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Automation of pharmaceutical safety case processing represents a significant opportunity to affect the strongest 
cost driver for a company’s overall pharmacovigilance budget. A pilot was undertaken to test the feasibility of using 
artificial intelligence and robotic process automation to automate processing of adverse event reports. The pilot 
paradigm was used to simultaneously test proposed solutions of three commercial vendors. The result confirmed the 
feasibility of using artificial intelligence–based technology to support extraction from adverse event source 
documents and evaluation of case validity. In addition, the pilot demonstrated viability of the use of safety database 
data fields as a surrogate for otherwise time-consuming and costly direct annotation of source documents. Finally, 
the evaluation and scoring method used in the pilot was able to differentiate vendor capabilities and identify the best 
candidate to move into the discovery phase.

Case processing activities constitute a significant portion of in-
ternal pharmacovigilance (PV) resource use, ranging up to two-
thirds on the basis of PVNet benchmark data.1 When additional 
costs related to outsourcing are taken into account, case processing 
spending, on average, consumes most of a pharmaceutical compa-
ny’s overall PV budget.

Automation of adverse event (AE) case processing through ar-
tificial intelligence (AI) represents an opportunity to affect the 
strongest PV cost driver. The past decade has witnessed increasing 
application of AI methods to the field of biomedicine. Some of the 
recent improvements in leveraging AI techniques against publicly 
available consumer data have created opportunities for assessing 
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WHAT IS THE CURRENT KNOWLEDGE ON THE 
TOPIC?
 Case processing activities constitute a significant portion of a 
pharmaceutical company’s internal pharmacovigilance (PV) re-
source use. Consequently, automation of adverse event (AE) case 
processing represents a significant opportunity to affect the 
strongest PV cost driver. Although automation incorporating 
artificial intelligence (AI) has been used in other industries, the 
nature of AE case processing is comparatively complex and no 
providers currently offer a comprehensive AE case processing 
solution.
WHAT QUESTION DID THIS STUDY ADDRESS?
 Is it viable to use advanced AI tools in the application for AE 
case processing, specifically the extraction of case critical infor-
mation from source documents to identify valid AE cases after 
training the machine-learning algorithms with source docu-
ments and database content rather than annotated source 
documents?

WHAT DOES THIS STUDY ADD TO OUR 
KNOWLEDGE?
 It is feasible to use AI-based technology to support extraction 
from AE source documents and evaluation of case validity. In 
addition, it is viable to train the machine-learning algorithms 
using the safety database data fields as a surrogate for otherwise 
time-consuming and costly direct annotation of source docu-
ments. Finally, the evaluation and scoring method used in the 
pilot was able to differentiate vendor capabilities and identify a 
candidate to move into the discovery phase.
HOW MIGHT THIS CHANGE CLINICAL 
PHARMACOLOGY OR TRANSLATIONAL SCIENCE?
 With proof of concept and identification of a suitable vendor, 
progression into the discovery phase will explore the application 
of these machine-learning tools to additional business processes 
related to intake, processing, and reporting of individual safety 
cases.

Study Highlights
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the utility of AI techniques with the automation of PV processes.2 
With the emergence of electronic health records, a growing body 
of research has explored use of machine-learning techniques to 
develop disease models, probabilistic clinical risk stratification 
models, and practice-based clinical pathways.3–6 A considerable 
number of studies have focused on information extraction, using 
natural language processing techniques and text mining to gather 
relevant facts and insights from available, largely unstructured 
sources, such as drug labels, scientific publications, and postings 
on social media.7 Text mining techniques have also been combined 
with rule-based and certain machine-learning classifiers to demon-
strate the possibility of developing effective medical text classifiers 
for spontaneous reporting systems, such as the US Vaccine Adverse 
Event Reporting System.8 Some of the research in this area has 
been devoted to creation of the annotated source data that are 
used to develop and test new machine-learning natural language 
processing algorithms, including a recent study that explored use 
of machine learning with data crowd sourced from laymen an-
notators to identify prescription drug user reports on Twitter.9 
Other researchers have focused on developing and/or improving 
approaches using natural language processing to recognize and 
extract information from various medical text sources (e.g., detec-
tion of medication-related information10 or patient safety events11 
from patient records; drug–drug interactions from the biomedical 
literature;12,13 or disease information from emergency department 
free-text reports).14 Natural language processing techniques have 
also been applied to extraction of information on adverse drug re-
actions from the growing amounts of unstructured data available 
from the discussion and exchange of health-related information 
between health consumers on social media.6,7,15,16

Automation has been in use within other sectors, such as the 
banking and financial industries, from as early as the 1950s (e.g., 
automated check handling),17 and has incorporated AI for the 
past decade (e.g., automated underwriting within the insurance 
industry).18 Despite this long history, there are currently no pro-
viders who offer a comprehensive AE case processing solution. A 
key differentiator to other industries is the highly complex nature 
of AE case processing involving significantly more decision points 
and adjudications within a highly regulated and audited environ-
ment compared with case processing workflows in other industries. 
In addition, most source documents are merely semistructured 
or are fully unstructured. At the highest level, AE case process-
ing comprises four main activities, including intake, evaluation, 
follow-up, and distribution. Each of these four main activities is 
associated with multiple deliverables, and each of these delivera-
bles is composed of multiple decision points. Figure 1 provides a 
simplification to illustrate how the number of decisions increases 
with increasing depth of analytic scrutiny. Multiple, predominantly 
manual, business processes are traditionally in place to take in, pro-
cess, and report out individual safety cases.

Text-based machine learning typically requires training data in 
the form of annotated source documentation (i.e., direct indica-
tion within the document to identify the appropriate text elements 
and provide the contextual relation within the text). This is a re-
source intensive process, particularly when hundreds of thousands 
of text pages have to be revisited and annotated in such a manner. 

To simplify the manual preparation, Pfizer intended in this pilot to 
merely use the safety data extraction from the source documents as 
it is captured within the Pfizer safety database.

The current pilot was undertaken to prove the viability of com-
mercially offered machine-learning solutions in the application for 
case processing. The pilot paradigm was used to simultaneously 
test proposed solutions of three commercial vendors for the ability 
to extract case critical information from source documents to iden-
tify valid AE cases after training the machine-learning algorithms 
with source documents and database content rather than anno-
tated source documents. Validity was established by the presence 
of four elements (i.e., an AE (suspected adverse drug reaction), pu-
tative causal drug, patient, and reporter), which had to be extracted 
and specifically coded into the respective fields. In addition, the 
pilot was used to compare the performance of the three vendor 
proposals, allowing identification of the most suitable proposal to 
move into the discovery phase.

RESULTS
Overall accuracy of information extraction
The results for overall accuracy of information extraction were 
determined by the composite F1 scores of 0.72, 0.52, 0.74, and 
0.69 for vendor 1, vendor 2, vendor 3, and Pfizer AI Center of 
Excellence, respectively, and the individual F1 scores for the nine 
entity types shown in Figure 2. The highest F1 scores were for re-
porter type and reporter occupation, and the lowest F1 scores were 
for AE verbatim. The overall F1 score for the machine-learning 
algorithms used by vendors 1 and 3 exceeded the established in-
ternal Pfizer AI Center of Excellence benchmark. On the basis of 
F1 scores, vendors 1 and 3 outperformed vendor 2, as well as the 
internal benchmark. Overall, vendor 3 demonstrated the highest 
scores.

Case-level accuracy
The results for case-level accuracy are summarized in Figure 3. 
The percentage of cases processed with ≥80–100% completeness 
(eight or nine of nine entity types correctly predicted) was notably 
higher for vendor 1 (34%) and vendor 3 (31%) than it was for ven-
dor 2 (13%). In addition, learning was evident for vendors 1 and 
3 on the basis of the fact that accuracy improved from cycle I to 
cycle II; however, this was not true for vendor 2. Overall, vendor 1 
demonstrated the highest results.

Case-level validity
The results for case-level validity are summarized in Table 1. 
Vendor 1 demonstrated the best results for case-level validity, 
outperforming all other vendors as well as the internal bench-
mark. Accuracy improved from cycle I to cycle II for all three 
vendor algorithms, although the increase was greatest for vendor 
1. Improvement in accuracy was lowest for vendor 3, with an in-
crease of only one percentage point.

DISCUSSION
Although emerging AI tools carry the potential to automate or 
facilitate almost every aspect of a modern pharmaceutical PV 
department, including case processing, signal detection, risk 
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tracking, and risk contextualization, this pilot study focused on 
the case processing component, which currently represents the 
largest economic impact for a PV budget. The results from the 
pilot demonstrated that it is feasible to apply AI to automate 
safety case processing. The machine-learning algorithms used 
were able to successfully train solely on the basis of AE database 
content (i.e., no source document annotations), and the multiple 
combined accuracy measures allowed adjudication of the different 
vendor algorithms.

Within two training cycles, two of the vendors achieved over-
all F1 scores and case-level accuracy in excess of the Pfizer internal 

benchmark. The F1 scores of 0.72–0.74 for these vendors, along 
with the observed case-level accuracy allowing processing of 
≈33.3% of the cases to at least 80% completion, demonstrate that 
determining case validity during case intake can be performed 
using machine learning. They also confirm that viable levels of 
precision and accuracy in machine learning can be achieved using 
extracted case content from source documents, as captured in 
the safety database as a surrogate for annotation. A recent study 
by Comfort et al.19 demonstrated the benefits of a rule-based 
approach enhanced through machine learning to identify valid 
AE cases from a social digital media data sources in a miniscule 

Figure 1  Case processing deliverables.
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fraction of the time it would have taken human experts to perform 
this task and with high sensitivity and specificity. The task of iden-
tifying AE cases from large data sources is somewhat similar to the 
scope of this study. However, a key difference is the method used 

for machine learning. Comfort et al. used annotated data to train 
the algorithm, this pilot tested the concept of using source doc-
uments and the extracted elements from the source documents, 
as reflected in the safety database, instead of revisiting the source 

Figure 3  Heat map for case-level accuracy. AI CoE, Artificial Intelligence Center of Excellence.

Figure 2  Summary of F1 scores for nine entity types. Overall composite scores were 0.72, 0.52, 0.74, and 0.69 for vendor 1, vendor 2, vendor 
3, and the Pfizer Artificial Intelligence Center of Excellence, respectively. AE, adverse event; DOB, date of birth.
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documentation and annotating them in a labor-intensive manual 
process. Although this approach may potentially require a larger 
amount of training data to compensate for the lack of direct situa-
tional in-text word association, this type of training data usually is 
available in abundance.

Only the accurate extraction of information on AEs, suspect 
drug, patient information, and reporter information contained in 
source documents allows identification of valid cases, as required 
by regulatory authorities. The algorithms used by vendor 1 were 
able to correctly predict the highest percentage of cases as either 
valid or invalid, with 81% correct predictions after two training 
cycles, outperforming vendors 2 and 3 as well as the Pfizer internal 
benchmark of 79%.

Using the combination of multiple measures of precision, recall, 
and accuracy, it was possible to clearly differentiate vendor 1 from 
the other vendor proposals. Caution is advised when basing such 
a critical selection decision on the F1 score alone, which does not 
sufficiently reflect all important parameters to be considered in the 
evaluation of machine-learning algorithms.

There are several limitations to this study to be considered. This 
pilot was not conducted with the intention of identifying cases for 
regulatory submission. Rather, it was designed to test the concept 
of viability of automation of safety case processing using machine 
learning, an AI tool, and to help select the best performing among 
the three vendors. In this pilot, a combined scoring on the basis of 
F1, accuracy, and case validity assessment was used to judge overall 
performance of each of the four systems. However, for a produc-
tion system, to be used in a regulatory environment, additional cri-
teria and specifically high sensitivity thresholds would have to be 
used to ensure no valid AE information is missed. The rate of false 
negatives will need to be kept to a minimum.

Because this pilot also tested the viability of using machine-
learning algorithms trained with source documents and database 
content rather than annotated source documents, manually re-
viewed cases are taken as the gold standard. The validity of using 
this gold standard is dependent on the quality of the manual 
case processing, which was performed with generally accepted 

benchmark processes, including peer review and quality control. 
Furthermore, the availability of a sufficiently large volume of train-
ing data is critically important for machine-learning algorithms 
and will play an important role in achieving a higher degree of 
automation within the context of the current manual process of 
managing safety case processing.

Optical character recognition technologies play an import-
ant role in the development of intelligent automation solutions, 
as in this pilot program, in which optical character recognition 
software technologies were critical in making source document 
images machine readable. Because this technology is constantly 
evolving, the choice in optical character recognition software 
has a significant effect on consistency and accuracy of the AI 
interpretation.

Finally, there is a limitation to understanding the differences 
observed in the performance of the three vendors, because the 
pilot merely evaluated the composite performance of the vendors’ 
systems, whereas the investigators remained agnostic to the algo-
rithms used in their respective proprietary systems. Accordingly, 
no algorithm-specific data were collected. Consequently, this pilot 
does not allow performance comparisons of the underlying algo-
rithmic components.

Table 1  Case-level validity for test cycle I and cycle II

Variable

Correct prediction (%) Incorrect prediction (%)

Valid Invalid Total Valid Invalid Total

Pfizer AI CoE No prediction (%)

Baseline 68 11 79 12 8 20 <1

Vendor 1

Test cycle I 68 5 73 18 8 26 <1

Test cycle II 66 15 81 9 9 18 2

Vendor 2

Test cycle I 52 18 70 5 24 29 <1

Test cycle II 53 20 73 3 19 22 5

Vendor 3

Test cycle I 44 18 62 5 33 38 0

Test cycle II 45 18 63 5 31 36 0

AI CoE, Artificial Intelligence Center of Excellence.

Figure 4  Process element selected for proof of concept.
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In conclusion, the pilot was successful in confirming the fea-
sibility of using AI-based tools to support PV operations and in 
demonstrating the viability of an efficient training method that 
does not require time-consuming and costly annotations. Finally, 
the evaluation and scoring method used in the pilot was able to 
differentiate vendor capabilities and identify vendor 1 as the best 
candidate to move into the discovery phase.

METHODS
As shown in Figure  4, a single process element within case intake (i.e., 
determination of case validity and code information) was selected for this 
test, and an internal standard was established for this process element 
by the internal Pfizer AI Center of Excellence, serving as a comparison 
benchmark. Vendors were requested to develop their algorithms to 
optimize performance for the selected test element.

Pilot design
The pilot was designed to simultaneously test proposed solutions of 
three commercial vendors for the ability to extract case critical infor-
mation from source documents to identify valid AE cases after training 
the machine-learning algorithms with source documents and database 
content rather than annotated source documents. Validity was estab-
lished by the presence of four elements (i.e., an AE (suspected adverse 
drug reaction), putative causal drug, patient, and reporter), which had to 
be extracted and specifically coded into the respective fields. The pilot 
protocol consisted of two cycles, depicted in Figure 5. During cycle I, 
an initial set of “training” data, consisting of ≈50,000 case source doc-
uments and associated safety database records, was fed into the respec-
tive test algorithms during a baseline machine-learning phase, followed 
by a novel set of “test” data consisting only of source documents from 
5,000 case source documents to be evaluated by the algorithm. During 
cycle II, the original plus an additional set of training data of 50,000 
case source documents were fed into the test algorithms during a second 
machine-learning phase, followed by the same set of test data used in 
cycle I. This design allowed testing of the viability of using the selected 
machine-learning algorithms and using noncontextual source document 
extractions in the form of database content, as well as comparison of test 

scores between cycle I and cycle II to assess the incremental machine 
learning. Accordingly, the training paradigm chosen for the pilot re-
quired the machine to learn on the basis of the information contained 
in case source documents and corresponding case content that had pre-
viously been entered into the safety database (i.e., the “answer keys”). 
This training method was selected because it does not require addi-
tional, time-consuming annotations to be made in support of machine 
learning. This paradigm represents a higher bar than would be imposed 
by rule-based training, but it carries an important benefit of increased 
efficiency.

Machine-learning algorithms and techniques used for 
establishing the internal benchmark
To support the pilot design, case documentation first had to be converted 
from pdf file format to machine-readable text documents. Optical char-
acter recognition was used to digitize pdf file content using open source 
techniques.20

Next, several different machine-learning algorithms were used to ex-
tract data from the digitized documentation:

•	 Table pattern recognition was used to predict if a specific table cell 
contained a certain type of information of interest (e.g., patient name 
or case narrative). This was accomplished by extracting various types 
of features, such as the location of the cell and the contents of the cell, 
and then feeding these features into a conditional random field model 
to predict the label of the current cell.21

•	 Sentence classification was used to predict if a sentence within a case 
narrative was related to AEs. The machine was subject to super-
vised learning, by which case narrative sections were extracted from 
AE reporting forms (i.e., the answer key) and were split into sen-
tences and evaluated (e.g., words appearing around the sentence were 
identified).22–24

•	 Named entity recognition was used to predict AEs at a token level. A 
conditional random field (sequence labeling) model was used to detect 
adverse drug reactions from case narratives.18,25

•	 Rule-based pattern matching used various predefined rules to extract 
information of interest, including patient name (initials), sex, age, and 
date of birth.

Figure 5  Pilot design.
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Scoring and evaluation of results

Overall accuracy of information extraction. Accuracy was evaluated 
on the basis of precision and recall and the computed F1 score.26 Precision 
is the ratio of correctly predicted positive values/the total predicted 
positive values, and it highlights the correct positive predictions of all the 
positive predictions. High precision indicates a low false-positive rate. 
Recall is the ratio of correctly predicted positive values/the actual positive 
values, and it highlights the sensitivity of the algorithm (i.e., of all the 
actual positives, how many were identified). F1 score is the harmonic 
mean of precision and recall, taking into account both false positives and 
false negatives, and was the primary data element evaluation measure used 
in the pilot.

Precision, recall, and F1 score were calculated for each of nine entity types:

1.	 AE verbatim text: the verbatim sentence(s), from the original docu-
ment, describing the reported event(s)

2.	 Suspect drug
3.	 Concomitant drug
4.	 Patient’s age
5.	 Patient’s sex
6.	 Patient’s date of birth
7.	 Patient’s initials
8.	 Reporter type
9.	 Reporter occupation

For each of these nine categories, true positives, false positives, and false 
negatives were calculated, and from these metrics, the precision, recall, and 
F1 score were computed. The F1 scores for each of the nine data elements 
were averaged into a composite score for all the data elements combined.

Case-level accuracy. Case-level accuracy was determined 
by the degree of case completeness, defined as the correct predictions (i.e., 
matches) among the nine entity types. For example, a case with nine of 
nine matches was considered 100% complete, a case with eight of nine 
matches was ≥89% complete, and a case with seven of nine matches was 
≥78% complete.

Case validity. Manual case processing follows a rule-based approach 
to identify a regulatory valid case adhering to a standard method that 
includes peer review and quality control,27 whereas the automated 
case processing in this pilot used a binary classification algorithm 
in which there are two possible predicted classes, “valid” (submitted 
documentation contains a valid case) and “invalid” (submitted 
documentation does not have a valid case). Confusion matrices were used 
to describe the performance of this classification model (or “classifier”) 
on a set of test data for which the true values are known. The results are 
displayed in Table 1.
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