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BACKGROUND:With thousands of chemicals in commerce and the environment, rapid identification of potential hazards is a critical need. Combining
broad molecular profiling with targeted in vitro assays, such as high-throughput transcriptomics (HTTr) and receptor screening assays, could improve
identification of chemicals that perturb key molecular targets associated with adverse outcomes.

OBJECTIVES: We aimed to link transcriptomic readouts to individual molecular targets and integrate transcriptomic predictions with orthogonal
receptor-level assays in a proof-of-concept framework for chemical hazard prioritization.

METHODS: Transcriptomic profiles generated via TempO-Seq in U-2 OS and HepaRG cell lines were used to develop signatures composed of genes
uniquely responsive to reference chemicals for distinct molecular targets. These signatures were applied to 75 reference and 1,126 nonreference chem-
icals screened via HTTr in both cell lines. Selective bioactivity toward each signature was determined by comparing potency estimates against the
bulk of transcriptomic bioactivity for each chemical. Chemicals predicted by transcriptomics were confirmed for target bioactivity and selectivity
using available orthogonal assay data from the US Environmental Protection Agency ToxCast program. A subset of 37 selectively acting chemicals
from HTTr that did not have sufficient orthogonal data were prospectively tested using one of five receptor-level assays.

RESULTS: Of the 1,126 nonreference chemicals screened, 201 demonstrated selective bioactivity in at least one transcriptomic signature and 57 were
confirmed as selective nuclear receptor agonists. Chemicals bioactive for each signature were significantly associated with orthogonal assay bioactiv-
ity, and signature-based points-of-departure were equally or more sensitive than biological pathway altering concentrations in 95.4% of signature-
prioritized chemicals. Prospective profiling found that 18 of 37 (49%) chemicals without prior orthogonal assay data were bioactive against the pre-
dicted receptor.

DISCUSSION: Our work demonstrates that integrating transcriptomics with targeted orthogonal assays in a tiered framework can support Next
Generation Risk Assessment by informing putative molecular targets and prioritizing chemicals for further testing. https://doi.org/10.1289/EHP16024

Introduction
Thousands of chemicals have been registered in the United States
for commercial nonfood or drug applications,1 many of which do
not have sufficient data for assessment of human or ecological risk.
Traditional toxicity testing using intact animals often requires mul-
tiyear studies with highmonetary and animal costs.2 These require-
ments limit the available data necessary to efficiently assess the
safety of chemicals in commerce. New approach methodologies
(NAMs) have gained traction for the ability to screen chemicals at
higher throughput and lower cost in comparison with traditional
toxicity testing.3,4 The US Environmental Protection Agency (US
EPA) developed the ToxCast program for high-throughput chemi-
cal testing by screening thousands of chemicals across a variety of
in vitro bioactivity assays.5 Augmenting the capabilities to effi-
ciently profile chemical effects in vitro, the US EPA and others are
using high-throughput transcriptomics (HTTr) to broadly profile

chemical-induced gene expression changes across multiple cell
lines.

Combining broad-profiling and targeted NAMs into a deci-
sion framework could advance efforts to efficiently screen chemi-
cals for key molecular targets related to human health effects. In a
tiered framework proposed in the Next Generation Blueprint of
Computational Toxicology at the US EPA,6 chemicals would be
initially screened via broad-profiling assays covering a range of
biological pathways such as HTTr (“Tier 1”). Chemicals demon-
strating bioactivity for a target or pathway would then be profiled
using targeted assays for orthogonal confirmation (“Tier 2”), and
organotypic assays related to potential health effects (“Tier 3”) or
traditional animal-based toxicity testing could be used as follow-
up tests.

One challenge in integrating NAM-based data in such a frame-
work is identifying key molecular targets from broad profiling data
for confirmation with targeted assays.7 Although targeted biologi-
cal effects are frequently mined from transcriptomic data using
gene sets related to signaling pathways, characteristic diseases, and
other biological events,8–10 such gene sets may not capture path-
ways modulated by xenobiotics in the assay or cell type used for in
vitro screening. Another challenge lies in determining criteria for
prioritizing chemicals based on both broad-profiling and targeted
NAMs within a screening context. Multiple approaches could be
used to combine HTTr and targeted screens, such as in tandem or
in a tiered fashion, to improve confidence in the putative molecular
targets that might be perturbed in various exposure scenarios.11–14

In this work, we employed a tiered framework to prioritize
chemicals based on mechanism-of-action, starting with HTTr and
followed by targeted testing. To do this, we developed a compu-
tational strategy to a) create transcriptomic signatures tailored to
specific cell types that are indicative of changes in key molecular
targets, b) apply these signatures to screening data for nonrefer-
ence chemicals, and c) validate signature-level readouts with or-
thogonal assay end points from ToxCast to prioritize chemicals
for further testing and detection of potential hazards. This work
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demonstrates the utility of a tiered framework in both retrospec-
tive analyses and prospective screening for rapid chemical hazard
prioritization and safety assessment.

Methods

Reference Chemical Selection
Reference chemicals annotated for individual molecular targets
were compiled using the RefChemDB resource, which links over
40,000 chemicals to the modulation of gene products via semiau-
tomated curation of 15 public sources.15 Using the RefChemDB
candidate reference chemical set (accordingly as in Judson et al.15)
molecular target and mode of regulation (i.e., positive or negative)
columns were concatenated into a single molecular target annota-
tion. Each annotation in RefChemDB contains a numeric support
value, defined as the number of public sources confirming bioac-
tivity toward a target and mode. Chemical–target pairs were fil-
tered for a support value of at least 5 (i.e., all chemicals must have
at least five sources supporting bioactivity for the annotated target
and mode). Underlying records that were duplicated in multiple
public sources were only counted once toward each annotation’s
support value.15

Some groups of molecular targets had similar sets of annotated
chemicals. For example, 10 of 18 chemicals linked to ESR1 or
ESR2 agonism were linked to both paralogs. Few chemicals in
RefChemDB are uniquely linked to a single paralog or protein
within a tightly coupled process such as heterodimerization. Target
annotations were therefore collapsed into clusters based on the simi-
larity of annotated chemicals between any two targets as previously
described.16 In brief, chemicals annotated or not annotated for each
target were encoded as binary bits, and Jaccard distances were cal-
culated between all pairs of targets. Hierarchical clustering was per-
formed to cluster targets by Jaccard distance via the hclust function
inR statistical software (version 4.4.1; RDevelopment Core Team).
Clusters were chosen using a dendrogram cut height of 0.8 to opti-
mally group target paralogs or families without grouping unrelated
targets. Individual reference chemicals were assigned to a single
cluster based on the highest number of individual targets linking the
chemical to the cluster. Any ties between clusters were broken using
the highest sum of support values for chemical–target annotations
within each cluster. Reference chemicals were further filtered for
those that were tested and had at least one concentration-responsive
gene in HTTr screening data. Retained reference chemical group-
ings are referred to as “reference classes.” A total of 14 reference
classes had at least 3 different reference chemicals for a total of 75
unique reference chemicals (69 in U-2 OS, 66 in HepaRG). All ref-
erence classes are summarized in Figure S1 and detailed in Excel
Table S1.

HTTr Screening Data
HTTr screens of 1,201 chemicals in U-2 OS and HepaRG cell
lines17 were used as source data for all transcriptomic analyses.
Chemicals were selected to reflect those in the US EPA ToxCast
chemical inventory including agricultural and industrial use com-
pounds as well as a selection of pharmaceuticals. The U-2 OS
cell line was chosen for its previous characterization and use in
HTTr,17 and the HepaRG cell line was chosen for its increased
metabolic competency and higher similarity in expression pro-
files to primary human hepatocytes vs. previous cell lines. Both
screens used the same experimental design and bioinformatics
pipeline for initial derivation of transcriptional potency values.17

In brief, dimethylsulfoxide (DMSO)-solubilized chemical stock
solutions were provided frozen from the US EPA ToxCast chem-
ical inventory management contractor (EvoTec; Princeton, New

Jersey) and stored at −80�C prior to dose plate preparation. U-2
OS osteosarcoma and HepaRG hepatocyte cell lines were used
for chemical exposure (see Excel Table S2 for cell culture
details). Chemicals were tested at 8 nominal concentrations
ranging from 0:03–100 lM using 0.5-log spacing with a final
DMSO concentration of 0.05%. All exposures were conducted
in triplicate using independent cell cultures. At 24 h after
chemical exposure, cell lysates were prepared for TempO-Seq
analysis as previously described.18 The TempO-Seq human
whole transcriptome v2 assay (hWTv2) with cell line–specific
custom attenuation was performed by BioSpyder, Inc.19

Raw FASTQ files were processed using a custom bioinfor-
matics pipeline as previously described,18 including read align-
ment, sample quality control, differential expression analysis, and
concentration–response modeling. Moderated log2 (fold change)
values were generated from theDESeq2R package (version 1.24)20
for all concentrations of each chemical–gene pair. Concentration–
response modeling was then conducted using the tcplfit2R package
(version 0.1.5) by fitting log2 (fold change) values to nine models
(constant, hill, poly1-2, power, exp2-5) and selecting the model
with theminimumAkaike InformationCriterion.21 Benchmark con-
centrations (BMCs) were computed for each chemical–gene pair
based on benchmark response values representing departure from a
null response distribution. The null distribution cutoff was defined
as 1.349 times the standard deviation (SD) of responses from the
lowest two concentrations of all test samples,22 which assumes that
these concentrations will be inactive for a large majority of the
chemical test set.23

Keymetrics from tcplfit2 include continuous hitcalls, which rep-
resent confidence in winning model selection and that model
responses exceed cutoffs, and normalized efficacy values (top_
over_cutoff), which represent the signal-to-noise ratio.21 A hitcall
≥ 0:9 was chosen to match previous HTTr and ToxCast screening
studies.24 A top_over_cutoff ≥ 1:5 was chosen empirically to limit
the potential for noise when fitting individual genes. Concentration-
responsive (“active”) chemical–gene pairs were defined for down-
stream analyses using both criteria above. BMCs for active genes
were bounded to be within 0.1 times the lowest concentration tested
and 10 times the highest concentration tested after modeling to
match previous signature-based analyses.18,23

RCAS Identification
Log 10-transformed BMCs were used as gene sensitivity estimates
toward all reference chemicals, and a default value of 2.5 (0.5-log
greater than the highest concentration tested) was assigned for
inactive chemical–gene pairs. Using the reference classes identi-
fied above, a univariate analysis was conducted to identify genes
that were uniquely sensitive toward one reference class vs. other
classes (Figure S2). Only genes that were active for one or more
reference chemicals were retained for analysis.

For each gene, a one-way analysis of variance (ANOVA) was
used to test for differences in log10BMCs across reference classes.
p-Values for all tested genes were converted to false discovery rate
(FDR) using Benjamini-Hochberg multiple testing correction.
Genes demonstrating an FDR≤ 0:05were tested for pairwise com-
parisons of reference classes using Tukey’s post hoc tests with
Benjamini-Hochberg correction. A gene selection step was then
applied based on post hoc test results: for gene g, if a) the mean
log10BMC for a single reference class X was significantly lower
(FDR ≤ 0:05) than 70% of the other classes, and b) the mean
log10BMCmet this criterion for only reference classX, then gene g
was assigned as uniquely potent for class X. The 70% threshold
was chosen to maintain a threshold for specificity while increasing
the pool of included genes. Each resulting gene set identified for a
reference class and cell line is referred to as a reference class–
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associated signature (RCAS). RCASs containing ≥10 genes were
retained for further analysis to address sparse representation during
signature concentration–response profiling to ensure interoperabil-
ity with previous signature-based analyses.17,18 RCASs were iden-
tified independently for U-2 OS and HepaRG screening data,
which allowed signatures to capture uniquely sensitive transcrip-
tional behavior per cell line. A total of three and two RCASs were
identified from HepaRG and U-2 OS screening data, respectively,
and RCAS-identified genes are detailed in Excel Table S3.

The FDR of all ANOVA or Tukey’s post hoc tests during
RCAS generation was tested to evaluate whether additional genes
and/or RCAS could be detected. The number of genes in each
RCAS using the current FDR ≤ 0:05 was compared to the num-
ber of genes if an FDR ≤ 0:1 were used for either ANOVA tests
(Figure S3A) or post hoc tests (Figure S3B). Relaxation of either
threshold added between 0 and 36 genes to each RCAS represent-
ing a maximum 6.4% increase in signature size, and no additional
RCASs were identified when relaxing these criteria.

Concentration–response modeling of each RCAS in both cell
lines was performed using the httrpathwayRpackage (https://github.
com/USEPA/CompTox-httrpathway) as previously described.18
DESeq2-moderated log2 (fold change) values for all genes used
in the gene-level concentration–response profiling above were
used for signature scoring. Normalized enrichment scores (NES)
for each chemical–concentration pair were computed for each
RCAS via single sample gene set enrichment analysis (ssGSEA)25
using the GSVA R package (version 1.50.0)26 as previously
described.18,23 Concentration–response modeling was per-
formed on NES values for each chemical-RCAS pair using
tcplfit2 (version 0.1.5). Active chemical–RCAS pairs were
defined using a hitcall ≥ 0:9 and top_over_cutoff ≥ 1:5 to match
the gene-level criteria above. The resulting BMCs generated per
RCAS are hereafter referred to as an RCAS-derived point of de-
parture (PODRCAS).

RCAS Validation
To evaluate possible type I errors in RCAS concentration–response
profiling results, permutation tests were conducted for each RCAS
vs. 100 randomly generated signatures. Genes comprising all
RCASs were first pooled together for each cell line. Genes were
then randomly selected from the pool without replacement to gener-
ate random signatures. A random number of genes were assigned to
each signature following the size distribution for RCAS in each cell
line. Geneswere replaced between each signature generation, which
allowed genes to be used in multiple signatures. Concentration–
response profiling of all reference chemicals in random signatures
was performed as described above. Reference chemicals were di-
vided into those matching or not matching each RCAS by target.
Nonmatching reference chemicals were randomly down sampled to
three times the number of matching reference chemicals for each
RCAS to reduce class imbalances. The difference inmeans between
matching and nonmatching log10PODRCAS was computed for all
signatures. An empirical p-value was then computed for each
RCAS as the probability that a random signature’s difference in
means is lower than that of the RCAS.

To further evaluate possible type I and type II error against
screening data separate from signature development, RCAS were
tested against HTTr screening data for an external dataset not
used in RCAS identification. This dataset comprises 29 replicated
concentration–response experiments for three chemicals each in
U-2 OS and HepaRG cell lines. RARA agonist all-trans-retinoic
acid, GR agonist dexamethasone, and TOP2A inhibitor etoposide
were profiled in 8-point concentration–response experiments U-2
OS cells,17 and AHR agonist benzo[a]pyrene, PXR agonist rifam-
picin, and PPARG agonist troglitazone were profiled in 7-point

concentration–response experiments in HepaRG cells. Each
chemical and replicate was profiled separately for RCAS in the
matching cell line as described above, and active sample-RCAS
pairs were defined using a hitcall ≥ 0:9 and top_over_cutoff
≥ 1:5.

ToxCast HTS Data
High-throughput screening (HTS) bioactivity data from the US
EPA ToxCast program5 was used as source data for all Tier 2
analyses. These data consist of hundreds of in vitro assay meas-
urements for up to 9,000 chemicals in both single- and multicon-
centration formats, and all multiconcentration measurements
were processed using tcpl (version 2.0.2)27 to produce binary hit-
call values in addition to potency estimates based on the winning
curve-fitting model between Hill, gain-loss, or constant models.
Level 5 multiconcentration curve fit data for all chemicals tested in
HTTr were downloaded from InvitroDB v3.4.28 Active chemical–
end point pairs were defined as having a positive hitcall and <3
quality control flags identified during level-6 processing.29

Because BMCs were not calculated as part of InvitroDB v3.4,
activity concentration at cutoff (ACC) values were used for all
potency comparisons. These values are conceptually similar to
BMCs as a quantitative estimate of the concentration at which
assay responses exceed assay-dependent noise distribution cut-
offs. In InvitroDB, cutoff values are determined for individual
end points based on each detection technology as encoded in
the database schema.24 ToxCast assay end points are addition-
ally annotated to the most relevant Entrez gene symbol and offi-
cial names as a convenience mapping in InvitroDB to enable
data interoperability, and these annotations were used to map
assay end points to RCAS target annotations.

Orthogonal End Point Selection
Initial end points or orthogonal confirmation of each RCAS
were selected by matching official gene symbols for each
ToxCast end point to the gene symbol(s) of each RCAS. Assay
end points that were annotated for the same target as an RCAS
but measured a different biological process (e.g., corticosterone
synthesis in comparison with an RCAS measuring glucocorti-
coid receptor activation) were removed from consideration.
Unidirectional assay end points without biological relevance
(e.g., negative signal direction in Attagene trans-FACTORIAL
end points) were also removed.

A two-phase analysis was employed to select end points that
distinguish bioactivity between in-class and out-of-class refer-
ence chemicals with low type I error. All reference chemicals
annotated for each reference class in RefChemDB (not limited to
those tested in HTTr) were used for each analysis. Chemicals
were denoted as either matching or not matching each ToxCast
end point based on their annotated target. Hitcalls of each
ToxCast end point were first compared across reference chemi-
cals. Fewer matching reference chemicals were tested in compar-
ison with nonmatching reference chemicals in all end points,
which resulted in imbalanced chemical sets. To mitigate possible
effects of this imbalance on sensitivity, we retained ToxCast end
points that contained a positive hitcall for at least 50% of match-
ing reference chemicals and a negative hitcall for at least 75% of
nonmatching reference chemicals. Nonmatching reference chemi-
cals with a positive hitcall may exhibit differences in potency from
that of matching chemicals. Therefore, end points that failed the cri-
teria above were tested for differences in log10ACC values between
matching and nonmatching reference chemicals via Wilcoxon rank-
sum tests with Benjamini-Hochberg correction. End points with sig-
nificant differences in log10ACC (FDR ≤ 0:05) were also retained
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as orthogonal end points, and all other end points were removed
from further analysis. Orthogonal end points for all RCAS-
associated molecular targets are shown in Table 1.

Selectivity Assessments
Selectivity was defined as activity at a particular target at concen-
trations lower than those thought to elicit cytotoxicity and/or
myriad nonspecific activities across pathways.30 Chemicals were
tested for selectivity of each RCAS and orthogonal ToxCast end
point in comparison with estimates of nonselective activity. For
HTTr data, a set of 11,037 gene sets or signatures derived from
multiple public sources (“public signatures”) were used for signa-
ture concentration–response profiling as previously described.17

This collection is intended to provide broad coverage of molecu-
lar functions for use in determining a biological phenotype alter-
ing concentration (BPAC)23 rather than for interpreting a cell
line–specific mechanism. For ToxCast data, all measured end
points were used to derive nonspecific activity estimates.

For HTTr data, the first statistical mode of log10BMC values
from active public signatures (ModeNS1) was estimated for each
chemical using the density function in R. The standard deviation
of log10BMC values from active public signatures (rNS1) was
also determined for each chemical. For ToxCast data, the first sta-
tistical mode of log10ACC values (ModeNS2) and standard devia-
tion of log10ACC values (rNS2) were similarly determined for
each chemical from all active end points. For chemicals with
fewer than 10 active public signatures in HTTr or fewer than 10
active end points in ToxCast, ModeNS1 and ModeNS2 values were
set to 0.5-log above the highest tested concentration because
these chemicals were largely inert across pathways in each data
stream. Nonselective PODs for Tier 1 and Tier 2 (PODNS1 and
PODNS2, respectively) were determined from mode and SD esti-
mates: PODNS =ModeNS −rNS:

Chemical selectivity for each Tier was determined by
comparing PODNS estimates to RCAS-based PODs (PODRCAS,
defined as the log10BMC for each RCAS) or orthogonal end
point PODs (PODortho, defined as the log10ACC for each or-
thogonal end point). Selective chemicals were defined for Tier
1 as PODRCAS <PODNS1 and for Tier 2 as PODortho <PODNS2.
Overall PODs reflecting the BPAC were additionally calculated
for all chemicals using HTTr and ToxCast screening data.
HTTr-based BPACs (PODBPAC1) were determined as the fifth
percentile of log10BMC values from all active public signatures
for each chemical as described previously.23 ToxCast-based
BPACs (PODBPAC2) were similarly determined as the fifth per-
centile of log10ACC values from all active end points. At least
10 active public signatures or 10 active ToxCast end points
were required to calculate a BPAC for any chemical. Refer to
Table 2 for descriptions of all abbreviated terms used for bioac-
tivity and selectivity testing.

Prospective Profiling of Tier 1-Predicted Chemicals
For a subset of chemicals that were selective for one or more
RCAS but had <2 orthogonal end points measured in ToxCast,
prospective profiling was performed using one or more targeted
in vitro assays. A total 34 test chemicals were selected by ranking
the difference between PODRCAS and PODNS1 values for each
chemical. Three positive controls were selected from reference
chemicals for each assay based on positive hitcalls for ToxCast
end points with matching Entrez gene symbols. Three negative
controls were conversely chosen based on negative hitcalls for
matching end points and positive hitcalls for one or more non-
matching end points. T
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DMSO-solubilized chemical stock solutions were provided
frozen from the US EPAToxCast chemical inventorymanagement
contractor and stored at −80�C prior to dose plate preparation. Dose
plates were shipped to Eurofins DiscoverX or Eurofins Panlabs fro-
zen, and all assays were performed by Eurofins DiscoverX or
Eurofins Panlabs (Table 3). Chemicals were tested at 5 nominal con-
centrations ranging from 0:3–30 lM with 0.5-log spacing and 2
technical replicates per concentration to maximize chemical cover-
agewhile still reliably performing concentration–response profiling.
Data were received from vendors as control-normalized percent
activation or inhibition values, and concentration–response model-
ing was conducted using tcplfit2 (version 0.1.5)21 per its integration
with the ToxCast Pipeline.24 Baseline median absolute deviations
(BMADs) were determined per assay using responses from the low-
est two concentrations of all chemicals tested, and response cut-
offs were determined by the following ruleset: a) if 3 × BMAD
<20% activation or inhibition, the cutoff was set to 20%; b) if
3 ×BMAD >50% activation or inhibition, the cutoff was set to
50%; and c) if 20% <3× BMAD <50%, the cutoffwas set to 3×
BMAD. These bounds were established to account for the small
and biased chemical selection of the study, in which low concen-
trations of preselected chemicals may induce large responses,
while maintaining a minimum response requirement for bioac-
tivity. All other parameters for tcplfit2were set to default values,
and active concentration–response profiles were defined as hit-
call≥ 0:9 and top_over_cutoff≥ 1.

Software and Data Availability
R scripts for reproducing all analyses are available on GitHub
(https://github.com/USEPA/CompTox-HTTr-RCAS). All sequenc-
ing data are available via the Gene Expression Omnibus repository
(accession numbers GSE274318 for U-2 OS and GSE284321 for
HepaRG). HTS assay data are available from InvitroDB via down-
load28 or the US EPA CompTox Chemicals Dashboard (https://
comptox.epa.gov/dashboard/).

Results

Data-Driven Signatures for Targeted Activity from
Transcriptomic Screening Data
We first aimed to infer key molecular targets related to potential
adverse outcomes from transcriptomic screening data. To accom-
plish this goal, we summarized gene expression data from pub-
lished HTTr screens in U-2 OS and HepaRG cell lines17 into
gene sets based on patterns of potency among well-annotated ref-
erence chemicals (Figure 1A). We first identified 14 molecular
targets from the RefChemDB semiautomated literature mining
resource15 comprising a total 75 reference chemicals (Figure S1;
see Excel Table S1 for all targets and chemicals). Each target
was required to have at least three reference chemicals that were
both tested in the above screens and caused concentration-
dependent changes in gene expression. Genes linked to each tar-
get were also evaluated for basal expression in vehicle control
samples (n=432 or 433 replicates for U-2 OS and HepaRG,
respectively), and these genes were found to be expressed across
samples in both cell lines (Figure S4).

From these 14 targets that met our criteria for testing, we
developed 5 RCAS that had least 10 genes (range 24–540 genes)
that were each uniquely sensitive for a single target (FDR ≤ 0:05
via one-factor ANOVA and Tukey’s post hoc). From U-2 OS
screening data, RCAS were identified for glucocorticoid receptor
(GR; gene symbol NR3C1) and retinoic acid/retinoid X receptor
(RAR/RXR) agonism. From HepaRG screening data, RCASs
were identified for aryl hydrocarbon receptor (AHR) and
RAR/RXR agonism as well human Ether-à-go-go-Related Gene
(hERG) ion channel antagonism. A maximum of 18 genes were
common to any pair of RCAS (Figure S5), and this set of over-
lapping genes belonged to the U-2 OS and HepaRG-based RCAS
for RAR/RXR agonism. We investigated the specificity of indi-
vidual genes assigned to each RCAS by comparing gene BMCs
between reference chemicals annotated for any of the five RCAS

Table 2. Description of terms used throughout the current study for bioactivity and selectivity testing.

Acronym Term Description

HTTr High-throughput transcriptomics Tier 1 screening assay for transcriptional bioactivity in one or more human-derived cell
lines

HTS High-throughput screening Tier 2 screening assays for individual molecular targets in cell-free or cell-based
platforms

RCAS Reference class–associated signatures Gene sets comprised of genes with uniquely sensitive expression toward reference
chemicals with a common mechanism-of-action

Hitcall Hitcall Measure of confidence in chemical-induced bioactivity for a gene, signature or assay
based on concentration–response profiling

Top_over_cutoff Top over cutoff Measure of relative signal strength compared with null distribution of assay responses
BMC Benchmark concentration The estimated nominal concentration in HTTr at which a gene or signature demonstrates

altered expression in comparison with the null distribution of responses
ACC Activity concentration at cutoff The estimated nominal concentration in HTS at which an assay demonstrates altered

responses in comparison with an assay-specific cutoff of null responses
BPAC Biological pathway altering concentration The estimated nominal concentration at which a chemical can significantly alter a

biological pathway, defined as the fifth percentile of BMCs for active signatures in
HTTr or the fifth percentile of ACCs for active assays in HTS

PODRCAS RCAS-derived point of departure Tier 1 point of departure for an individual molecular target, defined as the BMC
estimated for a given RCAS

PODNS1 Nonselective Tier 1 point of departure Tier 1 point of departure for nonselective gene expression, defined as the statistical
mode minus 1 standard deviation of BMCs from a set of public signatures

PODBPAC1 BPAC-derived point of departure: Tier 1 Tier 1 point of departure for overall transcriptional activity, defined as the BPAC
estimated from HTTr

PODortho Orthogonal end point–derived point of departure Tier 2 point of departure for an individual molecular target, defined as the ACC
estimated for an assay whose target matches each RCAS

PODNS2 Nonselective Tier 2 point of departure Tier 1 point of departure for nonselective responses in HTS assays, defined as the
statistical mode minus 1 standard deviation of ACCs from all active assays

PODBPAC2 BPAC-derived point of departure: Tier 2 Tier 2 point of departure for overall receptor-level activity, defined as the BPAC
estimated from measured HTS assays

PODProspective Prospective end point–derived point of departure Tier 2 point of departure for chemicals screened in prospective orthogonal assays,
defined as the ACC from each orthogonal assay
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(Figure 1B,C). Gene BMCs for reference chemicals matching
each RCAS were up to 5.5 orders of magnitude lower than
genes assigned a different RCAS. Most genes were not active
in nonmatching reference chemicals (85± 9:9% and 88± 21%
of RCAS-identified genes on average for HepaRG and U-2 OS
RCAS, respectively). Hierarchical clustering of genes by BMC
estimates yielded primary groupings of genes by their RCAS
assignment.

RCAS generation did not identify a uniquely sensitive gene
set for peroxisome proliferator–activated receptor (PPAR) ago-
nism in the HepaRG cell line despite well-studied linkages to
liver function.31 We hypothesized that separating this family into
references classes for PPAR subtypes PPARA, PPARG, and
PPARD could improve the detection of uniquely sensitive genes,
because each receptor can play different roles in metabolic path-
ways.32,33 Of the reference chemicals annotated for PPAR ago-
nism, six chemicals were found to have a majority support for
PPARA, whereas PPARG and PPARD each had one chemical
uniquely supported for each receptor (Figure S6A). We therefore
generated RCASs using the PPARA agonist subset of reference
chemicals in place of all PPAR agonists. Five genes were
uniquely sensitive toward these chemicals (Figure S6B), includ-
ing several that have been linked to PPARA-specific bioactivity
(PDK4,34 CYP4A11,35 CREB3L3,36 and HSDL2).37 However,
too few genes were identified to meet criteria for signature-based
profiling even after limiting our analysis to PPARA agonists.

We next evaluated whether RCAS can detect target-specific
bioactivity at the signature level. We profiled reference chemi-
cals for each RCAS using ssGSEA25 followed by concentration–
response modeling to estimate signature-level BMCs,38 which
are hereafter referred to as RCAS-derived PODs (PODRCAS). By
using ssGSEA for signature scoring, signal can be detected from
chemicals that induce weak but coordinated changes in gene
expression that may not be observed from analysis of individual
genes. We found that 89.5% of reference chemicals matching
each RCAS were bioactive for their respective signatures,
whereas only 10.0% of nonmatching chemicals were bioactive
for each RCAS (Figure 1D). Matching reference chemicals
also ranked among the lowest PODRCAS estimates and highest
top_over_cutoff values of active reference chemicals. Each
RCAS derived from HepaRG data demonstrated more frequent
bioactivity in nonmatching chemicals (between 16 and 18 of 120
nonmatching chemicals) than those derived from U-2 OS data
(between 1 and 7 of 120 chemicals). This increased promiscuity
could be due to an increase in reactive metabolites in HepaRG
cells, but additional investigation would be needed to determine
potential drivers of this behavior.

We next conducted permutation testing of PODRCAS estimates
in comparison with 100 signatures generated by random assign-
ment of RCAS genes. All RCASs had a significantly greater differ-
ence in mean PODRCAS between matching and nonmatching
reference chemicals than random signatures (Figure 2), suggesting
that potency-based assignment of genes can distinguish potencies
between reference chemicals with limited type I error. We further
tested RCASs against 174 held-out test samples linked to individ-
ual molecular targets and not used in RCAS development.17 RCAS
were bioactive for all 87 test samples with matching targets based
on signature-level profiling results, and few to no test samples
linked to different targets were found to be active (Figure S7A).
The PPAR agonist troglitazone was active for the mismatching
heparg_hERG_inhibitor RCAS in 22 of 29 replicates, but
PODRCAS estimates for these replicates ranged among the higher
concentrations tested (4:8–85 lM) (Figure S7B). PODRCAS esti-
mates for all troglitazone samples were also higher than BPACs
derived from the fifth percentile of active BMCs from a collectionT
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of public signatures (Figure S7C), which suggests that inhibition
of hERG was likely not the primary effect of troglitazone.
Thiazolidinediones have additionally been linked to ion transport
modulation39–41 among broader effects on solute transport42 and
hepatotoxicity,43 so it is not surprising that these samples demon-
strated hERG-related bioactivity due tomolecular crosstalk or gen-
eral hepatotoxicity.

Tiered NAM-Based Decision Framework for Identifying
Selectively Acting Perturbagens
We next aimed to investigate how mechanistic end points from
HTTr could be integrated with targeted HTS assays in a chemical

prioritization context. We developed a decision framework for
identifying target-specific activity using both modalities as indi-
vidual tiers (Figure 3A). Chemicals would first be tested for ac-
tivity in Tier 1 (i.e., HTTr) using signature-level profiling of
RCAS and resulting in a PODRCAS estimate. Because activity for
each RCAS could have been the result of nonselective perturba-
tion at higher chemical concentrations,30 we applied a selectivity
test in which PODRCAS estimates were compared to nonselective
Tier 1 PODs (PODNS1) estimated from a distribution of 11,037
signatures sourced from public repositories. Chemicals that dem-
onstrate both activity (“Tier 1-active”) and selectivity (“Tier
1-active and selective”) for a target in Tier 1 were then similarly
tested for activity and selectivity in Tier 2 using multiple

Figure 1. Development of Reference Chemical-Associated Signatures (RCAS) from high-throughput transcriptomics data. (A) Schematic of prior datasets and
processing steps used to identify genes for each RCAS based on unique sensitivity for a single class of reference chemicals. Resulting clusters of genes (col-
umns) represent hypothetical RCAS for two groups of reference chemicals (rows). (B,C) Comparison of gene BMCs for RCAS genes across reference chemi-
cals used for identification in HepaRG (B) and U-2 OS (C) cell lines. Genes identified as part of any RCAS (columns) are shown for reference chemicals
associated with any RCAS (rows). Inactive genes are designated by a default value of 2.5 (i.e., 0.5-log above the highest tested concentration). (D) RCAS
concentration-response profiling estimates across reference chemicals. Chemicals annotated for the same molecular target as each RCAS (blue) and those
annotated for a different target (red) are compared using PODRCAS estimates (x-axis) and effect size (y-axis). Chemicals with passing bioactivity for each
RCAS were determined using a hitcall ≥ 0:9 and top_over_cutoff ≥ 1:5 (dashed lines). See Excel Table S6 for all underlying data. Note: BMC, benchmark
concentration; PODRCAS, RCAS-derived point of departure; RCAS, reference class–associated signature.
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orthogonal HTS assays from the US EPA ToxCast program.
Chemicals that appeared active and selective toward a particular
target in both tiers were considered candidate target modulators
for further testing based on linked adverse outcomes.

We applied this framework to HTTr screening data in both
U-2 OS and HepaRG cell lines17 by using RCAS for Tier 1 tests
and a set of high-confidence ToxCast end points matching each
target for Tier 2 tests (Table 1; see Figure S8 for end point selec-
tion results). Of a total 1,201 chemicals screened in both cell
lines, 228 chemicals were active and selective in Tier 1 for at
least one RCAS, and 190 of these chemicals had existing data for
orthogonal ToxCast end points in Tier 2 (Figure 3B). Of these,
64 chemicals were active and selective in both Tier 1 and Tier 2
tests for at least one RCAS and orthogonal ToxCast end point. Of
these, 57 chemicals were not among the reference chemicals used
for RCAS identification, and these were designated as candidate
perturbagens that may elicit a targeted mechanistic response not
widely identified in previous literature.

To assess RCAS performance in predicting orthogonal Tier 2
activity, we tested the association between all Tier 1-active chemi-
cals and all Tier 2-active chemicals (Figure 3C, left). We found
that chemicals active for each of three different RCAS were more
likely to be active in at least one orthogonal Tier 2 end point. We
similarly found that chemicals that were active and selective in
each RCAS were more likely to be active and selective for at least
one orthogonal end point in Tier 2 (Figure 3C, right), although
odds ratios varied sizably across RCAS (Excel Table S4).

Evaluation of Inactive Chemicals in Tier 1 for Tier 2 PODs
One potential concern for the use of transcriptomics as a Tier 1
screen is the potential for false negative outcomes, i.e., chemicals
labeled as inactive in Tier 1 that show bioactivity in Tier 2 end
points. To investigate the potential for missed activity in Tier 1

tests, we identified chemicals with false negative outcomes as
those thatwere negative in each RCAS (i.e., neither active nor selec-
tive) and either active only (i.e., active but not selective) or active
and selective in at least one orthogonal ToxCast end point.
Minimum PODs across orthogonal ToxCast end points (PODortho)
were used to compare Tier 2 potency estimates between Tier 1
outcomes.

For chemicals negative in Tier 1 but active in Tier 2
(Figure 4A, red boxes), PODortho values were significantly higher
than those for chemicals that were active in Tier 1 and Tier 2 in
two of three RCAS tested (Figure 4A, blue boxes). For chemicals
negative in Tier 1 but active and selective in Tier 2 (Figure 4B,
red boxes), PODortho values were significantly higher than values
for chemicals that were active in Tier 1 and both active and selec-
tive in Tier 2 for all RCAS tested (Figure 4B, blue boxes). These
trends suggest that false negative outcomes in Tier 1 corre-
sponded to higher bioactive concentrations in Tier 2 in compari-
son with chemicals that were active in both tiers. Higher
bioactive concentrations often coincide with a burst of bioactivity
in assays spanning many pathways and can be indicative of non-
selective effects, such as cell stress or nonspecific receptor bind-
ing.30 Although uncertainty remains as to why some chemicals
appear as false negatives in Tier 1 tests, further investigation into
overall bioactivity and/or cytotoxicity for these chemicals could
identify sources of reduced sensitivity in Tier 1.

We additionally compared PODortho values based on Tier 1
outcome (i.e., negative, active but not selective, or active and
selective). For multiple RCAS, false negative chemicals either
trended toward higher PODortho values when active but not selec-
tive in Tier 2 (Figure S9A, red boxes) or had significantly higher
PODortho values when active and selective in Tier 2 (Figure S9B,
red boxes) vs. chemicals that were active but not selective or
active and selective in Tier 1.

Figure 2. Comparison of RCAS signature predictions vs. random signature sets. Differences in mean log10PODRCAS estimates between positive reference
chemicals (whose targets match the RCAS) and negative reference chemicals (whose targets do not match the RCAS) are shown for each RCAS (red dashed
line) and for 100 randomly generated signatures (histogram). p-Values were computed as the probability that a random signature’s difference in mean
log10PODRCAS is lower than that for each RCAS. See Excel Table S7 for all underlying data. PODRCAS, RCAS-derived point of departure; RCAS, reference
class–associated signature.
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Figure 3. Tiered assessment framework for prioritizing selective molecular target perturbagens. (A) Decision framework used to prioritize chemicals across
tiered transcriptomic and high-throughput screening assays. (B) Summary of tiered framework outcomes when applied to chemicals previously screened in
HTTr. Chemicals passing successive steps were advanced to the next stage of prioritization, and final candidates were determined as candidate perturbagens
for each RCAS. Chemical totals represent those chemicals passing tests for the individual or multiple RCAS at each step. (C) Association tests between Tier 1
and Tier 2 framework outcomes. Odds ratios that a Tier 1-active chemical would also be active in at least one Tier 2 orthogonal ToxCast end point (left) and
that a Tier 1-active and selective chemical would also be active and selective in at least one Tier 2 orthogonal end point (right) are shown for each RCAS.
Points extending beyond the x-axis range indicate an infinite odds ratio, i.e., no odds that a Tier 1-active and selective chemical was not active and selective in
Tier 2. See Excel Table S8 for all underlying data. Note: BMC, benchmark concentration; HTTr, high-throughput transcriptomics; PODRCAS, RCAS-derived
point of departure; PODNS1, Tier 1 nonselective point of departure; PODNS2, Tier 2 nonselective point of departure; PODortho, Tier 2 orthogonal assay point of
departure; RCAS, reference class–associated signature. *p≤ 0:05 via Fisher’s exact test for associations between Tier 1 and Tier 2 outcomes described above.
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Target-Specific Potency Estimates in Comparison with
Overall Transcriptomic PODs
We next compared PODRCAS estimates to PODs representing the
HTTr-derived biological pathway altering concentration (PODBPAC1)
for chemicals prioritized in Tier 1. Of the chemicals with either active
only or active and selective Tier 1 outcomes, we found that 95.4%
of chemicals had a PODRCAS within 1-log of the PODBPAC1
(Figure 5A). Pearson correlations between PODRCAS and
PODBPAC1 values were significant for all groups except chemi-
cals selective for the “u2os_NR3C1_Agonist” RCAS, which
had fewer chemicals for comparison.

We additionally compared PODRCAS estimates to orthogonal
Tier 2 potency estimates to evaluate the relative sensitivity of tar-
geted estimates across tiers. Of chemicals with active only or
active and selective outcomes in at least one orthogonal end
point, 15.1% of chemicals had a PODortho 1-log lower than the
PODRCAS or more (Figure 5B). These differences in POD esti-
mates were evident in a greater proportion of chemicals with an
active and selective Tier 2 outcome (24.6% of chemicals).

Comparison of PODRCAS values to PODs derived from all
active Tier 2 end points in ToxCast (PODBPAC2) resulted in
weaker Pearson correlations vs. comparisons with PODBPAC1 val-
ues above (Figure S10), and 62.2% of chemicals had a PODRCAS
within 1-log of the PODBPAC2 or less. The assays in ToxCast
encompass a variety of cell lines, detection technologies, concen-
tration ranges, and biological functions, however,5 so resulting
PODBPAC2 estimates can be highly variable in comparison with
the cell line-specific PODs derived from HTTr.

Structural Similarities and Known Activity of Framework-
Identified Candidates
Of the 1,126 nonreference chemicals tested using the tiered frame-
work above, 57 met criteria across Tiers 1 and 2 for selective AHR

agonism (26 chemicals), GR agonism (8), or RAR/RXR agonism
(23 via both HepaRG and U-2 OS RCAS). Sensitivity toward tar-
geted assays varied by molecular target, because PODortho esti-
mates for GR agonists (Figure 6B) were often lower than those for
AHR and RAR/RXR agonists (Figure 6A,C,D). Dissimilarity in
the ToxCast assay technologies’ metabolic-capacity biological
functions profiled may also account for differences in Tier 2 po-
tency estimates. Further exploration would be needed to investi-
gate differences in assay sensitivity.

Individual candidate perturbagens demonstrated similarities
between their chemical structures and the structures of known
classes of nuclear receptor modulators. Within candidate AHR
agonists, 11 chemicals contained oxygenated polycyclic aromatic
structures, including 2-aminoanthraquinone, 1,4-diaminoanthra-
quinone, and 1-naphthol (Figure 6A), indicating similarities to
known AHR-mediated toxicants, such as oxygenated polycyclic
aromatic hydrocarbons and anthraquinone dyes.44–47 All four can-
didate GR agonists shared steroidal features and are either mar-
keted synthetic steroids or have been reported to demonstrate
minor glucocorticoid agonism48 and immunosuppression49 in vitro
(Figure 6B). Several triazole and imidazole fungicides were identi-
fied as RAR/RXR agonists using RCASs from either cell line,
including triflumizole, flusilazole, imazalil, prochloraz, and etoxa-
zole, as well as several organochlorine pesticides, including aldrin,
dieldrin, endrin, and lindane (Figure 6C,D). Chemicals within both
structural groups have been linked to developmental skeletal
defects50,51 and neurotoxicity52,53 in both in vitro and guideline
rodent studies and are consistent with health effects associated with
RARdisruption as compiled from in vivo and in vitro studies.51

Prospective Screening of Tier 1-Predicted Chemicals in HTS
Assays
Tier 1 transcriptomics predicted 38 chemicals as active and selec-
tive perturbagens that did not have sufficient Tier 2 data for

Figure 4. Comparison of Tier 2 potency estimates for chemicals grouped by Tier 1 bioactivity. Chemicals demonstrating either an active only outcome (A) or
an active and selective outcome (B) in any Tier 2 orthogonal end point for each RCAS are grouped by their Tier 1 activity test outcome, regardless of selectiv-
ity. Statistical comparisons of PODortho estimates (x-axis) by Tier 1 activity outcome for each RCAS were conducted using Wilcoxon rank sum tests with
Benjamini-Hochberg correction. Groupings are not shown when no chemicals matched the specified Tier 1 and Tier 2 outcomes (e.g., Tier 1-active only and
Tier 2-active only for u2os_NR3C1_Agonist RCAS). All chemicals that were either active only or active and selective in Tier 2 orthogonal assays are dis-
played. Boxes represent 25th percentile, median, and 75th percentile values of PODortho estimates; whiskers represent 1.5 × IQR of PODortho estimates. See
Excel Table S9 for all underlying data. Note: BMC, benchmark concentration; IQR, interquartile range; PODortho, Tier 2 orthogonal assay point of departure;
PODRCAS, RCAS-derived point of departure; RCAS, reference class–associated signature.
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comparison (Excel Table S5). To test whether Tier 1 predictions
could similarly prioritize these chemicals in comparison with
chemicals with existing Tier 2 data, we profiled a subset of the 38
chemicals above using one of five prospective end points for tran-
scription factor transactivation or ion channel inhibition (Table 3).
Although chemicals chosen for GR and RAR/RXR end points were
previously profiled in orthogonal ToxCast end points, the results
here represent additional assay technologies not used in our retro-
spective analyses above and are included for comparison.

Of the 28 chemicals prospectively profiled for AHR and hERG
modulation, 33.3% and 43.8% of chemicals were concentration re-
sponsive for AHR and hERG end points, respectively (Figure 7A).
These hit rates are lower than those for chemicals that were active
and selective in each RCAS and had existing orthogonal data in
ToxCast (Figure S11). Chemicals with existing orthogonal data
were tested in multiple targeted assays per target, however, so it is
expected that these hit rates would be higher than those for chemi-
cals prospectively profiled in only one assay. Hit rates were higher
for chemicals tested for RARG and GR modulation (75% and 50%,
respectively); caution should be usedwhen interpreting these results
due to smaller sample sizes in comparisonwithAHR and hERG.

We additionally compared PODRCAS estimates for prospectively
screened chemicals to PODs derived from the prospective end point
assays (PODProspective) (Figure 7B). PODRCAS values for chemicals
active in any end pointwere significantly correlatedwith PODProspective
values (p=9:52× 10−6), and the root mean square deviation between

PODs was approximately 1 order of magnitude. PODRCAS values
were within 1-log of the PODProspective or less for 21 of 31 chemicals
(67.7%) across all targets. The various detection technologies used for
these prospective end points could contribute to differences in individ-
ual potency estimates vs. RCAS, however, and investigation with a
larger chemical screen would be needed to fully evaluate differences
in assay sensitivity.

Discussion
We investigated whether a tiered, NAM-based decision frame-
work could identify chemicals selectively acting on key molec-
ular targets by integrating HTTr and targeted HTS data streams.
Our development and use of RCAS allowed for translation of
broad profiling assay data to predictions of molecular target per-
turbation. Further combining RCAS predictions with potency
estimates from HTS assays allowed for orthogonal validation
and subsequent prioritization of candidate perturbagens. The
approach used here was intended as an additional method to
complement current derivations of transcriptomic PODs by pro-
viding mechanistic insight specific to the cell line tested.

Utility of Broad-Profiling NAMs for Identifying Mechanistic
Behavior
Broad-profiling NAMs such as transcriptomics have been
increasingly used to profile chemical interactions with molecular

Figure 5. Comparison of RCAS-derived PODs to overall HTTr-derived PODs and orthogonal HTS-derived PODs. (A) Comparison of RCAS-derived potency
estimates with PODBPAC1 values, determined as the fifth percentile of active signature BMCs estimated from publicly sourced signatures. Chemicals with either
an active only or an active and selective Tier 1 outcome are displayed. (B) Comparison with PODortho values, determined as the minimum ACC from active or-
thogonal ToxCast end points. Only chemicals with an active and a selective Tier 1 outcome and either an active only or an active and selective Tier 2 outcome
are displayed. Solid lines reflect equal PODs between estimates, and dashed lines reflect a difference of 1-log. Pearson correlation coefficients between PODs
(r) are displayed by RCAS and tier outcome. See Excel Table S10 for all underlying data. Note: ACC, activity concentration at cutoff; BMC, benchmark con-
centration; BPAC, biological pathway altering concentration; HTTr, high-throughput transcriptomics; POD, point of departure; PODortho: Tier 2 orthogonal
assay point of departure; PODRCAS, RCAS-derived point of departure; RCAS, reference class–associated signature. *p≤ 0:05 via Student’s t-test for Pearson
correlation coefficients between POD estimates described for each panel.
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targets relating to a variety of adverse outcomes.54 Signature-
based analyses have often been used to mine transcriptomic data
for effects associated with cellular pathway modulation,8,55 dis-
ease progression,10 or other human health effects.56Many publicly
sourced signatures, although useful for biological interrogation,
may not be well-suited for detecting molecular targets for chemical
hazard identification. First, many signatures reflect transcriptomic
responses that are cell- or tissue-specific andmay not reflect changes
observed in the cell lines used for in vitro screening. Second, some
signatures reflect broadly defined biological processes with low
confidence for detecting individual chemical–target interactions.57
Finally, various signature databases were developed based on other
cellular responses such as cell signaling andmay not be reflective of
changes in gene expression.58

Our use of RCAS indicates that data-driven signatures for
specific molecular targets and cellular contexts can be used to
screen for targeted effects upon chemical exposure. Such analyses

demonstrate the utility of HTTr for NAM-based screening beyond
deriving nontargeted PODs as used previously.59,60 Other studies
have also linked chemicals to relevant targets by comparing gene
expression profiles between DNA damage toxicants and nontoxi-
cants,61 by using transgenic in vivo models,62 or via machine
learning models16 and coexpression networks.63–65 Although these
studies did not directly incorporate potency criteria for selecting
signatures, such methods can detect perturbations that were not
identified here. Combining signatures generated from multiple
methods into a battery of targeted signatures could complement
RCAS and expand the number of targets screened with confidence
in HTTr.

From 14 initial molecular targets, only 5 RCASs were suc-
cessfully identified and used for bioactivity screening. Molecular
targets were required to have multiple well-annotated reference
chemicals in RefChemDB that were also bioactive in HTTr.
These criteria limit the possible targets to be mined from HTTr

Figure 6. Candidate target perturbagens identified by tiered framework. Comparison of Tier one-half potency values for candidate nuclear receptor agonists
based on RCAS for AHR in HepaRG (A), GR in U-2 OS (B), RAR/RXR in HepaRG (C), and RAR/RXR in U-2 OS (D). Chemicals displayed represent test
chemicals passing all four framework steps in at least one RCAS and orthogonal end point. PODortho values represent the minimum ACC across active end
points for each chemical. Chemicals are grouped by the combination of orthogonal end points in which a chemical was active and selective (x-axis, see Table 1
for end point names and assay details). Only end points with at least one passing chemical are shown. Nonreference chemicals with similar structural features
within each panel (e.g., polycyclic aromatic structures) are annotated where possible. See Excel Table S11 for all underlying data. Note: ACC, activity concen-
tration at cutoff; AHR, aryl hydrocarbon receptor; GR, glucocorticoid receptor; PODNS1, Tier 1 nonselective point of departure; PODNS2, Tier 2 nonselective
point of departure; PODortho, Tier 2 orthogonal assay point of departure; PODRCAS, RCAS-derived point of departure; RAR, retinoic acid receptor; RCAS, ref-
erence class–associated signature; RXR, retinoid X receptor.
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when existing datasets were not explicitly designed for mechanis-
tic inference. An important aspect is that it should not be
expected that all molecular targets produce a uniquely sensitive
gene-expression signature in each cell line tested. Nonnuclear re-
ceptor targets such as G-coupled protein receptors induce
changes in transcription via a complex network of cell signaling
pathways, so any resulting changes in cell transcription could
span many pathways and may only be detected at higher concen-
trations. Some molecular targets may also be more responsive in
one cell line vs. another (e.g., GR agonism in U-2 OS vs.
HepaRG), and the 24-h exposure duration used here could have
additionally impacted the sensitivity of gene expression toward
chemical perturbation. It is therefore plausible that the molecular
targets tested here may demonstrate unique effects on gene
expression in one or more other cell lines not yet profiled in
HTTr. Optimal bioactivity coverage will likely involve screening
across multiple cell lines,17,66 but our analyses suggest that the
methodology for generating RCAS can augment existing tran-
scriptomic screening data by detecting selectively acting chemi-
cals in the cell line(s) tested.

RCASs were also not identified for some targets where bioac-
tivity was expected and reference chemicals were available (e.g.,
PPAR agonism in HepaRG cells). This lack of sensitivity could
have been because of differences in cellular metabolism in compar-
isonwith other in vitro and ex vivomodels. AlthoughHepaRG cells
retain key phase I and II metabolic enzymes in comparison with
other immortalized cell lines,67 such enzymesmay be differentially
expressed vs. primary human hepatocytes and liver biopsies,68,69
and exposure duration could also affect the bioavailability of reac-
tive metabolites.70,71 We also found that PPARA agonists induced
expected bioactivity in HepaRG cells for individual genes, but this
small gene set did not meet criteria for signature-based profiling.
This finding raises the question of whether signature-based analy-
ses are equally sensitive toward all molecular targets. Expert-
curated biomarkers have alternatively detected effects linked to
adverse outcomes such as liver injury or tumorigenesis.72,73 The
method proposed for generating RCASs here should ultimately be
employed within a larger toolbox of methods for signature-based
profiling to provide sensitivity across a range of molecular targets
for each cell line used for testing.

Figure 7. Prospective profiling of Tier 1-predicted candidates for molecular target modulation in receptor-level assays. (A) Activity classifications for chemi-
cals tested in prospective orthogonal assays. Numbers indicate the total number of unique chemicals with each prospective end point and activity classification
(B) Comparison of PODRCAS estimates (x-axis) and PODProspective estimates (y-axis) for active chemicals. The solid line reflects equal POD estimates, and
dashed lines reflect a difference of 0.5-log. See Excel Table S12 for all underlying data. Note: POD, point of departure; PODortho, Tier 2 prospective assay point
of departure; PODRCAS, RCAS-derived point of departure; RCAS, reference class–associated signature; RMSD, root mean square deviation between PODs
(shown in log-units). *p≤ 0:05 via Student’s t-test for Pearson correlation coefficients between PODRCAS and PODProspective estimates.
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Tiered Decision Framework for Distinguishing Selectively
Acting Perturbagens
The tiered framework presented here represented a proof-of-
concept for integrating broad-profiling and targeted NAMs into a
single workflow for chemical bioactivity screening. Others have
shown that combining bioactivity estimates from multiple NAMs
can improve confidence in Next Generation Risk Assessment sce-
narios including for consumer goods,11,12 pharmaceuticals, and
other chemical classes.74 By incorporating HTTr as an initial
screen for targeted bioactivity, we found that transcriptomics could
improve the efficiency of chemical screening by predicting chemi-
cal–target interactions based on targeted gene sets, thereby reduc-
ing both the number of chemicals to be tested in targeted assays
and the number of assays to test per chemical. Our transcriptomic
testing strategy additionally identified several chemicals as poten-
tial targeted perturbagens for which few or no orthogonal measure-
ments were available in ToxCast, and prospective screening of
these chemicals revealed additional insight into possible mecha-
nisms that might not have been profiled otherwise.

Our incorporation of selectivity criteria provided additional
evidence that a chemical may perturb a target of interest as opposed
to assay responses that cannot be distinguished from generalized
cell stress or cytotoxicity.30 The nonselective potency metric
employed here provided an estimate of the central tendency of tran-
scriptional responses rather than the lower bound, and this strategy
allows for a higher sensitivity vs. BPAC-based comparisons that
could reduce the incidence of false negative results. Active and
selective chemicals from this framework could be candidates for
fit-for-purpose assays designed to closely approximate human
health effects,6,75 because the targets explored here can be mapped
to adverse outcomes such as developmental defects,52 cardiotoxic-
ity,76 and tumorigenesis and immune function.77,78 An important
consideration is that chemicals with an active but nonselective out-
come in Tiers 1 or 2 using the framework above should not neces-
sarily be interpreted as nonhazardous chemicals. Such chemicals
may act by multiple specific or nonspecific mechanisms not cap-
tured here, and any resulting alterations to the transcriptome could
still result in adverse outcomes. These chemicals maymerit further
assessment for other putative hazards or estimation of a quantita-
tive POD in absence of a definedmechanism.6

Sensitivity of NAM-Based Framework within Decision
Contexts
Although the framework presented here was tailored toward
chemical screening and prioritization, tiered integration of multi-
ple NAMs may not be suitable for all decision-making scenarios.
For example, performing transcriptomics and RCAS-like testing
prior to targeted NAMs on data-poor chemicals in which no prior
NAMs data are available may yield information on selected tar-
gets, but it would not necessarily inform stakeholders whether all
relevant targets are covered. It would also be uncertain whether
more cell lines are needed for comprehensive coverage in Tier 1.
In this scenario, the use of a targeted NAM panel in tandem with
transcriptomics would more likely provide comprehensive target
coverage when testing data-poor chemicals.79 Different assays
may also be prioritized first within a tiered framework for maxi-
mizing positive or negative predictive power,80 or assays may be
run in tandem for estimation of systemic PODs that are protective
of human health.12,81

Chemical structure–based predictions could be added to this
framework to improve screening efforts or help translate to other
decision contexts. In silico NAMs could serve as a “Tier 0”
screen by providing structural alerts or predictions of human
health effects such as endocrine disruption.82–84 Additional

incorporation of predicted internal concentrations via toxicoki-
netic models have been demonstrated and applied to NAM-based
assessments via bioactivity–exposure ratios.11,12,29 These esti-
mates could further prioritize chemicals that are likely to exceed
points of departure in various exposure scenarios.

Conclusions
Our investigation suggests that integrating transcriptomic and tar-
geted NAMs into a framework can streamline the prioritization of
chemicals for further toxicity testing with respect to specific mo-
lecular targets. The transcriptomic signatures presented here
allowed for mechanistic interpretation in a specific cellular context
in addition to quantitative POD estimation and thereby expanded
the utility of HTTr screening with few to no added resources. The
framework presented here provided a proof-of-concept for inte-
grating in vitroNAMs in a tiered manner to support hazard screen-
ing efforts. Although an expanded evaluation of HTTr-predicted
perturbagens and incorporation of in silico predictions will further
build confidence in and expand the utility of tiered testing strat-
egies, the current approach described here is readily applicable to
the needs of large-scale toxicity testing.
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