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Highly variable cancer subpopulations that exhibit
enhanced transcriptome variability and metastatic
fitness
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Individual cells within a tumour can exhibit distinct genetic and molecular features. The

impact of such diversification on metastatic potential is unknown. Here we identify clonal

human breast cancer subpopulations that display different levels of morphological and

molecular diversity. Highly variable subpopulations are more proficient at metastatic

colonization and chemotherapeutic survival. Through single-cell RNA-sequencing, inter-cell

transcript expression variability is identified as a defining feature of the highly variable

subpopulations that leads to protein-level variation. Furthermore, we identify high variability

in the spliceosomal machinery gene set. Engineered variable expression of the spliceosomal

gene SNRNP40 promotes metastasis, attributable to cells with low expression. Clinically,

low SNRNP40 expression is associated with metastatic relapse. Our findings reveal

transcriptomic variability generation as a mechanism by which cancer subpopulations can

diversify gene expression states, which may allow for enhanced fitness under changing

environmental pressures encountered during cancer progression.
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A
given cancer type can display tremendous variation from

patient to patient, while within a patient, individual
neoplastic lesions often grow at different rates and

respond differentially to the same therapy. Even within a given
tumour, individual cells can display substantial variation
at the genetic1–3, epigenetic4,5 and phenotypic levels6,7. This
heterogeneity might be particularly beneficial when cancers face
strong selective pressures such as chemotherapy8,9 or metastatic
barriers10–12. Notably, functional variability can be sustained over
time without genetic changes8, suggesting epigenetic control or
other mechanisms as paths to molecular variability generation13.
Many important studies on tumour heterogeneity have provided
static snapshots of genetic heterogeneity1,2; however, functional
and phenotypic characterization of individual clones within a
tumour population can provide insights into the molecular and
cellular features that propagate heterogeneity and diversity
generating capacity14.

Despite its pervasiveness in cancer, the mechanisms, aside
from genetic mutations, that mediate phenotypic heterogeneity
generation in driving cancer progression remain poorly under-
stood. These mechanisms may contribute to the evolution
of cancer populations, leading to heritable variation that
provides fitness advantages under varying selective pressures15.
Furthermore, it is not known whether phenotypic diversity
among cancer cells within a population is molecularly regulated
or whether it is simply an epi-phenomenon16. To generate an
experimental model wherein genetic variation between cells is
minimized so that non-genetic contributions to heterogeneity
generation can be assessed, we have derived isogenic, clonal
subpopulations from human cancer populations. Here we have
discovered clonal subpopulations of cells that display high
morphological variation. These subpopulations displayed
variability of multiple phenotypes, and this feature was
inherited by their single cell progeny. Highly variable (HV)
subpopulations exhibited increased metastatic capacity and
survival in the presence of chemotherapies, consistent with
diversification-enabling enhanced fitness. Furthermore, in human
breast cancers, nuclear morphological variation was found to
associate with clinical metastasis. Molecular analyses revealed that
highly variable subpopulations exhibit genetic stability, yet
express enhanced cell-to-cell transcriptomic variability, which is
transmitted to the protein level. Finally, gene set enrichment
analysis revealed spliceosomal machinery components to display
high-transcript expression variability, suggesting a means by
which variation could be transmitted to a global level.
Spliceosomal gene set expression variability is consistent with
the increased pre-mRNA variability observed in these
subpopulations. Indeed, engineered variation of the SNRNP40
spliceosomal gene’s expression among cells within a breast cancer
population promoted their metastatic fitness. Further analysis
revealed cell populations with low SNRNP40 expression exhibit
enhanced metastatic capacity, displayed gene expression changes
consistent with that seen in highly variable subpopulations, and
contained increased unspliced pre-mRNAs. Clinically, low
SNRNP40 expression was found to be associated with
metastatic outcomes. These findings highlight an aspect of
intra-clonal tumour heterogeneity that has not yet been
previously addressed. The experimental model established here
can be applied to various cancers to better understand non-
genetic contributions to heterogeneity and to study the impact of
such deregulation among cancer populations and their progeny.

Results
Isolation of clonal subpopulations with morphologic variation.
To study phenotypic diversity in cancer cells, we derived nearly

200 clonal subpopulations from 2 breast cancer cell lines and
assessed these subpopulations for intra-clonal heterogeneity in
cell size through automated image analysis of 29,390 cells in total
using CellMask stain to label entire cells and DAPI dye to label
nuclei. Subpopulations, derived from the human cancer cell line
MDA-MB-231 (MDA) and the minimally passaged primary
CN34 breast cancer line (CN), displayed inter-clonal variation
in six size parameters (Fig. 1a). To quantitatively assess intra-
clonal size heterogeneity, coefficient of variation for each sub-
population was calculated for each size parameter, and principal
component analysis was performed for each parental line. The
majority of clonal subpopulations displayed a range of variability
as assessed by using the first principal component—consistent
with a single peak distribution (Fig. 1b,c). A few subpopulations
demonstrated exceptionally high intra-clonal, cell-to-cell size
variation without exhibiting significant differences in their
population-level means (Fig. 1b–d).

Highly variable subpopulations exhibit phenotypic diversity.
To determine whether these highly variable subpopulations could
give rise to and maintain phenotypic diversity beyond cell size, we
assessed proliferative variability as an independent functional
measure by colony formation assays. We first confirmed that cell
size and cell density within colonies were not contributing factors
to colony area differences (Supplementary Fig. 1b). While bulk
population growth in culture was similar between subpopulations
(Supplementary Fig. 1a), MDA-derived subpopulations that
exhibited high intra-clonal size variation also displayed high
variability in proliferative capacity, which could be visualized as
high variation in colony sizes (Fig. 2a). Among the CN-derived
populations, only subpopulation C57 displayed a modest increase
in proliferative variability (Supplementary Fig. 1c,d), suggesting
that the other morphologically heterogeneous subpopulations
from this parental line may not exhibit variation of additional
phenotypes beyond morphology. These subpopulations, herein
referred to as highly variable (HV) subpopulations, maintained
high size variability in progeny clonal subpopulations when
compared with lowly variable (LV) subpopulations (Fig. 2b,c).
These HV subpopulations maintained enhanced size variability
when measured in three dimensions (Fig. 2d,e), after passage in
culture (Supplementary Fig. 2a), and after seeding at various
densities (Supplementary Fig. 2b) with no consistent difference in
cell cycle phasing (Supplementary Fig. 2c). In addition, to
determine whether HV cells over-express markers associated with
what some propose to be the ‘cancer stem cell state’, we assessed
the expression levels of breast cancer stem cell markers CD44 and
CD24 by flow cytometry and observed no difference between
HV and LV subpopulations for these markers (Supplementary
Fig. 2d–f). All in sum, these clonal subpopulations displayed an
enhanced and heritable ability to generate diversity across
multiple phenotypic dimensions.

Highly variable subpopulations exhibit metastatic fitness.
Metastatic colonization of an end organ represents a major
bottleneck during cancer evolution that would greatly benefit
from diversity generation and is clinically responsible for
the majority of cancer deaths17,18. Our identification of
subpopulations of cells with high versus low diversification
potential from the same individual patients’ cancer populations
allowed us to directly test the impact of intra-clonal
diversification ability on metastatic colonization capacity. HV
subpopulations exhibited enhanced systemic metastatic capacity
when introduced into the arterial circulation of mice as
determined by total tumour burden (Fig. 3a,b). In addition, this
increased tumour burden was in large part attributed to an
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increased number of systemic metastatic foci (Fig. 3c), indicating
an increased frequency of colonization of systemic sites as
opposed to an increased growth rate of formed metastases.
Moreover, HV subpopulations derived from both human lines
more efficiently colonized the lung on venous inoculation
(Fig. 3d,e) and the liver on portal circulation injection
(Fig. 3f,g), indicating that the enhanced metastatic colonization
capacity is broadly applicable to multiple organs posing diverse
selective barriers. In addition, portal circulation inoculation of a

mixed population consisting of an equal number of HV and LV
cells revealed HV cells to contribute between 81.2 and 99.6% of
formed liver metastases (Fig. 3h), demonstrating that HV cells
maintain an increased metastatic capacity in a mixed population.
Because broad diversity generation has the potential to enhance
cancer evolution under various selective pressures in addition to
metastatic colonization, HV subpopulations were assessed for
survival in the presence of various chemotherapeutics commonly
used to treat breast cancer. HV subpopulations derived from both
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Figure 1 | Clonal subpopulations generate morphological diversity. (a) Clonal subpopulations were generated, labelled with CellMask stain to label entire

cells and DAPI dye to label nuclei, imaged, and analysed for six size parameters using CellProfiler software. Summarized size parameters are shown from

MDA-MB-231 (left, n¼98) and CN34 (right, n¼ 97) breast cancer cell lines. Median, interquartile range, minimum and maximum are depicted by

box plots. Representative images of small-sized and large-sized cell populations are shown; scale bars are 50mm. (b,c) Histograms (left) of the first

principal component of size coefficient of variation (CV) was used to assess subpopulation size heterogeneity in MDA-MB-231-derived clones (b) and

CN34-derived clones (c). Candidate high (red) variability populations are indicated. Representative images of high and low variability populations are

shown (right); scale bars are 50mm. (d) Distribution of cell area from candidate high and low variability populations in MDA-MB-231-derived clones (left)

and CN34-derived clones (right). Median, interquartile range, minimum and maximum are depicted by violin plots.
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parental populations exhibited increased survival in the presence
of doxorubicin, paclitaxel, cyclophosphamide and 5-fluorouracil
(Fig. 3i,j). The ability of HV subpopulations to generate
phenotypic diversity, metastasize more efficiently, and survive
under mechanistically diverse chemotherapeutic agents is
consistent with a positive role for phenotypic diversification in
cancer progression.

Nuclear size variation is associated with metastatic disease.
Given our observation of increased nuclear size variability in HV
subpopulations (Supplementary Fig. 3a), we used this tractably
quantifiable parameter as a readout of phenotypic variability in
human invasive breast cancer tumour core biopsies. Mean
nuclear size and mitotic index did not significantly correlate with
disease stage (Fig. 4a,b). Consistent with our findings, nuclear
area variability of cancer cells was significantly increased in
tumours of patients with more advanced stage disease (Fig. 4c,d,
Supplementary Fig. 3b). Primary tumours that progressed to
lymph nodes displayed significantly higher variation in nuclear
area than lymph node negative tumours. Furthermore,
primary tumours that progressed to distant metastases exhibited
significantly higher nuclear area variation than those tumours
that did not metastasize. We also observed modestly higher,
though not statistically significant, nuclear size variation in
tumours with higher grade (Supplementary Fig. 3c), consistent
with histopathologic observations19. These clinical correlations
are consistent with our findings that cancer populations with
greater diversification potential positively contribute to metastatic
disease.

Genomic and transcriptomic analysis of subpopulations. These
clonal subpopulations of cells derived from isogenic backgrounds
offer the potential for studies into the molecular basis of tumour
heterogeneity. Given the contribution of genomic instability to

tumour heterogeneity20,21, HV subpopulations were assessed for
mutational burden. We quantified single-nucleotide variant
and insertion–deletion mutation frequencies from population
exome sequencing to reconstruct phylogenic relationships1. HV
subpopulations appeared to diverge from a common HV ancestor
and to exhibit genetic similarity to the parental population
(Fig. 5a, Supplementary Fig. 4a,b), indicating that substantial
genetic mutational changes did not accumulate as they clonally
expanded. Furthermore, HV subpopulations did not significantly
differ in the number of population-specific nucleic acid variants
relative to LV subpopulations or the parental population
(Supplementary Fig. 4c). Analysis of DNA content revealed no
increase in mean DNA content or DNA content variability in HV
subpopulations, suggesting against aneuploidy as the source of
cell-to-cell variability (Supplementary Fig. 4d,e). While it is
difficult to exclude the contribution of genetic alterations to HV
subpopulation variability, the comparable genetic phenotypes and
relative genetic stability in the isogenic HV subpopulations
suggests that enhanced genetic diversification may not be the
primary source of the observed phenotypic diversity.

HV subpopulations display transcriptomic variability. To
identify additional molecular mechanisms that could contribute
to phenotypic diversity, single-cell RNA-sequencing from HV
and LV subpopulations was performed to assess gene expression
heterogeneity between cells (Fig. 5b). Assessment of single-cell
RNA-sequencing fidelity demonstrated appropriate spike-in
expression and no difference in spike-in variability between wells
(Supplementary Fig. 5a,b). Total transcript abundance per cell
showed no significant differences between HV and LV sub-
populations (Supplementary Fig. 5c). Moreover, global mean
transcript abundance was also not significantly different between
HV and LV subpopulations (P¼ 0.91 for HV-C57 versus LV-C92
and P¼ 0.62 for HV-M42 versus LV-M26 by two-sided paired
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Figure 2 | Phenotypic characterization of highly variable subpopulations. (a) MDA-derived colonies were grown in triplicate plates and measured for

variability in colony area. Error bars indicate s.e.m. of three independent experiments. P values were generated by testing Pearson’s correlation coefficient

with two-sides. Representative images of colonies stained by with crystal violet and thresholded in ImageJ are shown on right; scale bar, 5 mm. (b,c) Single

cells isolated from indicated MDA-MB-231 (b) and CN34 (c) subpopulations were expanded into clonal populations and were assessed for cell size

heterogeneity. Lines represent median. P values were derived using two-sided Mann Whitney U test. (d,e) The first principal component of 3D size

coefficient of variation was used to assess 3D size heterogeneity from indicated MDA-MB-231 (d) and CN34 (e) subpopulations. Error bars indicate s.e.m.

of three independent experiments. P-values were derived using two-sided t-test.
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Figure 3 | Highly variable subpopulations display enhanced metastatic capacity and survival in the presence of various chemotherapies.

(a,b) Bioluminescence quantification of total body metastatic burden by 4� 104 MDA-derived cell populations after 42 days (n¼ 5) (a) and 2� 105

CN-derived cell populations after 72 days (n¼ 6) (b) following inoculation into arterial circulation via intracardiac injection. P-values were derived using

two-sample (MDA, left) and one-sample (CN, right) one-sided t-test. Representative mouse and organ bioluminescence are shown. (c) Systemic

metastatic foci per mice were counted as distinct, minimal bioluminescence signals. P values were derived using two-sample (MDA-derived) and

one-sample (CN-derived) one-sided t-test. (d,e) Bioluminescence quantification of lung metastases by 4� 104 MDA-derived cell populations after 70 days

(d) and 2� 105 CN-derived cell populations after 112 days (e) following inoculation into the tail vein. P values were derived using one-sided Mann Whitney

U test; n¼ 5. Representative bioluminescence and lung histology is shown. Scale bar, 1 mm. (f,g) Ex vivo bioluminescence quantification of liver metastases

by 4� 104 MDA-derived cell populations after 39 days (d) and 2� 105 CN-derived cell populations after 91 days (g) following inoculation into the

portal circulation. P-values were derived using one-sided Mann–Whitney U-test; n¼ 5. Representative bioluminescence and gross histology are shown.

(h), 5� 105 cells consisting of equal parts of HV-M42 cells, labelled with blasticidin resistance gene, and LV-M100 cells, labelled with puromycin resistance

gene, were inoculated into the portal circulation. Liver metastases were extracted after 28 days and processed for qPCR quantitation of genomic DNA

resistance genes. Error bars indicate s.d. (i,j) 5� 103 MDA-derived (i) and CN-derived (j) subpopulations were each seeded in triplicate and treated with

drugs 24 h after seeding. After 48 h, WST-1 reagent (Roche) was added to assay viable cells. Heat map scaling is for each compound and is shown on the

right. P-values were derived using two-sample (i) or one-sample (j) one-tailed t-test. Doxo, doxorubicin; Taxol, paclitaxel; CP, cyclophosphamide; 5-FU,

5-fluorouracil. Error bars indicate s.e.m. unless otherwise indicated.
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t-tests). Interestingly, linear and non-linear clustering22 of
single-cell transcript expression profiles could not classify HV
or LV subpopulations (Fig. 5c, Supplementary Fig. 5d), suggesting
that averaged over-expression or repression of a gene or gene set
may not be the primary cause of phenotypic variation recurrently
observed in HV subpopulations23. However, global cell-to-cell
transcript expression variability, as assessed by quantification of
8,218 transcripts from single MDA HV cells, was significantly
elevated relative to expression variability between single LV cells
(53.9% transcripts with higher CV in HV-M42; P¼ 7e� 8 by
two-sided paired t-test; Fig. 5d). The same was observed for the
HV-C57 subpopulation (5,826 transcripts; 55.0% transcripts with
higher CV in HV-C57; P¼ 3e� 10 by two-sided paired t-test;
Fig. 5e). Importantly, while an increased CV could occur by a
decrease in mean expression, transcript variability observed in
HV cells did not appear to be a byproduct of lowly expressed
transcripts (Supplementary Fig. 5e,f).

To assess the robustness of this molecular phenotype, we
determined whether sampling parameters of the single-cell
sequencing experiments affected the observations. While more
abundant transcripts are known to be detected with higher
accuracy, elevated transcriptomic variability was observed
regardless of transcript abundance (Supplementary Fig. 6a). To
determine whether sequencing from limited number of cells
affected the outcome, random sampling of single cells from
subpopulations was performed to determine whether the
enhanced transcriptomic variability could be detected with fewer
cells. Indeed, transcriptomic variability was observed when setting
the analysis to as few as five cells per population (Fig. 5f,
Supplementary Fig. 6b). In addition, to determine whether a
unique cell was responsible for the molecular variability,
sampling was performed to assess population transcriptomic
variability following removal of each single HV cell sequenced.
Transcriptomic variability was consistently detected regardless
of which HV cell was excluded from the analysis (Fig. 5g,

Supplementary Fig. 6c), indicative of robust and indiscriminate
population-level variability. While the increased transcriptomic
variability appears modest, this effect is consistently observed
under different analysis parameters and in two subpopulations
derived from independent breast cancer populations. Taken
together, these findings indicate that phenotypically diverse
metastatic cancer subpopulations maintain enhanced intra-clonal
transcriptomic variability generation capacity.

Transcriptomic variability is transmitted to proteins. To
validate the relevance of transcriptomic variability as it pertains to
biological function, we used flow cytometry to assess protein-level
variation. XPNPEP3 and UPF2, two genes that displayed
high transcript-level variability in both HV subpopulations
(Supplementary Table 1) and whose protein expression per cell
could be readily quantified in a high-throughput manner by flow
cytometry, demonstrated a consistent level of increased protein
expression variability in HV subpopulations (Fig. 6a). We
extended these findings to the following additional five proteins
that could be readily quantified by flow cytometry: ALDOA,
PABPC1, HNRNPA1, CD110, and HNRNPA0. In all HV and LV
subpopulations, we observed a significant correlation between
transcript-level variation and protein-level variation for the seven
genes tested (Fig. 6b) with no consistent correlation in mean
protein abundance (Supplementary Fig. 7a). These findings reveal
that transcript variation is transmitted to the protein level and
highlight high-molecular variability as a principal feature of HV
subpopulations.

Spliceosomal gene transcripts are highly variable. We next
sought to identify a potential mechanism that could contribute
to transcriptomic variation in highly variable subpopulations.
MDA-derived and CN-derived subpopulations displayed simi-
larity in highly variable genes (Supplementary Table 1), many of
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which alone could contribute to global transcriptomic variability
such as chromatin modifiers (SENP7, ARID1A), transcription
factors (TCF7L2, SP3), and regulators of non-sense-mediated
decay (UPF2). While individual genes most likely contribute to
the effect seen in highly variable populations, we hypothesized
that coordinated variation of a common subset of transcripts may
reveal a major contribution to cell-to-cell variability. To identify
regulatory networks that might be responsible for transcriptomic
variation, we searched for functional gene sets that exhibited
high-transcript expression variability. Transcripts were binned
into four categories depending on whether relative transcript
variability was increased in either or both MDA-derived and
CN-derived HV subpopulations. Pathway discovery analysis

(iPAGE24) revealed spliceosome machinery and myeloid cell
differentiation gene transcripts as the only two gene sets to exhibit
significantly higher variability in HV subpopulations derived
from both patients’ cancer populations (Fig. 6c, Supplementary
Fig. 7b). This raised the possibility that cell-to-cell variation in the
expression levels of splicing genes and the resultant mRNA
processing activity may represent a conceivable mechanism
through which population-level heterogeneity of mature
transcripts may be achieved at a global scale25.

Improper splicing may lead to an abundance of unspliced pre-
mRNAs, which are eventually degraded via non-sense-mediated
decay26. Inefficient splicing could thus reduce the expression of a
large number of mature transcripts. Given the expression
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(c) Visualization of transcript expression profiles of 10 cells from selected MDA-derived subpopulations (left) and 12 cells from selected CN-derived
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CN-derived subpopulations (e; n¼ 12 single cells per population). Mean transcript coefficient of variation was calculated for all transcripts. P value was

derived from two-sided paired t-test. Percentages of transcripts with higher CV in each population are shown. Representative highly variable transcripts in
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10 MDA-derived HV cells with one specific cell removed (set size of 9) and distribution of mean CV is plotted (blue, 10 possible combinations to exclude
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variation of spliceosome machinery components, we reasoned
that variation in constitutive spliceosome activity in HV cells may
cause enhanced variation in global unspliced pre-mRNA levels.
Variation in unspliced pre-mRNA levels could then contribute

to transcript abundance variation. Indeed, HV subpopulations
demonstrated higher cell-to-cell unspliced pre-mRNA variability,
as determined by the analysis of 1,132 matched retained introns
from MDA-derived cells (54.8% retained introns with higher CV
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in HV-M42, P¼ 1e� 4 by one-sided paired t-test; Fig. 6d) and
1,666 matched retained introns from CN-derived cells (57.6%
retained introns with higher CV in HV-C57, P¼ 2e� 11 by
one-sided paired t-test; Fig. 6e). In addition, if this unspliced pre-
mRNA variability as measured by retained introns is propagated,
it should be apparent in further processed forms of pre-mRNAs.
Indeed, exon–exon junction expression variability measured from
single-cell sequencing experiments was significantly increased in
HV subpopulations from MDA-derived cells (54.7% exon–exon
junctions with higher CV in HV-M42, P¼ 2e� 4 by one-sided
paired t-test; Fig. 6f) and CN-derived cells (65.3% exon-exon
junctions with higher CV in HV-C57, P¼ 8e� 10 by one-sided
paired t-test; Fig. 6g). This molecular variability could be caused
by variation in splicing as well as varied decay of improperly
spliced transcripts. Consistent with our findings, intron retention
has been previously observed to be the most significant splicing
alteration in breast cancer patient samples27. These findings
reveal enhanced splicing variability as one feature of highly
variable subpopulations.

Variability in SNRNP40 expression enhances metastasis.
Finally, we sought to determine whether enforced modulation
of a highly variable spliceosomal gene could recapitulate the
metastatic capacity seen with HV subpopulations. While highly
variable subpopulations displayed variability in many spliceo-
somal genes, focused study on a single spliceosomal gene could
serve as a model by which variation of other spliceosomal genes
may contribute to expression variation. However, focus on a
single gene would be expected to recapitulate only a fraction of
the effects seen in highly variable subpopulations. We focused on
SNRNP40, a component of the U5 small nuclear RNP complex,
because this gene exhibited high transcript variability in HV
subpopulations (Supplementary Fig. 8a), was among the top three
most variable spliceosomal gene transcripts (Supplementary
Table 2), has been described to directly interact with numerous
highly variable spliceosomal genes (Fig. 7a, Supplementary
Table 2), and its protein expression could be readily quantified
by immunofluorescence-based imaging (Supplementary Fig. 8b).
Indeed, HV subpopulations displayed increased SNRNP40
protein-level variability (Fig. 7b,c). To determine whether
population-level variation in SNRNP40 observed with HV cells
was sufficient to enforce metastatic fitness, LV subpopulations
were generated to express varying levels of SNRNP40
(Supplementary Fig. 9a). These populations were pooled to
generate a mixed population with increased cell-to-cell
SNRNP40 expression variation without significantly altering
mean SNRNP40 expression (Fig. 7d; mean: Control¼ 9.0,
hiCV¼ 8.9, P¼ 0.19 by two-sided t-test; CV: Control¼ 0.068,
hiCV¼ 0.104, P¼ 7e-14 by Levene’s test). Functional testing of
this engineered population revealed that increased cell-to-cell
variability in SNRNP40 expression enhanced the ability of these
cells to metastasize more efficiently and to colonize more sites
systemically (Fig. 7e,f), suggesting that variation in SNRNP40
between cells could, in part, contribute to enhanced metastatic
capacity observed in HV subpopulations.

We sought to determine whether within this cell population
engineered to express higher SNRNP40 variation, the cells with
high SNRNP40 or those with low SNRNP40 levels imparted the
enhanced fitness to the pooled population. To do this, we
generated cells that represented the tails of the variable
population—those that expressed high SNRNP40 through over-
expression, or those that expressed low SNRNP40 through
knockdown. While increased SNRNP40 expression did not affect
metastatic capacity (Fig. 8a), SNRNP40 depletion significantly
promoted systemic metastasis (Fig. 8b, Supplementary Fig. 9b–e).

Next, we sought to determine whether variation in SNRNP40
expression contributes to the gene expression variability seen in
highly variable subpopulations. Our model is that variable levels
of SNRNP40 allows for the transmission of variability to many
transcripts dependent on SNRNP40 expression. Thus, we used
small interfering RNA (siRNA)-mediated depletion of SNRNP40
to identify these dependent transcripts and inferred a high
magnitude of expression change to be indicative of strong
transmission. If variable expression of SNRNP40 contributes
to gene expression variability seen in HV subpopulations,
SNRNP40-dependent transcripts would be enriched among
variable transcripts in HV subpopulations. To test this
hypothesis, the degree of overlap between SNRNP40-dependent
transcripts (absolute log foldchange 41 on siRNA treatment)
and highly variable transcripts (transcript CV ratio from MDA
single-cell sequencing 41.5) was assessed. Indeed, transcripts
with high magnitude expression change in SNRNP40 knockdown
cells were significantly enriched among variable transcripts in HV
single cells (Fig. 8c). This enrichment can also be demonstrated as
a heat map (Supplementary Fig. 10a) and as a binned dot plot,
which shows that the degree of gene expression deregulation on
SNRNP40 depletion significantly correlated with transcript
variability in the HV population (Supplementary Fig. 10b). These
findings suggest that SNRNP40 contributes in part to the
expression of a set of variable transcripts in breast cancer cells.
In addition, SNRNP40 depletion significantly increased the
fraction of unspliced pre-mRNAs (Fig. 8d), consistent with pre-
mRNA variability observed in HV subpopulations. The expected
modest effect is likely attributable to perturbation of only a single
spliceosomal gene. Consistent with these functional findings,
decreased SNRNP40 transcript-level expression in bulk primary
breast cancer samples was associated with increased metastatic
relapse outcomes in multiple independent data sets (Fig. 8e–g).
These findings provide clinical association support for SNRNP40
expression in human breast cancer progression. While tumours
can achieve reduced SNRNP40 expression through mean
expression alteration, we show in our experimental model that
cancer subpopulations may achieve SNRNP40 silencing through
deregulation in a subset of cells that may not be apparent from
averaged measurements derived from bulk tumours.

Discussion
Previous studies have revealed the benefit of non-genetic
cell-to-cell variability to fitness of cells under cytotoxic
conditions4,8,28,29. We show that enhanced variation at the
transcriptomic level is generated and maintained within rare
clonal cancer subpopulations, leading to phenotypic diversity and
enhanced metastatic capacity. These HV cells were isolated from
parental populations at a low frequency of 1–3%, which could be
attributed to a number of factors. First, the increased variability of
HV cells that leads to increased fitness in vivo may not be
beneficial in vitro where the cell culture selective pressures may be
more suitable for LV cells. Similarly, phenotypic trade-offs at the
cellular level might contribute to the low frequency of HV cells17;
for example, if beneficial diversity were hypothetically generated
through an energetically demanding and slower cell division
process, proliferation rate would be sacrificed as a result. Aside
from potential cell-intrinsic mechanisms, clonal interactions
within the parental population are likely involved in
maintaining the presence of HV cells at a low frequency.
Subclonal heterogeneity can be maintained through subclonal
cooperation from both minor subpopulations that enhance
proliferation of neighbouring cells as well as other populations
that contribute to tumour growth30. HV cells might similarly
utilize non-cell-autonomous mechanisms to maintain variation
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under in vitro conditions with other cells in the population more
suited for growth in culture.

We consistently observe molecular variability in HV sub-
populations by different experimental assays and at both the
molecular and phenotypic levels. Molecular and phenotypic
variation within cancer populations increases the likelihood that
an individual cell is able to survive and repopulate a tumour
under a given selection pressure, such as metastatic colonization
and chemotherapy. We propose spliceosome-associated gene
expression variability as one mechanism by which clonal cancer
populations could increase mature transcript expression
variability of target genes. We show one example of spliceosome
gene expression variability where variable cell-to-cell expression
of SNRNP40 enables enhanced metastatic fitness through
generation of a cell subpopulation with reduced SNRNP40
expression (Fig. 8h). This mechanism is supported by the
requirement of key splicing factors for maintenance of robust
transcriptomes31. Minimal deregulation of multiple splicing
factors has the potential for amplified alterations of gene
regulatory networks and gene expression states. In addition,
intron retention has been observed to regulate expression of genes
involved in nuclear shape as well as splicing factor genes26. The
consistent molecular variability observed in HV subpopulations
derived from independent human cancer cell populations
suggests that deregulation of specific sets of downstream targets
is molecularly conserved. These experimental observations can be

tested in clinical correlates to characterize non-genetic contribu-
tions to tumour evolution in patients. While the upstream cause
of the transcript-level variability remains to be determined, we
propose deregulated population transcriptomic variability to
represent one mechanism by which molecular diversity can
be achieved in cancer and reveal enhanced phenotypic
diversification capacity to associate with metastatic progression.

Methods
Cell culture. MDA-MB-231 cells and their derivatives were maintained in DMEM
supplemented with 10% FBS, glutamine, pyruvate, penicillin, streptomycin
and fungizone. CN34 cells and their derivatives were maintained in M199
supplemented with 2.5% FBS, 10 mg ml� 1 insulin, 0.5 mg ml� 1 hydrocortisone,
20 ng ml� 1 EGF, 100 ng ml� 1 cholera toxin, glutamine, pyruvate, penicillin,
streptomycin and fungizone. MDA-MB-231 and CN34, cell lines were originally
obtained from ATCC, while CN34 cell lines were generated from pleural fluid of a
breast cancer patient as previously described32. Cells in culture were routinely
tested for mycoplasma contamination. Clonal populations were generated from
parental populations by seeding cells sparsely, picking individual colonies, and
expanding to B105 cells when cells were imaged for size measurements.

Cell size measurements and coefficient of variation analysis. 3� 104 cells were
seeded on coverslips and stained with HCS CellMask Red (Invitrogen) and DAPI.
Numerous fields were imaged on DeltaVision Image Restoration Microscope to
capture at least 100 cells per population. Cell size parameters were measured using
Cell Profiler 2.0. Debris was filtered out by generating a histogram of (cytoplasmic
area—nuclear area) and applying a minimum threshold in R. To calculate
coefficient of variation (s.d./mean) for each clonal population, a sampling size
was determined from the clonal population with the fewest cells analysed
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Figure 7 | High expression variability of spliceosomal gene SNRNP40 leads to increased metastatic capacity in low variability population.

(a) Ingenuity Pathway Analysis was used to identify spliceosome gene interactions. Genes in yellow displayed increased variability in both HV

subpopulations, while genes in orange displayed increased variability in only one HV subpopulation. Black lines indicate annotated direct interactions of

genes with increased variability in both HV subpopulations. Grey lines indicate interactions that are indirect or do not involve a gene with increased

variability in both HV subpopulations. (b,c) Subpopulations were quantified for SNRNP40 protein levels by fluorescence confocal microscopy (b) and

analysed for protein expression coefficient of variation (c). P-values were derived from two-sample (MDA) or one-sample (CN) one-sided t-test.

(d) SNRNP40 protein expression of control and high SNRNP40 expression variability pooled LV-M100 populations as measured by fluorescence

microscopy. (e) 105 cells from pooled LV-M100 populations were inoculated via intracardiac injection and monitored by bioluminescence flux.

Representative mice are shown. P value was derived from one-sided t-test; n¼6. (f) Systemic metastatic foci per mice were counted as distinct,

minimal bioluminescence signals. P-value was derived using one-sided t-test. Error bars indicate s.e.m.
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(96 cells in the MDA-MB-231 population and 206 cells in the CN34 population).
Subpopulations with more cells imaged than the sampling size were sampled 100
times, with the average CV used in the final analysis. For each subpopulation,
coefficient of variation was calculated for each size parameter, which includes cell
area, cytoplasmic area, nucleus, perimeter, major axis length, and minor axis
length. Principal component analysis was performed using all subpopulations on
the coefficient of variations for all morphological parameters. The first principal
component accounted for 93 and 91% of the variance in MDA and CN34 cell lines,
respectively, and is used for all size variation analyses.

Three-dimensional size coefficient of variation analysis. Cells were fixed in 8%
paraformaldehyde, permeabilized with 0.1% Triton-X, and stained with CellMask
Red. Cells were analysed by ImageStream-X (Amnis) to measure cell size, nuclear

size, perimeter, major axis and minor axis. Principal component analysis was
performed, and the first principal component was used for analyses.

Proliferation & colony formation assays. For proliferation assays, 5� 103 cells
were seeded in triplicate and assayed WST-1 reagent (Roche) 72 h after seeding.
For colony formation assays, 200 cells were seeded in 10 cm plates in triplicate and
were allowed to grow for 10 days (MDA-derived cells) or 20 days (CN-derived
cells). Plates were fixed in 6% glutaraldehyde with 0.5% crystal violet and scanned.
Colony areas were measured using ImageJ. R was used to remove debris, equalize
colony numbers with samplings as above, and calculate coefficient of variation.

Animal studies. Animal experiments were conducted in accordance with
protocols approved by the Institutional Animal Care and Use Committee at

0 20 40 60 80 10
0

101 102

101

100

10–1

10–2

10–3

10–1

10–2

10–3

100

Control
SNRNP40

Days

To
ta

l p
ho

to
n 

flu
x 

ra
tio

 (
lo

g)

0 20 40 60

Control
shSNRNP40

Days

To
ta

l p
ho

to
n 

flu
x 

ra
tio

 (
lo

g)

P
 =

 0.002

Contro
l

shSNRNP40
0

2

4

6

8

10
P = 0.006 

S
ys

te
m

ic
 m

et
as

ta
tic

 fo
ci

Low

High

Low

High

Low

86420
0

0.2

0.4

0.6

0.8

1.0

HR = 0.77 (0.62–0.95)
P = 0.015; n = 1610 

Years

Spliceosome expression

Metastatic capacity

High SNRNP40

Gene expression

High

D
M

F
S

0 5 10 15
0.0

0.2

0.4

0.6

0.8

1.0

P = 0.0035; n = 286

Years

D
M

F
S

0 2 4 6 8
0.0

0.2

0.4

0.6

0.8

1.0

P = 0.025; n = 51

Years

D
M

F
S

SNRNP40 SNRNP40 SNRNP40

Metastatic capacity

Low SNRNP40

Low effector High effector

High variability Low variability

Phenotype

–2 –1 0 1 2
0.00

0.05

0.10

Log2 (siSNRNP40/siControl
intron retention ratio)

Fr
eq

ue
nc

y

P < 2.2e-16
µ = 0.0538

53.4%46.6%817 25 82

SNRNP40-dependent 
transcripts

Highly variable 
transcripts

P = 0.000056

a

c

e f

h

g

d

b

Figure 8 | Low SNRNP40 expression increases metastatic colonization capacity and is associated with metastatic outcomes in patients.

(a) 105 LV-M100 cells with SNRNP40 over-expression were inoculated by intracardiac injection and monitored by bioluminescence; n¼ 5. Error bars

indicate s.e.m. (b) 105 LV-M100 cells with SNRNP40 knockdown were inoculated by intracardiac injection and monitored by bioluminescence.

Representative mice are shown; n¼ 5. Systemic metastatic foci per mice were counted (right). P-values were derived from one-sided t-test. Error bars

indicate s.e.m. (c,d) LV-M100 cells were transfected with two siRNAs targeting SNRNP40 and two control siRNAs and processed for gene expression

analysis. (c) Venn diagram showing the overlap between SNRNP40-dependent transcripts (absolute log-foldchange 41 on siRNA treatment) and

highly variable transcripts from the MDA single cell experiment (transcript CV ratio 41.5). P-value is derived from hypergeometric distribution.

(d) Log-foldretained intron ratio was calculated for each transcript and plotted as a histogram. Dashed red line indicates mean. Percentages of retained

intron ratios above and below zero are shown. P-value was derived from two-sided t-test of log-ratio as compared with zero. (e–g) Kaplan–Meier curves of

distant metastasis-free survival (DMFS) from GSE33926 (ref. 43) (e), GSE2034 (ref. 42) (f) and kmplotter meta-analysis44 (g) as a function of primary

tumour SNRNP40 expression in breast cancer. P-values were derived from log-rank test. (h) Model of spliceosome expression variability mediating gene

expression changes and metastatic capacity heterogeneity.
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The Rockefeller University. For in vivo experiments with MDA-derived cell lines,
populations were transduced with a retroviral construct expressing a luciferase
reporter33. CN34 parental cell line was previously labelled with luciferase reporter.
Athymic female mice aged 6 weeks (Jackson labs) were used for intracardiac
injection. NOD-SCID female mice aged 6 weeks (Jackson labs) were used for tail
vein injections with MDA-derived cells, while NOD-SCID gamma female mice
aged 6 weeks (Jackson labs) were used for tail vein injections with CN-derived cells.
Sample size in mice experiments was chosen based on biological variability
observed with a given genotype. Animals were excluded from studies if inoculated
cells did not arrive in the intended site. For portal circulation injections, cells were
injected into the spleen of NOD-SCID gamma female mice followed by removal of
the spleen. For portal circulation injection of mixed population, LV-M100 cells
were transduced with pLKO.1 puro (Addgene plasmid #8453), and HV-M42 cells
were transduced with pLKO.1 blast (Addgene plasmid #26655). Cells were mixed
at a 1:1 ratio immediately before injections. In vivo bioluminescence was monitored
weekly by retro-orbital injection of luciferin (Perkin Elmer) and normalized to
bioluminescence signal immediately following cell injection.

Tissue microarray analysis. NCI CDP Breast Cancer Progression Tissue
Microarray slides were obtained from the Cancer Diagnosis Program at the
National Cancer Institute, US National Institutes of Health. Tumour cores were
obtained from The Cooperative Breast Cancer Tissue Resource with informed
consent and ethical approval as indicated34. TMA slides were deparaffinized,
rehydrated, and exposed to Heat Induced Epitope Retrieval at pH 6. Slides were
stained with DAPI, and tumour cores were imaged on Leica TCS SP5 system at
� 40. Images were analysed using CellProlifer 2.0 to identify and measure cancer
cell nuclei by Otsu Adaptive thresholding. Image acquisition and analysis were
blinded until measurements were completed for all tumour cores. Mitotic index
was calculated as follows: number of mitotic cells/total cells for each tumour core.

Exome sequencing and analysis. gDNA was extracted using DNEasy kit
(Qiagen). Libraries were prepared using Nextera Extended Exome sequencing kit,
as per manufacturer’s instructions (Illumina), and paired-end sequenced on HiSeq
2500 (Illumina). The analysis pipeline for the exome-seq data was based on the
GATK best practices. Reads were aligned to the human genome (build hg19).
The paired-end reads were then fixed and filtered using Picard (v. 1.107; http://
picard.sourceforge.net/). The duplicates were also removed in the same step. Using
GATK (v. 2.5)35, the reads were realigned and recalibrated. mpileup (samtools36)
was used to create an input for VarScan (v2.3.6)37. In VarScan, mpileup2snp and
mpileup2indel commands were used to identify variants across all exome-seq
samples. To study population genetic divergence, the frequencies of all variants
identified (148,234) were used to generate phylogenic tree by Nei’s genetic distance
using neighbor-joining method in the PHYLIP package.

Single cell RNA-sequencing. Single cell isolation, cDNA synthesis, amplification,
and processing for Illumina sequencing were performed as described38. Reads were
distributed into separate samples based on their barcodes. Cells were excluded if
wells were empty or generated library was low quality as assessed by the number of
total reads, number of mapped reads, a high percentage of unmapped reads and a
high percentage of spike-in reads39. To equalize the number of cells analysed from
each population, cells were randomly selected and removed from analysis. The
RNA-seq pipeline described above was then used to measure gene expression
across RNA-seq data from each cell. In parallel, TopHat results were parsed to
count the presence of every exon-exon junction across all the samples. Transcripts
present in both cell populations, present in more than 25% of all cells and
expressed above threshold mean of all cells based on a Gaussian distribution were
included for analysis. Non-linear cell clustering by t-Distributed Stochastic
Neighbor Embedding was performed using ‘tsne’ package in R. To measure
retained introns, the number of reads mapping to each exon or intron were
counted across the transcriptome for all samples. As a measure of intron retention
(IR), for each intron, we then calculated the number of reads mapping to each
intron relative to the two spanning exons (r_int_ex). For CV measurements,
retained introns and exon-exon junctions were included in analysis if present in
more than 25% of all cells.

Pathway analysis. iPAGE24 pathway analysis (http://iget.c2b2.columbia.edu)
was used to identify gene sets with higher transcript variability in both HV
subpopulations. Transcript coefficient of variation log-ratios (HV/LV) were used to
categorize transcripts into four bins: bin 1) negative log-ratio in both MDA-derived
and CN-derived comparisons, bins 2 and 3) positive log-ratio in either
MDA-derived or CN-derived comparison, and bin 4) positive log-ratio in both
MDA-derived and CN-derived comparisons. GO and KEGG annotations were
analysed using a maximum P-value of 0.05 and maximum genes per category of
200. Gene sets were only considered relevant if enrichment was highest in bin 4
and lowest in bin 1. Ingenuity Pathway Analysis (Qiagen) was used to identify
spliceosomal gene interactions based on published literature.

Flow cytometry. For antibody staining, cells were prepared using Cytofix/
Cytoperm (BD). Dead cells were excluded using Live/DEAD Aqua (Invitrogen).
Primary antibodies used were anti-XPNPEP3 (Abcam 25D, 1:200), anti-UPF2
(LSBio LS-C160443, 1:4) anti-ALDOA (Abcam ab54770, 1:8), anti-PABP (Abcam
10E10; 1:200), anti-HNRNPA1 (Cell Signalling D21H11, 1:30), anti-CD110
(BD clone 1.6.1, 1:50), anti-HNRNPA0 (Cell Signalling D8A3, 1:50), anti-ESR1
(Thermo MA1310, 1:20), anti-MCF2 (LSBio LS-C164083, 1:10), and anti-CSF2RA
(eBiosciences 4H1, 1:30) conjugated to Alexa555 or Alexa647 Zenon secondary
antibodies (Invitrogen). FACS was performed on LSRII (BD). Analysis was
performed on FloJo. CV calculations were performed using greater than 25� 103

cells, an equal number of cells per sample within each experiment. Ratios were
calculated using the average value of all HV populations (MDA: HV-M35,
HV-M42, HV-M56; CN: HV-C57) and LV populations (MDA: LV-M26, LV-M52,
LV-M100; CN: LV-C65, LV-C92, LV-C100). Cell cycle analysis was performed by
employing flow cytometry on fixed cells stained with DAPI and determining cell
cycle phases in FloJo.

SNRNP40 protein quantitation. Cells were fixed, permeabilized and stained
with DAPI and HPA026527 (1:100, Sigma) followed by fluorescent-conjugated
secondary antibodies. Imaging was performed on Leica TCS SP5 system. SNRNP40
relative protein level was determined using Cell Profiler 2.0 by measuring total
nuclear SNRNP40 fluorescence intensity as demarcated by DAPI signal.

SNRNP40 cell line generation. To generate high CV SNRNP40 population, cell
populations were transduced individually at various titres with either virus for
short hairpin RNA (shRNA) expression (shRNA#1 TRCN0000074608 and
shRNA#2 TRCN0000074610, Sigma) or virus for stable ORF expression (pBabe
vector). Expression in individual populations was confirmed by quantitative reverse
transcriptase–PCR (RT–PCR). Populations were then pooled at equal ratios to
generate mixed populations. Control population was generated similarly using a
non-targeting shRNA (SHC016, Sigma) and an empty expression vector.

Quantitative RT–PCR. RNA was extracted using total RNA isolation kit (Norgen
Biotek). cDNA was generated using Superscript III (Invitrogen). Fast SYBR Green
Master Mix (Life Technologies) was used to analyse samples on Applied
Biosystems 7900HT. Expression was normalized to GAPDH. Primers sequences
are as follows: SNRNP40 Forward: 50-CAGTGGAGCAGTGATGGAAT-30 ;
SNRNP40 Reverse: CCCTCTCACCTGTTTCACTATC-30 ; GAPDH Forward:
50-AGCCACATCGCTCAGACAC-30 ; GAPDH Reverse: 50-GCCCAATACGACC
AAATCC-30; blasticidin Forward: 50-CCTGGGATCAAAGCCATAGT-30 ;
blasticidin Reverse: 50-TTAGCCCTCCCACACATAAC-30 ; puromycin Forward:
50-GTCACCGAGCTGCAAGAA-30; puromycin Reverse: 50-CCGATCTCGGCGA
ACAC-30 .

siRNA transfection. The following siRNAs were used (IDT): siSNRNP40 #1:
50-GGAAUAGACAAUGAUAUC-30 ; siSNRNP40 #2: 50-GGAUUUGACCGACU
GAUA-30 . BLOCK-iT Fluorescent Oligo (Life Technologies) and NC1 (IDT) were
used as controls.

105 cells were seeded and were transfected the next day with siRNAs via
Lipofectaime 2000 (Invitrogen). Cells were extracted 48 h later for validation of
knockdown by quantitative RT–PCR, RNA-sequencing or flow cytometry. For
RNA-sequencing, two siRNAs were used for SNRNP40 and control, and
independent siRNA replicates were averaged.

RNA-sequencing. RNA was extracted using total RNA isolation kit (Norgen
Biotek) with DNAse I treatment followed by Ribo-Zero Gold rRNA removal
(Epicentre). Libraries were generated using ScriptSeq v2 RNA-seq Library
Preparation Kit (Epicentre) and run on HiSeq 2500. For RNA-seq data analysis,
the reads were trimmed to remove matches to linkers and low-quality bases
(cutadapt v1.2.1). Tophat (v. 2.0.8)40 was then used to map the reads to the human
transcriptome (build hg19). Cufflinks and cuffmerge (v.2.0.2) were then used to
calculate reads per kilo base per million and consolidated results across the
samples. Finally, cuffdiff (v.2.0.2) was used to calculate log-foldchanges and the
associated statistics. Enrichment analysis was performed as previously described41.
Statistical test for Venn diagram overlap was performed using phyper() in R.

Clinical association analyses. GSE2034 (ref. 42) and GSE33926 (ref. 43) were
used to generate Kaplan–Meier curves. Patients were stratified by SNRNP40
expression relative to median. KMplotter was used to assess distant metastasis-free
survival with follow up threshold of 8 years44.
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