows FDR Is Well Controlled by Conditional
Permutation

We simulated data by two-locus interaction models proposed by

Marchini et al [11] (Methods), in which three types of interactions

are generated. We then applied regular permutation and

conditional permutation to control family-wise type I error.

Table 2. Model 2: Threshold effects then multiplicative
effects model.

bb Bb BB

aa a a a

Aa a a (1+h) a (1+h)2

AA a a (1+h)2 a (1+h)4

Theoretical models (adopted from Marchini et al [11]) for data simulations.
doi:10.1371/journal.pcbi.1003627.t002

Table 3. Model 3: Threshold effects with no multiplicative
effects model.

bb Bb BB

aa a a a

Aa a a (1+h) a (1+h)

AA a a (1+h) a (1+h)

Theoretical models (adopted from Marchini et al [11]) for data simulations.
doi:10.1371/journal.pcbi.1003627.t003

Table 4. Ratio in F2 populations under different interaction
models.

Model A_B_ A_bb aaB aabb

No interaction 9 3 3 1

Dominant Epistasis 12 3 1

Recessive Epistasis 9 3 4

Duplicate with cumulative effect 6 6 1

Duplicate Dominant 15 1

Duplicate Recessive 9 7

Dominant & Recessive Interaction 13 3

doi:10.1371/journal.pcbi.1003627.t004
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The performances of regular permutation and conditional

permutation test (Methods) are demonstrated in Figure 1A and
1B. We compared both power and FDR, using regular

permutation and conditional permutations to adjust thresholds

for type I error. Family-wise type I error was set to 0.05 for both

methods. It is evident that the FDR was significantly reduced by

the conditional permutation test, although some power is

sacrificed compared with regular permutation.

To demonstrate that the nominal p-value of a contingency

table for multi-variants could be in large part caused by

individual variants with strong marginal effect, we took a real

example from analyzed AMD data. Figure 2A shows two

variants, each with no marginal effect, but in combination with

strong marginal effect. Figure 2B shows two variants, one has

strong marginal effect, and the other does not show any

marginal effect. Although the nominal p-value of the contin-

gency table is more significant than the pair of variants in

Figure 2A, one can deduce that the low p-value from

Figure 2B is in large part caused by the variants with strong

marginal effect; in Figure 2A, on the other hand, there must be

some interaction effect.

Coverage Comparison between Exhaustive Search and
AprioriGWAS

As mentioned, AprioriGWAS manages to dramatically speed up

the search process by dropping the candidate genotype patterns

Figure 1. a. FDR comparison of regular permutation and conditional permutation; b. Power comparison of regular permutation
and conditional permutation. FDR and power comparisons for regular permutation and conditional permutation (example results from epistasis
Model 2). Y-axis is the power or FDR; X-axis shows combination of effect size (l) and minor allele frequency (MAF) in simulation. (a): FDR comparison
of controlling family-wise type I error ( = 0.05) by regular permutation and conditional permutation. (b): Power comparison of controlling family-wise
type I error ( = 0.05) by regular permutation and conditional permutation.
doi:10.1371/journal.pcbi.1003627.g001
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unlikely to grow to differential pattern. Since it is based on

prediction at an early stage in the search, it still theoretically runs

the risk of mistakenly dropping sensible patterns. Here we

quantitatively tested the percentage of mistakenly dropped

differential patterns by comparing AprioriGWAS and exhaustive

search (Method).

Figure 3 shows the comparison between searching for

combinations of variants (with default parameters in AprioriGWAS)

and exhaustive search. We found that 97% of all differential

genotype patterns found by exhaustive search were covered by the

results from AprioriGWAS. With such high coverage, the chance of

losing possible interaction variants is minimized. There are a few

points below 85%, reflecting that there is variation of power to

cover all potential combinations. It is true that the overall coverage

is subject to lots of parameters, like sample size and allele

frequency. To minimize this variation, larger sample size is always

desirable.

Power Comparison between AprioriGWAS, Single Variant
Test, and Logistic Regression (i.e., epistasis Function in
PLINK) Using Theoretical Model

We compared the ability of AprioriGWAS to find interacting

variants with traditional single locus genotypic test and

exhaustive search in PLINK [28] (epistasis function). The epistasis

function in PLINK for case control data is basically stepwise

logistic regression. We chose to use the all combinations option.

Figure 2. a. Patterns formed by variants without marginal effect; b. Patterns formed by variants with marginal effect. Evident
examples justify the necessity of applying conditional permutation to control marginal effect from single variants. (a) The patterns formed by two
neutral variants are more likely to be interacting, contrasting to (b) the low P-value of the contingency table is more likely due to the variants with
strong marginal effect.
doi:10.1371/journal.pcbi.1003627.g002
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The power comparison is based on two levels: finding at least

one casual variant, or finding both interacting variants

(Figure 4).

For Level 1, detecting at least one causal variant, we found that

the traditional single variant test had the highest power in Model

1, which has explicit marginal effects for both causal variants.

AprioriGWAS performed similarly with the single loci test in Model

2, and had better power in Model 3 (Figure 5). This is natural,

since Model 2 and 3, which contain no explicit marginal effects,

are expected to be harder to detect without an interaction-based

searching strategy.

For Level 2, detecting both interacting variants, it is evident that

AprioriGWAS had the highest power in most cases of Model 2 and 3

(Figure 4). On the other hand, the performance of the epistasis

function in PLINK, which exhaustively searches all combinations,

was not as good in all cases. This is because: (1) stepwise logistic

regression does not capture the interactions well, since the effects

of the terms are added in a linear manner, whereas AprioriGWAS

explicitly addresses detailed patterns; (2) in stepwise logistic

regression the genuine interactions are buried by the noise of a

too large number of combinations, whereas with the conditional

permutation test used in AprioriGWAS, genuine interactions are

able to stand out.

When comparing corresponding panels in Figure 4 and

Figure 5, it is observed that for the single variant test the power

of finding both interacting variants (i.e., Level 2) dropped

significantly compared with the power of finding at least one

causal variant (i.e., Level 1). By contrast, interaction based

methods, i.e., both AprioriGWAS and PLINK epitasis, maintained

similar power for both levels. This was not unexpected since the

interaction-based strategies should be better able to find an

epistasis effect.

We also simulated data that have more SNPs (1,000,000) and

find that the relative power between three methods and interaction

models remain similar although the absolute powers are all

decreased. (Figure S1)

Power Comparison between AprioriGWAS and Single
Variant Test Using Real Genotype and Studied Genetic
Model

Figure 6 shows the power of AprioriGWAS and single variant

test on three classical genetic models studied in model organisms.

There are three powers for each genetic models: power for

detecting at least one gene using single variant test, power for

detecting both genes using single variant test, and power for

detecting both genes using AprioriGWAS. Since PLINK is not

scalable for such a dataset, we have not achieved power estimates

for logistic regression. For the model ‘‘Duplicated Dominant’’,

AprioriGWAS outperforms single marker test for detecting single

gene or both genes, whereas for models ‘‘Duplicated Recessive’’ and

Figure 3. Coverage of finding differential genotype patterns by
AprioriGWAS. Coverage comparison of AprioriGWAS with default
setting and exhaustive search. On average 97 percent of differential
patterns can be detected by AprioriGWAS with the default parameters
setting.
doi:10.1371/journal.pcbi.1003627.g003

Figure 4. a. Power of finding both interacting variants for
model 1; b. Power of finding both interacting variants for
model 2; c. Power of finding both interacting variants for
model 3. Power of finding both interacting variants for model 1, 2, and
3 (depicted in a, b, and c respectively). AprioriGWAS has much better
power for Models 2 and 3, which do not show explicit marginal effect.
The X-axis is the same as Figure 1.
doi:10.1371/journal.pcbi.1003627.g004
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‘‘Dominant & Recessive Interaction’’, AprioriGWAS is more powerful for

detecting both genes, but not for detecting single genes. It is

notable that the power of detecting both genes in the model

‘‘Dominant & Recessive Interaction’’, in which epistasis is functioning;

single variant test has almost zero power (0.1%) while AprioriGWAS

has around 50% power.

CPU Time and Memory Usage
We compared the speed of our method with the epistasis function

in PLINK. Figure 7 shows that the default threshold setting in

AprioriGWAS was approximately a magnitude faster. Although

retaining candidate genotype patterns in memory can help speed

up the algorithm, its affordability is subject to the particular

computational resources.

We took the strategy of writing candidate patterns on hard disk

for each round of pattern extension. The genotype data used to be

relatively small comparing with the patterns however is getting

larger and larger empowered by new sequencing platforms. To

solve this problem, we implemented AprioriGWAS using HDF5-

based data format [29] which stores genotype data on disk and

accesses them as though stored in main memory. Therefore, the

memory usage is scalable to whatever size of potential dataset and

the speed is not scarified. (See more on computational and

memory complexity in section Discussion.)

Applying AprioriGWAS to AMD Data
We applied AprioriGWAS on published AMD data [26]. We

identified 168 significant pairs of variants (family-wise type I

error = 0.01), presented in Table S1. By checking published

functional literals and gene annotations, as well as GO enrichment

Figure 6. Power comparison using real genotype and known
genetic models. a. Duplicate Dominat; b. Dominant & Recessive
Interaction; c. Duplicate Recessive. Y-axis is power, X-axis denotes
different methods.Figure 5. a. Power of finding at least one causal variant for

model 1; b. Power of finding at least one causal variant for
model 2; c. Power of finding at least one causal variant for
model 3. Power of finding at least one casual variant for model 1, 2,
and 3 (depicted in a, b, and c respectively). The single locus test has the
highest power for Model 1, which has explicit marginal effect for both
interacting variants; AprioriGWAS has better power for the threshold
model, Model 3. The X-axis is the same as Figure 1.
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of the genotype patterns, we learned that the findings are well

validated by existing functional studies and clinical applications.

1) Genes interacting with Complement Factor H. We

found that ANGPT1, BBS9, PP7, MED27, CHRM2 interact with

a well-known AMD gene, Complement Factor H (CFH). The

most exciting finding here is ANGPT1, a protein with important

roles in vascular development and angiogenesis. In fact, drugs for

anti-angiogenic activity have been approved by the FDA in the

United States for the treatment of cancer and AMD [30]. BBS9,

MPP7, MED27, these three genes found here to interact with

CFH have also been reported to be important for retinal disease

[31–42].

2) Verification from GO term enrichment. We performed

GO term enrichment analysis for significant pairs of genes with an

online tool developed by Roth lab (http://llama.mshri.on.ca/

funcassociate/). Table 5 lists enriched GO terms and their

corresponding significant levels. Many studies from the fields of

structural biology, translational biology, and immunology demon-

strate that factor H recognizes and binds to self-surfaces via sialic

acid and glycosaminoglycan (GAG) chains of proteoglycans,

whereupon its complement-regulating properties were enhanced.

The interaction between glycosaminoglycans (GAGs) and CFH

plays an important role in the disease pathology of age-related

macular degeneration [43–52].

3) Replicated interactions found by other method on the

same AMD data. The AMD data has also been analyzed by

many other methods aiming to search gene-gene interaction. For

example, Bayesian model based method, BEAM [53] and

epiMODE [8] and forest-based approaches [54] and [55]. In their

forest-based approaches on the same dataset we are using, Chen et al

[54] and Wang et al [55] found a haplotype in gene BBS9 interacting

with a haplotype in the CFH gene. Our results confirm theirs.

Applying AprioriGWAS to WTCCC Bipolar Disorder Data
Besides AMD data that were extensively analyzed by the

community interested in gene-gene interactions, we also applied

AprioriGWAS on Bipolar Disorder data from WTCCC [27] to

further test whether it is scalable for larger dataset. The whole task

was distributed onto 1,000 CPUs in a cluster and the average

execution time for a single job is 56.8 hours. Only 4 Gb memories

were employed during the computation, evidencing the great

performance of HDF5-based implementations.

1) Variants without marginal effect show significant

interactions. Based on 1000 conditional permutations, we

identified 200 significant pairs of variants (family-wise type I

error = 0.001), presented in Table S2. The observed number of

interactions is inflated due to LD. Majority of interacting variants

doesn’t show marginal effect in single variants test. One important

aspect of AprioriGWAS is that people can always check genotype

patterns that drive the contingency table of variants combination

to be significant.

2) Evidence from GO term enrichment analysis. Go terms

‘‘synaptic membrane’’ (GO:0097060), ‘‘synaptic transmission’’

(GO:0007268), ‘‘transmission of nerve impulse’’ (GO:0019226)

and ‘‘multicellular organismal signaling’’ (GO:0035637) are barely

significantly enriched in found SNPs pairs (Table 6).

3) Evidence from public database and literatures. We

found multiple-SNP genotype patterns inside individual genes (8

out of 18 genes in Table S2 are related with mental disorder).

Good examples are GABRB2 and GRIA1 (a-amino-3-hydroxy-5-

methyl-4-isoxazole proprionic acid (AMPA) subunit 1 receptor

gene). AMPARs are found in many parts of the brain and are the

most commonly found receptor in the nervous system. The

GABRB2 mediates the fastest inhibitory synaptic transmission in

the central nervous system. Multiple evidences showed that

GRIA1 and GABRB2 are relevant to Bipolar Disorder and

Schizophrenia [56–62]. These genes however haven’t been found

in original analysis of WTCCC bipolar disorder using single

marker tests. We also identified interactions across genes or

chromosomes. Focus only on multiple hit of interact regions,

GRIK3 from chromosome 1 interacts with a region in chromosome

3; SULT4A1 from chromosome 22 interacts with a region on

chromosome 12; LRFN2 from chromosome 6 interacts with

SORBS1 from chromosome 10; Based on queries from GeneCard

database (http://www.genecards.org), we found that diseases

associated with GRIK3, SULT4A1 and LRFN2 are schizophrenia,

Table 5. GO term enrichment analysis for AMD results.

N X LOD P P_adj attrib ID attrib name

4 22 1.669629349 5.303E-06 0.004 GO:0006024 glycosaminoglycan biosynthetic process

4 24 1.624997259 7.641E-06 0.005 GO:0006023 aminoglycan biosynthetic process

4 29 1.53008602 1.673E-05 0.011 GO:0030203 glycosaminoglycan metabolic process

4 33 1.466704223 2.835E-05 0.019 GO:0006022 aminoglycan metabolic process

doi:10.1371/journal.pcbi.1003627.t005

Figure 7. Speed comparing with Epistasis function in PLINK.
CPU time compared with the epistasis function in PLINK. This
comparison is based on 3200 simulated datasets, each with 1000 case,
1000 control and 1000 variants. AprioriGWAS with default parameters
setting is a magnitude faster than PLINK.
doi:10.1371/journal.pcbi.1003627.g007
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schizotypal personality disorder and neuronitis respectively, and

SORBS1 is associated with insulin resistance.

4) Result by other gene-gene interaction method. Most

interaction studies for bipolar disorder focuses on gene-environ-

ment interaction rather than gene-gene interaction. There is a

literature focusing on gene-gene interaction, Oh et al [63], that also

identified that GABRB2 plays important role in Bipolar Disorder.

Discussion

We have introduced AprioriGWAS, patterned after the Apriori

algorithm in the bioinformatics field of frequent itemset mining

(FIM), as a tool for detecting main and interaction effects of

genetic variants in case-control association studies. One of its

outstanding properties is that it can find variants whose disease

association lives solely from their interaction without having

(appreciable) main effects. We applied our approach to a

published dataset on AMD and documented that AprioriGWAS

furnishes sensible results. In fact, it found an AMD-associated

variant (ANGPT1) not previously reported to be associated with

AMD. We also identified interesting genes from WTCCC bipolar

disorder data. One good point is that GO term enrichment

analyses of all the genes identified, always show sensible terms for

relevant disease. Our description of these findings is primarily

intended to show the efficacy of our approach rather than to

provide research findings about AMD and bipolar disorder.

False Discovery and Replication in Other Dataset
Regardless the goal being interaction or single gene, statistical tests

all suffer from the problem of false positives. Since the numbers of

variants (and their combinations) are usually a few magnitudes larger

than the sample size for most association studies, it will be common to

see false positives. The current practice in the community is that

researchers who would like to claim association or carry out

experimental validations usually have to check whether the results

are replicable in other independent dataset(s) Researchers who use

AprioriGWAS can also use this to filter results before doing

experimental validations. As an example, we use another indepen-

dent dataset for AMD study [64] to check whether the results are

replicable. Among the five interactions with CFH reported in this

paper, we found that BBS9/CFH and CHRM2/CFH are replicated

in the other dataset. However, we understand that these two datasets

are very different: one is wet AMD and the other is dry AMD. One of

them is more prevalent in Asia than the other. Therefore, our further

analysis of data in [64] may not serve as perfect replication of the

findings presented, although it suggests that BBS9 and CHRM2 may

be of higher priority for further experimental validations.

Other Multiple Variants Analysis Methods
The most commonly used multiple variants analysis is stepwise

regression, in which variants are added to the regression equation

one after another by some suitable criteria. But statistical analysis

shows that the usual stepwise model selection methods are path

dependent and therefore suboptimal [65]. Besides regression,

some methods are based on discrete mathematics, like the

Combinatorial Partition Method (CPM) [66] and its refined

version, the Restricted Partition Method (RPM) [67]. However,

RPM still requires a daunting number of tests when the number of

variants is high. This is because its insight into reducing tests lies in

its practice to combine close phenotypes, which consequently does

not entirely solve the problem of too many combinations of

genotypes. Another well-known method of counting potential

combinations is multifactor dimensionality reduction (MDR). It

collapses cells in a contingency table into two groups and conducts

a test on them. Essentially however it reduces the dimensionality of

testing, rather than reducing the dimensionality of the process of

counting genotype patterns. Therefore, when the number of

variants is large, it still suffers from the ‘‘curse of dimensionality’’

[17]. Bayesian methods leveraging MCMC, e.g, BEAM [53] or

epiMODE [8], should theoretically suffer less from computational

limitations, but they do not directly test detailed combinations of

genotype patterns and thereby sacrifice the advantages of fine scale

learning of gene-gene interactions. Another branch of frequently

used methods is two-stage analysis [68], by which the investigator

can utilize relatively ‘‘simple’’ or computationally efficient tests to

choose qualified variants in the first stage analysis. Then, taking

advantage of the relatively small number of variants, the

investigator can adopt some advanced but computationally heavy

test to identify interacting genes. However, due to a lack of strong

prior knowledge, the true signals might have been removed from

the first stage if the procedure was not well designed. As an

example, interacting variants with no marginal effect may be

filtered out if one uses tests based on marginal effects of single

variants in the first stage. Nevertheless, with good design, this

approach is still very promising and can be combined with all the

approaches reviewed above; and it can naturally also be combined

with the method proposed in this work.

Computation Time and Algorithm Complexities
Computation time and spatial complexities of the tool may be

interesting to the reader. The number of transactions for original

Apriori corresponds to sample size in GWAS; the number of items

is equivalent to the number of variants and the itemsets. In

contrast to supermarket data, GWAS data have a limited number

of ‘‘transactions’’, but a large number of ‘‘items’’ in two datasets,

cases and controls. Both conditions make the problem more

difficult. The time spent reading the data in each round of pattern

growth is constant. In addition, the computational resources cost

depends on how many combinations of genetic variants will be

generated and tested. The more combinations are tested, the less

likely it is that genuine patterns are missed, though of course more

resources will be used. In AprioriGWAS, there are several

Table 6. GO term enrichment analysis for Bipolar Disorder from WTCCC.

N X LOD P P_adj attrib ID attrib name

7 215 0.937543575 4.83E-05 0.072 GO:0097060 synaptic membrane

12 664 0.684053863 3.53E-05 0.061 GO:0007268 synaptic transmission

13 754 0.666216413 2.63E-05 0.05 GO:0019226 transmission of nerve impulse

13 781 0.649980196 3.79E-05 0.07 GO:0035637 multicellular organismal signaling

doi:10.1371/journal.pcbi.1003627.t006
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parameters for the user to specify according to their computer

resources and understanding of the disease model. The threshold

for the proportion test and minimal support of concerned itemsets

are parameters that affect candidate search space, algorithm

speed, and power of detecting all distinct genotype patterns. When

these parameters are set to zero, AprioriGWAS will exhaustively

search all possible combinations. (Please refer to our Manual of

AprioriGWAS for the tradeoffs and discussions on setting these

parameters according to computational resources.)

Those familiar with Apriori may suggest that, given Apriori’s ability

to also mine association rules, one could also treat the case control

label as items and directly adopt Apriori for case/control data. The

result will then be a subset of variants that can imply the case/

control labels. But searching frequent itemsets and then mining the

association between genotype pattern and disease status is

inefficient, since frequent genotype patterns are not necessarily

associated with phenotype; on the other hand, genotype patterns

strongly associated with phenotype may not necessarily be in high

frequency, and such an association could be distributed in different

patterns than the same variants combinations.

Conditional Permutation versus Regular Permutation on
Controlling Family-Wise Type I Error

Instead of the conditional permutation proposed here, one

could also consider Bonferroni correction. For n variants with

search length of m, the total number of combinations is huge.

Given the natural correlation of the combinations, it is clearly far

more stringent than necessary. However, only correcting on the

number of differential pattern tested produces a bias in the other

direction, since the nominal value of the significance level of the

chi-square test for the 2|f contingency table will be inflated by

the selection procedure [69]. It is therefore always preferable to

use a permutation test for the whole procedure. With regular

permutation, one permutes the Case/Control label and then

performs the whole test process. The smallest P-value of each

permutation are ranked, allowing one to get the distribution of test

statistics under ‘‘Null’’ from the permuted dataset. With regular

permutation, no variant should have marginal effect, and the p-

value of the contingency table for the combination of variants is

under the null hypothesis of no variants having marginal effect.

However, regular permutation suffers from an inflated signif-

icance level for contingency tables containing variants with

marginal effects. This is due to the fact that when a contingency

table is composed of at least one variant with strong marginal

effect, the p-value for that contingency table becomes extremely

small compared with regular permutation results. The FDR is

therefore very high, even close to 1.

To solve the problem of an inflated significance level by a

contingency table composed of at least one variant, v, with strong

marginal effect, we developed a conditional permutation proce-

dure (Methods), which helps get the null distribution of the p-

value of a contingency table composed of the variant and other

variants. Simulation results show that, when we control the family-

wise type I error by conditional permutation, we also keep FDR

well controlled. Compared with INTERSNP [13], which lists only

the top 50 variant combinations including the variant with

marginal effect, conditional permutation in AprioriGWAS keeps

FDR well controlled in a systematic way.

Linkage Disequilibrium (LD)
Another concern might be whether these differential genotype

patterns are artifacts caused by linkage disequilibrium (LD). We

believe this is not the case, since the LD should impact both cases

and controls, and therefore the pattern created by LD will not be

differential unless the LD structure is significantly different in cases

and controls for particular genetic variants. If that is the case, then

there must be some reason of selection to explain the deviation in

the genotype pattern, and it is difficult to judge whether this is an

artifact or something of interest. In addition, our conditional

permutation also breaks LD between interacting variants.

Rare and Low-Frequency Variants
Low-frequency or rare variation might impact the performance

of the method, even when explicitly only testing for interactions

among common variants. What matters is the extent of LD

between causal rare variants and testing common variants. We

haven’t addressed this problem in the current method. It would be

interesting to extend AprioriGWAS toward that direction. There

may be non-trivial statistical challenges since the low-frequency or

rare variants are usually less shared by the individuals therefore

their combinations that form genotype patterns will be even less

shared by individuals. For a given set of variants, we will have

many patterns with little supports.

Supporting Information

Figure S1 Power comparison using 1,000,000 genetic
variants. a. Power of finding both interacting variants for
model 1; b. Power of finding both interacting variants for
model 2; c. Power of finding both interacting variants for
model 3. Power of finding both interacting variants for model 1, 2,

and 3 (depicted in a, b, and c respectively). AprioriGWAS has much

better power for Models 2 and 3, which do not show explicit

marginal effect. The X-axis is the same as Figure 1 & Figure 5.
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Table S1 Results of Age related Macular Degeneration
(AMD). 168 pairs of variants show significant genotype pattern

difference between case and control samples.
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Table S2 Results of Bipolar Disorder from WTCCC. 200

pairs of variants show significant genotype pattern difference

between case and control samples.
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