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Crowding and attention in a framework of neural network
model

Endel Põder Institute of Psychology, University of Tartu, Tartu, Estonia

In this article, I present a framework that would
accommodate the classic ideas of visual information
processing together with more recent computational
approaches. I used the current knowledge about visual
crowding, capacity limitations, attention, and saliency to
place these phenomena within a standard neural
network model. I suggest some revisions to traditional
mechanisms of attention and feature integration that
are required to fit better into this framework. The
results allow us to explain some apparent theoretical
controversies in vision research, suggesting a rationale
for the limited spatial extent of crowding, a role of
saliency in crowding experiments, and several
amendments to the feature integration theory. The
scheme can be elaborated or modified by future
research.

Introduction

Visual crowding is a deterioration of the perception
of a target object caused by other objects nearby
(Bouma, 1970; Andriessen & Bouma, 1976). Crowding
is primarily observed in the visual periphery where it is
a main factor that limits pattern recognition (Pelli &
Tillmann, 2008; Levi, 2008).

There are many theoretical ideas about the
mechanisms of crowding and not much agreement
among the researchers (Balas, Nakano, & Rosenholtz,
2009; Greenwood, Bex, & Dakin, 2009; Van den
Berg, Roerdink, & Cornelissen, 2010; Herzog, Sayim,
Chicherov, & Manassi, 2015; Francis, Manassi, &
Herzog, 2017; Harrison & Bex, 2017; Manassi &
Whitney, 2018; Rosenholtz, Yu, & Keshvari, 2019).
A long-lasting question is about the role of attention
(Intriligator & Cavanagh, 2001; Pelli, Palomares, &
Majaj, 2004; Põder, 2006; Strasburger, 2007). Whereas
some authors see crowding as an implication of certain
properties of attention, others reject any important
relationship between these.

In this article, I attempt to clarify relations between
visual crowding and different forms of attention. I
analyze crowding and attention in the context of
a simple computational framework for vision—a

feedforward convolutional neural network (CNN). It
appears that several puzzling results from crowding
experiments can be naturally explained by simple
attentional mechanisms combined with standard
feedforward network.

A classic neural network model

Based on much neurobiological data and state-of-
the-art machine vision, we can describe a standard
object recognition system as a hierarchical feedforward
neural network (Hubel & Wiesel, 1965; Fukushima,
1980; Riesenhuber & Poggio, 1999; Krizhevsky,
Sutskever, & Hinton, 2012; Kubilius, Bracci, & de
Beeck, 2016; Figure 1). It consists of a number of
feature maps at several levels of processing. A feature
map is an array of local “feature detectors.” Features at
higher levels become more complex in terms of local
pixel values but more relevant for object recognition
tasks. A number of different features is larger at higher
levels. Some extent of spatial pooling occurs at every
level—receptive fields become larger, and precise
absolute position of features is discarded. A few of
the highest levels consist of nonspatial feature maps.
Crowding is a natural consequence of spatial pooling
within this architecture.

A puzzle of Bouma’s law

Many studies of visual crowding have found that
crowding zones have radius approximately 0.5 of the
eccentricity of the target object (Bouma, 1970; Pelli
et al., 2004). Assuming that crowding is an effect of
spatial pooling, this value should reveal the size of
respective receptive fields. On the basis of these findings,
crowding has been frequently attributed to a single level
of processing where the size of receptive fields best
fits the given dependence on eccentricity (V2, or V4;
Freeman & Simoncelli, 2011; Motter, 2018). However,
this simple account of crowding seems to be at odds
with some knowledge about object recognition systems.

Position-invariant object recognition with
feedforward neural networks apparently requires

Citation: Põder, E. (2020). Crowding and attention in a framework of neural network model. Journal of Vision, 20(13):19, 1–10,
https://doi.org/10.1167/jov.20.13.19.

https://doi.org/10.1167/jov.20.13.19 Received April 23, 2020; published December 29, 2020 ISSN 1534-7362 Copyright 2020 The Authors

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

http://www.ut.ee/~endelp/
mailto:endel.poder@ut.ee
https://doi.org/10.1167/jov.20.13.19
http://creativecommons.org/licenses/by-nc-nd/4.0/


Journal of Vision (2020) 20(13):19, 1–10 Põder 2

Figure 1. A standard neural network model of vision.
Approximate levels of basic attention mechanisms are
indicated.

cumulative spatial pooling over the full visual field.
Standard CNNs contain several steps of pooling, with
the final output collapsed across spatial coordinates.
This implies some crowding-like interference from
irrelevant objects located anywhere in the visual
field. In reality, available data indicate that zones of
interference in CNNs may extend over the whole
input image, and target-distractor distance has only
a modest effect (Lonnqvist, Clarke, & Chakravarthi,
2020). Similarly, a systematic increase throughout the
levels and very large receptive fields at the highest
levels have been found in the primate visual system
(Gross, Rocha-Miranda, & Bender, 1972; Rolls, 2000).
Given these observations, it seems puzzling that
spatial extent of crowding in human vision is limited
to a relatively small fraction of the visual field with
radius 0.5E.

An explanation quite naturally follows from
Intriligator and Cavanagh’s (2001) idea that crowding
reflects a maximum resolution of spatial attention.
When a “spotlight” of attention has radius of 0.5E, we
can voluntarily select available information within that
zone and exclude everything outside of it (Figure 2).
Therefore attentional selection can eliminate any
potential crowding caused by stimuli at larger distances.
This role of spatial attention has been demonstrated
in the inferotemporal (IT) cortex of monkeys (Zhang,
Meyers, Bichot, Serre, Poggio, & Desimone, 2011).
Because the “spotlight” of attention cannot be reduced
beyond 0.5E, crowding within that zone cannot be
eliminated.

Still, there exist some conditions when crowding
zones may be either much smaller (e.g., Põder, 2006),
or much larger (Vickery, Shim, Chakravarthi, Jiang, &
Luedeman, 2009). “Too large” crowding zones can be
likely explained by incomplete focusing of attention in
certain conditions. Reduced extent of crowding is the
topic of the next part.

The idea to relate the limited extent of crowding to
attention leaves unexplained why the minimum radius
of the attentional spotlight is 0.5E. Possibly, that could

Figure 2. Crowding zones and spatial resolution of attention.
Classic crowding zones with radius 0.5E according to Bouma’s
law (top), spatial resolution of attention (minimal spacing that
allows attending individual items) according to Intriligator and
Cavanagh (2001, center; reprinted with permission from
Elsevier), “uncrowded” display of rotated Ts (all inter-object
distances are at least 0.6E, bottom). While fixating the central
cross, we can voluntarily attend every single letter and avoid
crowding from others.

be explained by some properties of natural environment
or limits of brain capacity.

Finally, we must note that human peripheral vision
and convolutional neural networks are not directly
comparable. The standard CNNs with their built-in
position invariance approximate object recognition
in human central vision. In human peripheral vision,
not only critical distance of crowding but also many
other important characteristics vary with eccentricity
(e.g., Strasburger, Rentschler, & Juttner, 2011). Up to
now, very few studies have tried to implement these
eccentricity dependencies in neural network models
(Chen, Roig, Isik, Boix, & Poggio, 2017; Han, Roig,
Geiger, & Poggio, 2020).
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Saliency-based selection

It is well known that crowding is significantly
reduced when a target differs from the flankers by
some simple visual feature (for example, has a different
color, e.g., Kooi, Toet, Tripathy, & Levi, 1994; Põder,
2007). This effect is even larger when the number of
flankers is increased (Põder, 2006; Malania, Herzog, &
Westheimer, 2007; Manassi, Sayim, & Herzog, 2013).
With many homogeneous flankers, crowding virtually
disappears. Põder (2006) proposed an explanation
based on two mechanisms of spatial selection. In
addition to voluntary attention with relatively low
spatial resolution, there is a saliency-based bottom-up
selection with much higher resolution. Most likely, it
operates at lower levels of processing, possibly at V1 (Li,
1999; Li, 2002). Multiplication of the effects of these
two selection mechanisms produces experimentally
observed crowding zones (Figure 3).

However, this is not the full story. There is a
top-down feature-based attention that can bias selection
of salient objects. For example, it is not difficult to
select either a blue or orange pop-out bar presented
among homogeneous green bars (Figure 4). With
a heterogeneous background, however, there is no
pop-out, and selection of even a single target color
is nearly impossible. Little is known of how this
combining of bottom-up and top-down selection is
implemented in neural networks.

Researchers have designed many different crowding
displays that produce results not consistent with
Bouma’s law and simple pooling models (Livne & Sagi,
2007, 2010; Saarela, Sayim, Westheimer, & Herzog,
2009; Manassi, Sayim, & Herzog, 2013; Rosen & Pelli,
2015; Doerig, Bornet, Rosenholtz, Francis, Clarke,
& Herzog, 2019; Figure 5). Frequently, a notion of
grouping has been evoked as an explanation (Livne &
Sagi, 2010; Herzog et al., 2015; Francis et al., 2017).
However, grouping itself is not well understood, and
its relation to crowding is ambiguous too. I suggest
that saliency could be a more productive idea. There
exist neurobiological data on saliency computation in
biological vision (Knierim & van Essen, 1992; Sillito,
Grieve, Jones, Cudeiro, & Davis, 1995; Nothdurft,
Gallant, J. & Van Essen, 1999, Li, Their, & Wehrhahn,
2000), and several methods to compute saliency maps
of images have been proposed (Itti & Koch, 2000;
Zhang, Tong, Marks, Shan, & Cottrell, 2008; Bruce
& Tsotsos, 2009). Relative saliency of the target and
flankers could directly predict performance in crowding
experiments.

It appears that that many “complex” results from
crowding studies are naturally explained by a simple
lateral-inhibition–based saliency model. Illustrative
examples are given in Figure 6. Here, saliency of an
item i was calculated as si = ei −

∑
j ki je j , where

ei is activation of an item before lateral inhibition

Figure 3. Reduced crowding with large number of
homogeneous flankers (Põder, 2006). Examples of stimuli (top),
experimental results (center), and illustrative model with two
selection mechanisms (bottom).

Figure 4. Combination of bottom-up saliency and top-down
feature-based attention. When presented in the periphery, it is
not difficult to attend to either orange or blue salient bar (left).
With heterogeneous distractors, it is difficult to attend to a
single blue bar (right).
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Figure 5. Various examples of stimuli from crowding experiments that appear to reject simple pooling models. Number, homogeneity,
and regularity of flankers have strong effects on target perception (Malania et al., 2007; Saarela et al., 2009; Livne & Sagi, 2010;
Manassi et al., 2013; Rosen & Pelli, 2015).

and kij is inhibitory interaction between items
i and j.

To account for Põder (2006) results, we must assume
that inhibitory interactions are stronger between items
of the same color, as well as between those spatially
close to each other. This mechanism suppresses signals
from the flankers within a group of the same color, while
differently colored target receives much less inhibition.
With a larger number of flankers, the total suppression
affecting each one is stronger. Suppression is less at
the corners and edges of a group. Thus increasing the
number of same-color flankers both reduces saliency
of the flankers and moves salient flankers further from
the target (Figure 6A). To reproduce the experimental
results, the saliency model must be combined with an
ordinary crowding zone/a window of top-down spatial
attention (as shown in Figure 3).

Livne & Sagi (2007) found an effect of global
configuration of flankers on crowding. For example,
a smooth circle of flanking Gabors caused much
less crowding than a sun-like configuration. Simple
orientation- and proximity-based inhibition cannot
explain these results. Interestingly, however, Cavanaugh,
Bair, &Movshon (2002) have reported on an interaction
of orientation and relative position in surround
suppression in V1. In addition to the simple effect of
orientation tuning, radially oriented surround patches
caused stronger suppression compared to tangentially
oriented ones. Applying this rule to Livne and Sagi
(2007) stimuli produces a stronger inhibition for the
target and less inhibition for the flanker signals in “sun”
as compared to “smooth” configuration (Figure 6B).

Manassi et al. (2016) used two different shapes
as flankers in a Vernier offset discrimination task.

Using a row of flanking squares, the crowding effect
decreases with the number of additional squares.
However, a similar row consisting of two alternating
shapes (squares and stars) produced a strong crowding
effect. The results are naturally predicted by lateral
inhibition/saliency model with a reasonable assumption
that two identical items inhibit each other more heavily
than different items. (Additionally, I suppose that
inhibitory effect of the Vernier on two other items is
negligible because of its smaller size) (Figure 6C).

Pooling at higher levels

Higher levels of the network pool over very large
receptive fields. Without focused attention, effective
pooling zones must be much larger than 0.5E (up to
the full visual field). Global pooling can be studied by
visual search (Shaw, 1980; Palmer, Ames, & Lindsey,
1993; Palmer, Verghese, & Pavel 2000), or whole report
experiments (e.g., Kyllingsbaek, Valla, Vanrie, &
Bundesen, 2007). In usual search task, all stimuli in a
display are relevant. The results of search experiments
should reveal, which kind of information can be pooled,
and which rules of pooling are used at highest levels of
vision.

In a recent article (Põder, 2017), I analyzed combined
effects of crowding and set size in visual search
experiments (Figure 7). A simple multiplicative model
well describes the results, consistent with independent
effects of different levels of processing. However, there
is some correlation between two effects, across studied
features and conjunctions of features. This could be
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Figure 6. Examples of saliency maps based on simple lateral
inhibition rules that predict the effects of (A) number of
flankers (Põder, 2006), (B) configuration of orientations (Livne &
Sagi, 2007), and (C) shape homogeneity/heterogeneity
(Manassi et al., 2016).

expected because features in higher levels are based
on the features from preceding levels. However, more
detailed studies of features and pooling mechanisms
over multiple levels are required. I suggest that
regarding global/central capacity limitations, local

lateral inhibition, and crowding effects as different
instances of spatial pooling within a multilevel neural
network may help to move toward a general theory of
computations in vision.

Amendments to the feature
integration theory

Integration of visual features by means of spatial
attention (Treisman & Gelade, 1980) has been an
influential theory in vision research. However, it
appears that artificial neural networks can recognize
objects without anything like this. Some researchers
have suggested that the feature integration function
of attention is unnecessary (e.g., Rosenholtz, Huang,
& Ehinger, 2012). I argue that spatial attention has
an important role, and, with slight modifications, the
feature integration idea fits well the neural network
model too.

The original feature integration model (Treisman &
Gelade, 1980) supposed that “spotlight” of attention
binds visual features by selecting one object at a time.
Assuming minimum radius of spotlight /attentional
window is 0.5E, it is very likely that several objects fall
into it simultaneously. How will feature integration
work in that case? Crowding studies suggest that human
vision uses probabilistic selection of features within an
attentional window, with probabilities determined by a
weighting function of the window (Põder &Wagemans,
2007; Vul & Rich, 2010; Figure 8).

The classic feature integration model deals with
conjunctions of different features having the same
spatial positions (Treisman & Gelade, 1980; Wolfe,
Cave, & Franzel, 1989). However, the perception of
feature configurations, or relative position of features,
is likely the most attention-dependent task for human
vision (Bergen & Julesz, 1983; Wolfe, 1998a; Põder,
1999; Gilden, Thornton, & Marusich, 2010; Palmer,
Fencsik, Flusberg, Horowitz, & Wolfe, 2011). Simple
spotlight model cannot explain the role of attention
in this type of tasks. However, there is a plausible
way to extend the classic model (Figure 9). A small
set of neurons with spatially shifted integration fields
can encode position of a given feature within an
area covered by these receptive fields (e.g., Baldi &
Heiligenberg, 1988). These coarse feature-position
signals carry some position information even when
pooled over the full visual field. Relative position
of two features can be decoded when there are
no irrelevant similar features in a display, or when
signals from irrelevant features are excluded by spatial
attention.

According to the traditional view, there is a
set of “simple” visual features that are registered
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Figure 7. Combined efffects of local and global interference (Põder, 2017). Examples of stimuli where interitem distance and set size
were varied (top). Example of the results of an individual experiment (middle). Symbols depict data and lines are model fits. Set sizes:
2 = blue circles, 4 = red rectangles, and 8 = green triangles. Results plotted in the space of global capacity limitations and crowding

→
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←
distance (bottom). Green markers represent simple features (S, size; O, orientation; C, color), blue markers = conjunctions, and red
markers = rotated Ts.

Figure 8. Reporting a target surrounded by flankers with
different features reveals independent sampling of features
within an attentional window. Displays from Põder and
Wagemans, 2007 (left; target in the center of a group), and Vul
and Rich, 2010 (right; target indicated by spatial cue; reprinted
by permission of SAGE Publications Inc).

Figure 9. A hypothetical mechanism of encoding spatial
positions and decoding of relative positions. Relative position
information is available over a wide area, but similar features
within the attentional window will make it ambiguous.

automatically/preattentively in every location of the
visual field. The exact number of simple features is
unknown, but usually, 10 to 20 candidates have been
listed (e.g., Wolfe, 1998b).

However, we can, without focused attention,
perceive quite complex differences in visual
images, including statistical properties of feature
distributions, or “gist” of scenes (Ariely, 2001;
Torralba & Oliva, 2003). Portilla and Simoncelli (2000)
had to adjust about 700 “features” (mostly spatial
correlations of wavelets—a kind of simple features)
to make two images indiscriminable without focused
attention. Although a part of these complex features
could be redundant or unnecessary for peripheral

vision (Balas, 2006; Ackermann & Landy, 2014),
additional features could be needed to account for
some results (Wallis, Funke, Ecker, Gatys, Wichmann,
& Bethge, 2019). Anyway, the number and complexity
of preattentive features are likely much larger than
supposed in early studies.

Conclusions

In this study, I attempted to combine the main
psychophysical findings on visual crowding, attention,
and central capacity limitations with hierarchical neural
network model. I suggest that the similar principles
of pooling and selection, at various levels of visual
processing, can explain different psychophysical
phenomena—visual crowding and central capacity
limitations. An important factor seems to be the level
where spatial attention is applied. Regardless of similar
principles, the exact computations may vary across
levels. For example, different pooling rules (averaging,
max, correlation) may dominate at different levels of
processing.

Recent crowding studies have reported many results
that contradict simple pooling over fixed receptive
fields. Different explanations from qualitative grouping
account to relatively complex computational models
have been proposed. I believe that a notion of saliency
could be useful here. There is a lot of evidence for
similarity-dependent lateral inhibition at different
levels of biological visual systems. Similar calculations
have been used in machine vision as well (e.g., Jarrett,
Kavukcuoglu, Ranzato, & LeCun, 2009). Several simple
cases from crowding experiments apparently fit well to
this simple model. In more complex cases, saliency can
be calculated at several levels of visual processing, and
candidate objects at different levels may compete for
access to further processing.

The present study suggests how classic ideas of
attention and feature integration could be related to
modern neural network models of vision. I suppose
that the “simple” features to be combined should be
a bit more complex, and the “spotlight” of attention
has a minimum radius of about half of eccentricity.
The amendments do not contradict the majority of
earlier results because complex models can be reduced
to simplified versions when traditional simple stimuli
are used.

Keywords: visual crowding, attention, saliency,
capacity limitations, feature integration, neural networks
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