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Abstract: Obstructive sleep apnea (OSA) is characterized by repetitive upper airway collapse,
chronic hypoxia and a proinflammatory phenotype. The purpose of our study was to evaluate
readily available inflammatory biomarkers (C-reactive protein (CRP), erythrocyte sedimentation rate
(ESR), white blood cell count (WBC), red cell distribution width (RDW), neutrophil-to-lymphocyte
ratio (NLR), platelet-to-lymphocyte ratio (PLR), mean platelet volume (MPV), WBC-to-MPV ra-
tio (WMR) and lymphocyte-to-C-reactive protein ratio (LCR)) before and after CPAP in patients
with moderate–severe OSA. We performed a prospective study that included patients with newly-
diagnosed moderate–severe OSA. The control groups (patients without OSA and with mild OSA)
were selected from the hospital polygraphy database. All subjects underwent routine blood panel,
which was repeated in moderate–severe OSA patients after 8 weeks of CPAP. Our final study group
included 31 controls, 33 patients with mild, 22 patients with moderate and 37 patients with severe
OSA. CRP, ESR, NLR and WMR were correlated with OSA severity. After 8-week CPAP therapy,
we documented a decrease in weight status, which remained statistically significant in both CPAP-
adherent and non-adherent subgroups. Readily available, inexpensive inflammatory parameters can
predict the presence of moderate–severe OSA, but are not influenced by short-term CPAP.

Keywords: obstructive sleep apnea (OSA); continuous positive airway pressure (CPAP); inflammation;
C-reactive protein (CRP); red cell distribution width (RDW); neutrophil-to-lymphocyte ratio (NLR);
platelet-to-lymphocyte ratio (PLR)

1. Introduction

Obstructive sleep apnea (OSA) is the most common sleep-related disorder, with a
recently reported marked rise in prevalence [1,2]. The hallmark of obstructive sleep ap-
nea (OSA) is recurrent complete or partial upper airway collapse during sleep, which
causes repetitive microawakenings, chronic hypoxia, hypercapnia and oxidative stress,
thus promoting a systemic proinflammatory phenotype [3]. The chronic, subclinical pro-
inflammatory status is maintained by the frequent association of OSA with obesity, type
2 diabetes mellitus and non-alcoholic fatty liver disease [4,5]. Abdominal obesity is a
robust predictor of OSA [6,7]. The adipose tissue is a true endocrine organ that responds
to hypoxia by releasing resistine (that activates the NF-kB pathway and promotes the ex-
pression of proinflammatory cytokines and insulin resistance) and inflammatory cytokines
(TNF-α, IL-6, IL-1B, IL-18) [4,7]. Several studies have reported that OSA patients present
increased serum levels of inflammatory biomarkers, some of which correlate with OSA
severity [6,8–10]. In addition, OSA patients present evidence of local, mucosal inflammation
(mucosal inflammatory infiltrate), subepithelial oedema and elevated exhaled nitric oxide
(NO) levels [11–14], partially explained by the irritative effect of repetitive airway collapse.
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CRP, IL-6 and TNF-α are the most studied inflammatory markers in OSA and are
elevated in OSA patients compared to controls [7]. RDW reflects red blood cells’ vari-
ability in size and volume and has been previously correlated with CRP and ESR [15].
RDW has been nominated as an index for estimating autoimmune disease activity [16], a
marker of subclinical inflammation and underlying atherosclerosis [15] and of increased
cardiovascular morbi-mortality [17]. Furthermore, as RDW correlates with several OSA
severity parameters, it could be viewed as a rudimentary OSA screening tool in the general
population [18].

Additionally, it seems that circulating neutrophils and thrombocytes present a proin-
flammatory and prothrombotic phenotype in OSA patients, which is partially reversible
after CPAP [6]. Although platelets were primarily viewed as instruments of thrombosis
and neutrophils mainly as inflammatory effectors, the in-depth study of neutrophil extra-
cellular traps unveiled the fine interplay between platelets, neutrophils and lymphocytes
in both inflammation and thrombosis [19]. While thrombocytes and granulocytes act as
acute phase reactants and increase during infection and inflammation, a low lymphocyte
count is an uncontrolled inflammatory pathway. The platelet-to-lymphocyte ratio (PLR),
the neutrophil-to-lymphocyte ratio (NLR) and the WMC-to-MPV ratio (WMR) integrate
opposite inflammatory pathways and can easily be calculated from a standard complete
blood count. These readily available inflammatory biomarkers have potential prognostic
implications in malignancies [20,21], autoimmune [22], respiratory [23] and cardiovascular
disease [24–26]. PLR seems to be more influenced by hypoxemia and has recently proved
to be a poor, but significant predictor for OSA-COPD [27]. Larger platelets seem to have a
prothrombotic phenotype and are associated with increased cardiovascular risk [28]. Mean
platelet volume (MPV) is independently correlated with OSA severity [29,30] and decreases
after medium-term CPAP [31]. While CPAP partially reverses cardiovascular and metabolic
disturbances in OSA [32–38], its effect on local and systemic OSA-related inflammation
has yielded conflicting results [17,39–47]. Overall, persistent systemic inflammation seems
to be an important feature of OSA. We hypothesized that readily available, inexpensive
inflammatory biomarkers could be a useful tool in assessing CPAP effectiveness and in
predicting OSA severity.

2. Results

We included in our study a total of 123 subjects, 92 of whom were previously diagnosed
with OSA, and 31 controls. Of the 92 patients diagnosed with OSA, 33 patients had mild,
22 patients moderate and 37 patients had severe OSA. Table 1 shows the demographic,
anthropometric and biological parameters assessed in patients enrolled in the study.

In terms of demographic parameters, predominantly male patients were enrolled,
with the most significant percentage of patients having a moderate form of OSA (60.6% vs.
72.6% vs. 70.3%). The average age of patients was higher in OSA patients compared to the
control group, with the oldest patients being identified in the severe subgroup of patients
(54.06 ± 15.37 vs. 57.68 ± 9.18 vs. 58.49 ± 9.49 years old). Age was a statistically significant
parameter associated with moderate (p = 0.021) and severe (p = 0.003) forms of OSA.

Among the anthropometric parameters, special attention was given to the BMI, not-
ing that its average value increased with OSA severity (32.34 ± 5.44 vs. 32.65 ± 6.16
vs. 35.41 ± 5.63 kgm2). Statistical analysis revealed a statistically significant correlation
between BMI and severe form of OSA (p = 0.035).
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Table 1. Demographic, anthropometric and biological parameters in controls and patients with mild,
moderate and severe OSA.

Parameters Control Group
(n = 31) Mild OSA (n = 33) p* Value Moderate OSA

(n = 22) p% Value Severe OSA
(n = 37) pˆ Value

BMI 32.11 ± 5.16 32.34 ± 5.44 0.894 32.65 ± 6.16 0.762 35.41 ± 5.63 0.035
Age, y 49.55 ± 14.01 54.06 ± 15.37 0.225 57.68 ± 9.18 0.021 58.49 ± 9.49 0.003
Males 16 (51.6%) 20 (60.6%) 0.476 16 (72.6%) 0.126 26 (70.3%) 0.118

Active smokers 5 (16.1%) 4 (12.1%) 0.645 1 (4.5%) 0.190 6 (16.2%) 0.992
Diabetes mellitus 6 (19.4%) 9 (27.3%) 0.453 9 (40.9%) 0.085 10 (27.0%) 0.459

HFrEF 2 (6.45%) 1 (3.03%) 0.515 0 (0%) 0.226 2 (5.4%) 0.857
Statin therapy 19 (61.3%) 31 (93.9%) 0.001 22 (100%) 0.009 28 (75.57%) 0.200

WBC 6637.10 ± 1473.39 6920.30 ± 1731.96 0.485 6322.73 ± 1719.62 0.478 6883.24 ± 1858.72 0.553
RDW 12.94 ± 1.24 12.86 ± 2.73 0.887 13.53 ± 1.03 0.071 13.94 ± 1.35 0.002
MPV 10.35 ± 1.55 10.37 ± 1.06 0.957 9.03 ± 0.80 0.001 9.62 ± 0.96 0.019

Neutrophil 3755.81 ± 1160.16 3900.91 ± 1099.94 0.609 3729.55 ± 1274.41 0.938 4191.35 ± 1527.75 0.197
Lymphocyte 2010.97 ± 472.13 2146.97 ± 704.42 0.371 1877.27 ± 640.81 0.386 1955.14 ± 650.49 0.692

CRP 0.44 ± 0.47 0.51 ± 0.42 0.544 0.61 ± 0.43 0.003 0.98 ± 1.30 0.010
ESR 13.86 ± 11.28 15.25 ± 10.00 0.650 12.55 ± 8.51 0.668 20.17 ± 18.48 0.163
NLR 1.93 ± 0.68 1.90 ± 0.54 0.837 2.10 ± 0.75 0.400 2.34 ± 1.13 0.087

WMR 650.40 ± 161.36 673.22 ± 176.66 0.592 703.43 ± 201.47 0.293 713.61 ± 162.66 0.114
LCR 4370.48 ± 8375.09 1632.83 ± 1421.37 0.078 11,318.78 ± 32,732.56 0.269 17,090.79 ± 53,940.05 0.206
PLR 123.88 ± 40.46 123.97 ± 36.05 0.993 127.79 ± 41.69 0.733 134.45 ± 58.31 0.398

All values are expressed as mean ± standard deviation (SD) or n (%); OSA: obstructive sleep apnea; BMI: body
mass index; y: years; HFrEF: heart failure with reduced ejection fraction (<40%); WBC: white blood cells
(normal range: 5000–1000/mm3 in males, 4000–9000/mm3 in females); RDW: red cell distribution width (normal
range: 11–16%); MPV: mean platelet volume (normal range 6–10 fl); Neutrophil normal range: 3250–7500/mm3 in
males, 1800–5000 in females; Lymphocyte normal range: 1250–3500/mm3 in males, 1000–3150/mm3 in females;
CRP: C-reactive protein (normal range 0–1 mg/dL); ESR: erythrocyte sedimentation rate (normal range 4–23 mm/h
in males, 4–25 mm/h in females); NLR: neutrophil-to-lymphocyte ratio, normal range 0.43~2.75 in males and
0.37–2.87 in females; WMR: mean platelet volume ratio, normal range—not defined; LCR: lymphocyte-to-C-
reactive protein ratio, normal range—not defined; PLR: platelet-to-lymphocyte ratio, normal range 36.63–149.13
in males and 43.36–172.68 in females; p*—control group vs. mild OSA (calculated using paired samples t test);
p%—control group vs. moderate OSA (calculated using paired samples t test); pˆ—control group vs. severe OSA
(calculated using paired samples t test).

In addition to the demographic and anthropometric data presented above, the statisti-
cal analysis also included hematological and biochemical parameters. In the case of WBC
(6920.30 ± 1731.96/mm3 vs. 6322.73 ± 1719.62/mm3 vs. 6883.24 ± 1858.72/mm3) and
RDW (12.86 ± 2.73 vs. 13.53 ± 1.03 vs. 13.94 ± 1.35) descriptive statistical analysis revealed
mean serum values directly proportional to the clinical form of OSA. MPV (10.37 ± 1.06
vs. 9.03 ± 0.80 vs. 9.62 ± 0.96) and CRP (0.51 ± 0.42 mg/dl vs. 0.61 ± 0.43 mg/dl
vs. 0.98 ± 1.30 mg/dl) recorded higher mean serum values among patients with mild
OSA. NLR (1.90 ± 0.54 vs. 2.10 ± 0.75 vs. 2.34 ± 1.13), LCR (1632.83 ± 1421.37 vs.
11,318.78 ± 32,732.56 vs. 17,090.79 ± 53,940.05) and PLR (123.97 ± 36.05 vs. 127.79 ± 41.69
vs. 134.45 ± 58.31) had increasing mean serum values in a directly proportional way to the
severity of OSA, but without statistical significance compared to controls.

In the entire study group, AHI was significantly correlated with NLR, WMR, RDW,
MPV, ESR and CRP (Table 2, Figures 1 and 2). However, subgroup analysis showed
most statistically significant correlations remained significant only in patients with severe
OSA—WMR (p < 0.001) and CRP (p = 0.019). PLR exhibited a positive strong association
with OSA severity in controls (p < 0.001) and patients with mild OSA (p < 0.001), but a mild
negative association in patients with severe OSA.

The average CPAP use in our moderate–severe OSA patients (59 patients) was
4.01 ± 2.21 h/night. Average CPAP use was 2.15 ± 1.14 h/night and 5.86 ± 1.24 h/night
in the non-adherent and adherent subgroups, respectively. After 8-week CPAP therapy, we
observed a statistically significant decrease in weight and BMI (Table 3), which remained
statistically significant in both adherent and non-adherent subgroups. For patients with
moderate and severe OSA, we used age, BMI and inflammatory parameters, and developed
a statistically significant logistic regression model dependent on CPAP adherence (p = 0.010)
However, none of the analyzed inflammatory biomarkers was statistically influenced by
CPAP (Tables 4 and 5).
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Table 2. Correlations between AHI and inflammatory parameters according to OSA severity.

All Patients—
Controls and

OSA
(n = 123)

Control Group
(n = 31)

Mild OSA
(n = 22)

Moderate OSA
(n = 22)

Severe OSA
(n = 37)

AHI
r p Value r p Value r p Value r p Value r p Value

NLR 0.199 0.027 0.009 0.963 −0.290 0.101 0.383 0.079 −0.006 0.970
WMR 0.260 0.003 0.022 0.908 0.124 0.493 0.247 0.268 0.603 <0.001
LCR 0.166 0.073 −0.474 0.008 −0.037 0.842 0.042 0.854 0.011 0.948
ESR 0.220 0.022 −0.051 0.826 −0.133 0.501 −0.049 0.829 0.154 0.362
CRP −0.199 0.030 0.221 0.240 0.242 0.191 0.077 0.733 0.389 0.019
PLR −0.025 0.780 0.701 <0.001 0.607 <0.001 −0.048 0.831 −0.386 0.018

RDW 0.201 0.011 0.191 0.324 −0.183 0.308 0.136 0.547 0.041 0.809
MPV −0.158 0.019 0.092 0.624 0.131 0.468 −0.107 0.637 0.050 0.767

AHI: apnea–hypopnea index; OSA: obstructive sleep apnea; r: Pearson correlation; NLR: neutrophil–lymphocyte
ratio; WMR: white blood cell count to mean platelet volume ratio; LCR: lymphocyte-to-CRP ratio; ESR: erythrocyte
sedimentation rate; CRP: C-reactive protein; PLR: platelet-to-lymphocyte ratio; RDW: red cell distribution width;
MPV: mean platelet volume. r = Pearson correlation value; p value obtained using bivariate correlations (2-tailed).
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(AHI: apnea–hypopnea index, NLR: neutrophil–lymphocyte ratio, LCR: lymphocyte-to-C-reactive
protein ratio, RDW: red cell distribution width).
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Figure 2. Correlations between AHI and inflammatory markers (123 patients, controls and OSA)
(AHI: apnea–hypopnea index, MPV: mean platelet volume, CRP: C-reactive protein, ESR: erythrocyte
sedimentation rate).

Table 3. Anthropometric and inflammatory parameters, at baseline and after 8 weeks of CPAP
(moderate and severe OSA).

Parameters Baseline (n = 59) Follow-Up (n = 59) p Value

Anthropometric parameters
Weight, kg 101.22 ± 17.32 99.13 ± 17.05 <0.001

BMI, kg/m2 34.37 ± 5.89 33.84 ± 5.77 0.001
Inflammatory parameters

RDW 13.79 ± 1.25 13.98 ± 1.58 0.171
MPV 9.40 ± 0.94 9.30 ± 0.90 0.166
WBC 6674.24 ± 1813.78 6654.24 ± 1795.14 0.932
ESR 17.41 ± 15.72 17.52 ± 13.54 0.804
CRP 0.84 ± 1.06 0.82 ± 0.77 0.902
NLR 2.24 ± 1 2.31 ± 0.86 0.561
PLR 131.96 ± 52.44 136.73 ± 49.54 0.325

WMR 709.81 ± 176.47 718.32 ± 193.77 0.641
LCR 14,863 ± 46,651.03 8635.75 ± 22,383.65 0.373

CPAP: continuous positive airway pressure; n: number; BMI: body mass index; RDW: red cell distribution
width; MPV: mean platelet volume; WBC: white blood cell count; ESR: erythrocyte sedimentation rate; CRP: C-
reactive protein; NLR: neutrophil–lymphocyte ratio; PLR: platelet-to-lymphocyte ratio; WMR: white blood cell
count-to-mean platelet volume ratio; LCR: lymphocyte-to-CRP ratio; p value calculated using paired samples
t test.
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Table 4. Anthropometric and inflammatory parameters, at baseline and after 8 weeks of CPAP, in
non-adherent and adherent subgroups.

CPAP Non-Adherent (n = 25) CPAP-Adherent (n = 34)

Parameters Baseline Follow-Up p Baseline Follow-Up p

Anthropometric parameters
Weight, kg 108.88 ± 17.30 106.14 ± 17.68 <0.001 95.59 ± 15.25 93.82 ± 14.68 0.001

BMI, kg/m2 36.46 ± 7.05 35.81 ± 6.94 0.007 32.84 ± 4.36 32.25 ± 4.24 <0.001
Inflammatory parameters

RDW 13.66 ± 1.25 13.83 ± 1.63 0.684 13.89 ± 1.26 14.09 ± 1.56 0.293
MPV 9.75 ± 0.96 9.43 ± 0.92 0.229 9.14 ± 0.85 9.21 ± 0.88 0.342
ESR 15.60 ± 12.65 15.36 ± 10.90 0.831 18.74 ± 17.71 18.15 ± 15.20 0.339
CRP 0.91 ± 0.83 0.65 ± 0.51 0.05 0.79 ± 1.20 0.95 ± 0.91 0.05
NLR 2.35 ± 1.24 2.27 ± 0.95 0.856 2.18 ± 0.81 2.35 ± 0.81 0.176
PLR 113.26 ± 44.33 116.34 ± 30.02 0.770 145.72 ± 54.27 151.73 ± 55.79 0.93

WMR 763.45 ± 20.6.23 757.62 ± 195.90 0.090 670.38 ± 141.50 689.43 ± 189.89 0.42
LCR 15,103.61 ± 54,917.14 12,161.84 ± 32,819.72 0.83 14,289.96 ± 39,952.93 6071.33 ± 9300.65 0.171

CPAP: continuous positive airway pressure; n: number; BMI: body mass index; RDW: red cell distribution width;
MPV: mean platelet volume; WBC: white blood cell count; ESR: erythrocyte sedimentation rate; CRP: C-reactive
protein; NLR: neutrophil–lymphocyte ratio; PLR: platelet-to-lymphocyte ratio; WMR: white blood cell count-to-
mean platelet volume ratio; LCR: lymphocyte-to-CRP ratio; p value calculated using paired samples t test (for
each group: CPAP non-adherent and CPAP-adherent).

Table 5. Multinominal logistic regression analysis results—patients with moderate and severe OSA
(n = 59).

CPAP Adherence.
Variables

B Std. Error Wald df Sig. Exp (B)
95% Confidence Interval

for Exp (B)

Lower Bound Upper Bound

AHI −0.004 0.017 0.056 1 0.812 0.996 0.964 1.029
NLR −0.981 0.450 4.754 1 0.029 0.375 0.155 0.906
PLR 0.021 0.010 4.127 1 0.042 1.021 1.001 1.042

WMR 0.001 0.002 0.077 1 0.782 1.001 0.996 1.005
LCR 0.000 0.000 0.012 1 0.913 1.000 1.000 1.000
Age 0.097 0.044 4.793 1 0.029 1.102 1.010 1.203
BMI −0.013 0.067 0.037 1 0.846 0.987 0.865 1.126

CPAP: Continuous positive airway pressure; AHI: apnea–hypopnea index; NLR: neutrophil–lymphocyte ratio;
WMR: white blood cell count-to-mean platelet volume ratio; LCR: lymphocyte-to-CRP ratio; PLR: platelet-to-
lymphocyte ratio; Statistical analysis: multinominal logistic regression analysis using as parameters demographics
(age), anthropometric data (BMI), AHI and inflammatory parameters (NLR, PLR, WMR, LCR).

A ROC curve analysis (Figures 3 and 4) was performed to identify inflammatory
parameters that can predict moderate–severe or severe OSA. LCR (area under curve
<AUC> = 0.769, p < 0.001, cut-off value of 2886.79), WMR (AUC = 0.634, p = 0.021, cut-off
value of 713.61), NLR (AUC = 0.639, p = 0.016, cut-off value of 2.10) and RDW (AUC = 0.667,
p = 0.004, cut-off value of 13.65) were associated with the presence of moderate–severe OSA
(AHI ≥ 15). The predictive value of these parameters decreases for severe OSA (AHI ≥ 30),
the most significant in this case being NLR (AUC = 0.631, p = 0.031, cut-off value of 2.22),
RDW (AUC = 0.637, p = 0.024, cut-off value of 13.55) and LCR (AUC = 0.662, p < 0.008,
cut-off value of 2429.02).
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An additional ROC curve analysis (Figures 5 and 6) was performed to identify inflam-
matory parameters that could predict CPAP adherence in OSA patients. Thus, in patients
with moderate OSA, statistical analysis revealed LCR (area under curve <AUC> = 0.825,
p = 0.010), PLR (AUC = 0.800, p = 0.018) and CRP (AUC = 0.083, p = 0.001) as inflammatory
biomarkers associated with CPAP adherence. In severe OSA, the predictive value of these
analyzed inflammatory parameters did not reach statistical significance.
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3. Discussion

Inflammation plays a pivotal role in the physiopathology of OSA, promoting endothe-
lial dysfunction, accelerated atherosclerosis and thrombotic complications, thus increasing
cardiovascular morbimortality [4,6]. The adipose tissue is a true endocrine organ that re-
sponds to hypoxia by releasing adipocytokines [4]. Circulating monocytes, neutrophils and
thrombocytes present proinflammatory and prothrombotic features in OSA patients, par-
tially reversed after CPAP [6]. Cytotoxic T cells also exhibit a proinflammatory phenotype
and release higher quantities of tumor necrosis factor α (TNF α) and interleukin 8 (IL-8),
to the detriment of anti-inflammatory mediators (IL-10) [6]. Indeed, several studies have
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reported that OSA patients present increased serum levels of proinflammatory cytokines
and acute phase proteins, some of which correlate with OSA severity [6,8–10]. Routine
inflammatory biomarkers are useful in estimating long-term cardiovascular risk, but re-
ported baseline values present significant variations between studies, due to differences in
selection criteria, blood sampling timing and biochemical analysis protocols [48–50].

The elevated inflammatory biomarkers observed in OSA could be explained by the
presence of associated cardiometabolic comorbidities [4,5]. However, Vicente et al. [39]
previously showed that pharyngeal lavage (but not serum) inflammatory markers are
increased in comorbidity-free OSA cases, and that they decrease after 1 year of treatment
(CPAP or surgery) [39].

Most of the literature results regarding the benefit of CPAP in reducing inflammation
have yielded controversial results [4,14]. Although three meta-analyses of case-control
studies have documented a significant reduction in IL-8, CRP and TNF-α [45–47], most ran-
domized control trials (RCTs) failed to demonstrate a significant impact of CPAP initiation
or withdrawal upon inflammatory biomarkers [4,40–42]. However, one RCT reported a de-
crease in tumor necrosis factor receptor 1 (TNFR-1) after 12 weeks of CPAP [51]. Although
this result was not confirmed by a subsequent trial (Kritikou et al. [52], 2 months of CPAP),
the hypothesis remains intriguing, as TNFR-1 is a highly sensitive inflammatory marker
that plays a significant role in glucose homeostasis and the development of obesity [4].

3.1. ESR and CRP

ESR and CRP, the two ”basic” inflammatory markers, are subject to numerous con-
founding factors, which could explain why their study in different OSA populations has
provided divergent findings. In our analysis, contrary to the results of Lee et al. [53], ESR
did not significantly vary with OSA severity. Although ESR was correlated with AHI, it did
not predict the presence of OSA or CPAP adherence. Furthermore, ESR was not influenced
by short-term CPAP therapy.

In line with previous reports [17,43,54], our results show that CRP is higher in patients
with OSA. However, in the study by Kurt et al. [55], CRP did not significantly vary with
OSA severity. CRP was positively correlated with AHI only in severe OSA patients, and
surprisingly presented a negative correlation with AHI in the study group as a whole
(n = 123). CRP was not associated with the presence of moderate–severe OSA but predicted
CPAP adherence in moderate OSA patients.

Although most of the literature reports suggest a clear association between CRP and
OSA, our analysis, as well as previous randomized control trials [40–42], show that CRP
does not decrease after short- and moderate-term CPAP. The physiopathology of elevated
CRP levels in OSA patients is multifactorial physiopathology and should be addressed
accordingly—intensive statin therapy, optimal glycemic control and aggressive correction
of cardiovascular risk factors (including weight management and smoking cessation). In
fact, Chirinos et al. [40] showed that weight-loss interventions were associated with a
significant improvement in CRP [40]. It should be noted that while a statistically significant
weight loss was observed in all our study groups, its amplitude was mild and it had no
clinical impact. Overall, it seems that CRP and ESR have little value in predicting the
presence of OSA.

3.2. RDW

RDW is a cheap and readily available parameter that reflects red blood cells variability
in size and volume and is not influenced by sex, age and BMI [17]. RDW has been
previously correlated with CRP and ESR values [15] and has been nominated as an index
for estimating autoimmune disease activity [16] and a marker of subclinical inflammation,
underlying atherosclerosis [15] and cardiovascular morbi-mortality [17]. OSA-induced
repetitive hypoxia promotes accelerated erythropoiesis [43] which could explain a higher
RDW in OSA [15,17,18,43,56]. Durmaz et al. [57] have previously shown that RDW is a
predictor of OSA burden in severe OSA patients. RDW values were previously correlated
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with AHI, DI, minimal nocturnal O2Sa and ESS results [18,58–61], suggesting that RDW
could be used as an OSA screening tool in the general population. However, CPAP therapy
seems to have little impact on RDW values [17,43,44]: while Leon Subias et al. reported
no changes in RDW after 1 year of CPAP [17], two other studies surprisingly reported an
increase in RDW after 3–6 months of CPAP [43,62].

In our analysis, RDW was significantly higher in patients with severe OSA compared to
controls, and an NLR > 13.65 predicted the presence of moderate–severe OSA (AUC = 0.667,
p = 0.004). In the entire group of patients (n = 123), RDW was mildly but significantly
associated with AHI (r = 0.2, p = 0.01), but the association lost its statistical significance
in subgroup analysis. Furthermore, RDW did not predict adherence and we recorded no
significant change in RDW after 8 weeks of CPAP. As such, RDW could be used to prioritize
polysomnographic evaluations in patients with a clinical suspicion of OSA and should be
considered as a marker of high cardiovascular risk in sleep apnea [59,60].

3.3. MPV

Platelet activation, adhesion and aggregation occur in all inflammatory states, and are
associated with an increased platelet volume [63,64]. Previous studies have documented
increased platelet activation and aggregation in OSA patients [65–67], which is partially re-
versed by CPAP [66]. Since larger platelets seem to have a prothrombotic phenotype and are
associated with the development of cardiovascular complications [28], MPV was proposed
as a novel predictor of atherosclerosis [68,69]. Two previous studies showed that MPV is el-
evated in severe OSA [70,71] and a recent meta-analysis reported gradually increasing MPV
levels with increasing OSA severity [61]. However, only half of the 8 available studies found
a significant difference regarding MPV in OSA versus controls [29,30,43,60,63,64,72,73],
and Topçuoğlu et al. [64] showed that MPV is not a severity indicator in comorbidity-free
OSA patients. While three studies found an independent correlation between MPV and
OSA parameters (ESS score, AHI, average SpO2, min SpO2 and % of total sleep time
with SpO2 < 90%) [29,30,71], MPV was not significantly correlated with AHI in another
report [55]. CPAP seems to have an inconsistent effect on mean platelet volume—MPV
decreased after 6 months of CPAP in severe OSA [31,43], remained unchanged in another
report [74] and increased after 3 months in a small group of 29 comorbidity-free OSA
patients [62].

Our analysis surprisingly showed lower MPV values in patients with moderate and
severe OSA compared to controls. Furthermore, MPV was negatively correlated with AHI
(r = −0.15, p = 0.01) and did not predict CPAP adherence or the presence of moderate–
severe OSA. Although MPV mildly decreased after 8 weeks of CPAP, the difference did not
reach statistical significance (p = 0.16). Our results suggest that MPV has little value in the
assessment of OSA patients.

3.4. PLR

PLR integrates opposite inflammatory pathways and has potential prognostic implica-
tions in autoimmune [22], respiratory [23] and cardiovascular disease [24–26]. Hypoxemia,
more than inflammation, seems to have a stronger impact on PLR, which has a better dis-
criminative value in patients with OSA or chronic obstructive pulmonary disease (COPD).
A recent report showed that PLR is a poor, but significant predictor for OSA-COPD [27]. An-
other study documented a significant association between AHI and PLR and revealed that
a PLR value beyond 159 is independently associated with the presence of hypertension in
OSA patients [75]. Although a recent meta-analysis reported that PLR gradually increases
with OSA severity [61], two case-control studies [60,76] found no significant differences in
PLR between controls and OSA, and another study reported lower PLR values in controls
versus patients with sleep apnea [77].

In our analysis, PLR did not significantly vary between controls and patients with
mild, moderate and severe OSA. PLR exhibited a strong, positive correlation with AHI
in controls and patients with mild OSA, but exhibited a mild negative correlation with
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AHI in patients with severe sleep apnea. Our ROC curves showed that PLR was not
associated with the presence of OSA, and predicted CPAP adherence only in moderate
OSA patients. Furthermore, in line with the results of Ozdemir et al. [62], PLR was not
significantly influenced after short-term CPAP. Altogether, PLR seems to have little value
in the assessment and follow-up of OSA patients.

3.5. NLR

Intermittent hypoxia upregulates NF-κB, which in turn activates both granulocyte
and macrophage colony-stimulating factor genes, explaining the association between NLR
and OSA [78]. A previous report suggested that NLR could be used as a marker of chronic
hypoxic burden in OSA, and therefore as a readily available parameter to evaluate CPAP
effectiveness [77]. Furthermore, NLR was associated with cardiovascular comorbidities
in OSA patients [79,80] and was an independent predictor of OSA in three other stud-
ies [54,81,82]. In a multi-center retrospective study (481 OSA cases and 80 controls) NLR
was higher in patients with severe OSA, compared to controls and moderate and mild
OSA [83], and a recent meta-analysis [84] concluded that neutrophilic inflammation plays
a key role in OSA pathogenesis, suggesting that NLR could be viewed as a disease activ-
ity biomarker.

Four previous reports found mild, but statistically significant correlations between
NLR and AHI [54,79,81,85], and several prospective studies documented a decrease in NLR
after OSA treatment (1 month with a mandibular advancement device [86], 3 months of
CPAP [81,87]). On the contrary, Ozdemir et al. [62], failed to document a significant impact
of CPAP on NLR.

In our study, although NLR was mildly associated with AHI in the study group
as a whole, the correlation did not reach statistical significance in subgroup analysis.
Furthermore, NLR did not decrease after 8 weeks of CPAP. However, an NLR value > 2.1
predicted the presence of moderate–severe OSA (AUC = 0.639, p = 0.016), which should be
taken into consideration in the initial evaluation of patients with a clinical suspicion of OSA.
As obesity is a well-recognized confounder of NLR [84,88], the value of this parameter in
lean OSA patients should be addressed in future clinical research.

3.6. WMR

WMR is another inflammatory marker with potential predictive value for the presence
of severe OSA [76]. WMR is easy to calculate, reproducible, simple to use and with superior
stability and lower variability to external cofounders compared to other inflammatory
parameters. In our study, WMR showed a strong, significant correlation with AHI in
patients with severe OSA (r = 0.603, p < 0.001). Furthermore, WMR was a significant
predictor of the presence of moderate–severe OSA (AUC = 0.634, p = 0.021, cut-off value of
713.61). This is the first study to report the impact of CPAP on WMR. Although 8 weeks of
CPAP did not significantly influence WMR, due to the aforementioned association between
WMR and severe OSA, further studies should address the effect of medium and long-term
CPAP on this readily available inflammatory biomarker.

3.7. LCR

LCR is an inflammatory biomarker used for indirect assessment of systemic inflamma-
tion. A recent study attributed to LCR a diagnostic and prognostic role in OSA patients [89].
Although our analysis did not document a significant correlation between AHI and LCR,
a cut-off value of 2886.79 for LCR was associated with the presence of moderate–severe
OSA (area under curve <AUC> = 0.769, p < 0.001). LCR also predicted CPAP adherence in
patients with moderate sleep apnea. This is the first study to assess the impact of CPAP
on LCR. The dynamic assessment performed 8 weeks after the start of CPAP therapy
showed a reduction in mean serum levels that did not reach statistical significance. In
summary, LCR could be used to prioritize polysomnographic evaluations in patients with
a clinical suspicion of OSA. Its value in predicting CPAP adherence requires further studies.
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Despite our current findings, given the strong association between LCR and severe OSA,
we consider that long-term CPAP could positively impact LCR, a hypothesis that deserves
to be addressed by further research.

This study has several limitations. Most importantly, this was not a randomized
trial, it had a short follow-up duration and our patients presented only borderline CPAP
adherence. The controls and OSA subgroups were inhomogeneous in terms of the number
of participants, age and gender, and were not BMI-matched. However, this is a reflection of
daily practice, as patients with clinically significant OSA tend to be more obese and older.
Our analysis included a larger representation of patients with moderate–severe OSA, which
reflects the usual distribution of patients addressed for sleep studies. Active smoking can
influence the WBC count, but it had a relatively low prevalence in our OSA patients. The
presence of young platelets and protein disulfide isomerase are other potential confounders
that were not taken into consideration in our study.

Although persistent systemic inflammation is an important feature of OSA, the impact
of CPAP on inflammatory biomarkers remains controversial [44]. Our study, as well as
other reports [17,43,62,90], did not feature significant changes in inflammation markers
after 2 months CPAP. Inflammatory status is subject to the influence of genetic and en-
vironmental factors, and individual lifestyle, which partly explains the divergent results
regarding the effectiveness of CPAP in reducing inflammatory markers. As chronic in-
flammation promotes endothelial dysfunction, accelerated atherosclerosis and thrombotic
complications [6], the analysis of readily available, inexpensive inflammatory parameters
could be extremely valuable in the screening of patients at high risk of developing target
organ complications [9]. Basic blood count indices (LCR, WMR, NLR and RDW) could
distinguish patients at increased cardiovascular risk and help prioritize polysomnographic
evaluations in patients with a clinical suspicion of OSA.

4. Materials and Methods
4.1. Study Design

Patients with newly diagnosed moderate or severe OSA (prior to the initiation of
CPAP therapy) were prospectively recruited in the 3rd Pneumology Clinic in Ias, i (January
to December 2018). We excluded patients with previous CPAP therapy, central sleep apnea,
non-OSA primary sleep disorder, anemia, chronic inflammatory disease, malignancy,
chronic alcoholism, acute medical conditions in the prior 30 days, class IV heart failure,
stage 5 chronic kidney disease, and Child–Pugh B and C cirrhosis. Eligible patients were
clinically and biologically evaluated in the Cardiovascular Rehabilitation Clinic in Ias, i,
before and after 8 weeks of CPAP. The control groups (patients with mild OSA and patients
without OSA) were selected from the Clinical Rehabilitation Hospital cardiorespiratory
polygraphy database (Philips Respironics Alice Night One).

4.2. OSA Diagnosis and Treatment

OSA was diagnosed by ambulatory or in-hospital six-channel cardiorespiratory polyg-
raphy (Philips Respironics Alice Night One or DeVilbiss Porti 7). The recordings were
manually scored by experienced sleep physiologists, according to the third International
Classification of Sleep Disorders criteria [91]. Apnea was defined as a ≥90% reduction in
oro-nasal airflow for at least 10 s. Hypopnea was defined as a ≥30% reduction in oro-nasal
airflow for at least 10 s, associated with a ≥3% oxygen desaturation. CPAP effective pres-
sure autotitration in the sleep laboratory was determined using a REMstar Auto C-Flex
CPAP (Philips Respironics, Murrysville, PA, USA), a DreamStation Auto CPAP (Philips
Respironics, Murrysville, PA, USA) or an AirSense 10 Autoset CPAP (ResMed, San Diego,
CA, USA). Moderate and severe OSA was diagnosed as having an apnea–hypopnea index
(AHI) of 15–30 events/h and >30 events/h, respectively. Follow-up cardiorespiratory
polygraphy data was not performed due to the short follow-up of patients (8 weeks).

OSA patients received standard CPAP therapy with a REMstar Auto C-Flex CPAP
(Philips Respironics, Murrysville, PA, USA), a DreamStation Auto CPAP (Philips Respiron-
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ics, Murrysville, PA, USA) or an AirSense 10 AutoSet CPAP (ResMed, San Diego, CA,
USA). OSA patients were reevaluated at the same clinic, 8 weeks after initiating CPAP
therapy. After assessing CPAP adherence (at the 8-week follow-up), we divided our initial
study population into two subgroups: adherent and nonadherent patients. Adherence was
defined as a device usage time ≥ 4 h/night, while nonadherence was defined as a CPAP
usage time < 4 h/night [92].

4.3. Measurements

Following hospital protocol, blood samples were collected a jeun, in the morning upon
admission to the Cardiovascular Rehabilitation Clinic. All blood samples were processed
in the hospital’s laboratory using a Pentra DF Nexus Hematology System® (Horiba Health-
care, Kyoto, Japan) for complete blood count and a Transasia XL 1000 Fully Automated
Biochemistry Analyzer (Transasia Bio-Medicals Ltd., Mumbai, India) for biochemistry. We
recorded the following inflammatory biomarkers: erythrocyte sedimentation rate, red cell
distribution width, mean platelet volume and C-reactive protein (CRP). NLR was calculated
using the absolute neutrophil (N) and lymphocyte (L) values, using the following formula:
NLR = N/L. PLR was calculated using the absolute platelets (P) and lymphocyte (L) values,
using the following formula: PLR = P/L. WMR was calculated using the absolute WBC
and MPV values, using the following formula: WMR = WBC/MPV. LCR ratio was calcu-
lated using the absolute lymphocyte (L) and C-reactive protein values, using the following
formula: LCR = L/CRP.

CPAP adherence data (device usage, hours per night at the prescribed pressure) was
recorded by the machine and downloaded using the appropriate software: EncoreBasic
v.2.1 (Philips Respironics, Murrysville, PA, USA), Encore Pro 2 v.2.17 (Philips Respironics,
Murrysville, PA, USA) or ResScan v.6.0 (ResMed, San Diego, CA, USA).

All anthropometric body measurements were performed three times. Height and
weight were assessed in the morning upon admission, without shoes and with light
clothing. Body mass index (BMI) was calculated as weight (kg)/height (m2). Waist circum-
ference (WC) was measured horizontally at the top of the right iliac crest, at the end of a
normal expiration.

4.4. Statistical Analysis

Data analysis was performed using SPSS 26.0 (Statistical Package for the Social Sci-
ences, Chicago, IL, USA). For continuous data, the normality of distribution was assessed
by Shapiro–Wilk test. Data are presented as mean ± standard deviation (SD) for continuous
variables with normal distribution. An independent samples t-test was used to compare
continuous variables with normal distribution. A non-parametric Mann–Whitney’s U
test was applied to compare the variables not satisfying the assumption of normality. A
multivariate logistic regression model was used to assess the independent predictors of
OSA. Receiver operating characteristic (ROC) curve analysis was performed to determine
the area under the curve for inflammatory parameters. Correlation between normally dis-
tributed parameters was assessed calculating Pearson correlation coefficients. A two-sided
p value < 0.05 was considered significant for all analyses.

4.5. Ethics Statement

All patients signed a written informed consent form for inclusion. The study was con-
ducted in accordance with the Declaration of Helsinki [93] and the protocol was approved
by the Ethics Committee of the University of Medicine and Pharmacy “Grigore T. Popa”
Ias, i (ethical approval code 1183/17.01.2018).

5. Conclusions

Some readily available, inexpensive inflammatory parameters can predict the presence
of moderate–severe OSA and could prove helpful in OSA risk stratification, but are not
influenced by short-term CPAP.
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62. Özdemir, C.; Sökücü, S.; Aydın, Ş.; Önür, S.T.; Kara, K. Response of Blood Parameters to CPAP Treatment in Patients with
Obstructive Sleep Apnea. Arch. Neuropsychiatry 2018. [CrossRef] [PubMed]

63. Bülbül, Y.; Aydın Özgür, E.; Örem, A. Platelet Indices in Obstructive Sleep Apnea: The Role of Mean Platelet Volume, Platelet
Distribution Widht and Plateletcrit. Tuberk Toraks 2016, 64, 206–210. [CrossRef] [PubMed]
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