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Fecal samples can easily be collected and are representative of a person’s current health state; 
therefore, the demand for routine fecal examination has increased sharply. However, manual 
operation may pollute the samples, and low efficiency limits the general examination speed; 
therefore, automatic analysis is needed. Nevertheless, recognition exhaustion time and accuracy 
remain major challenges in automatic testing. Here, we introduce a fast and efficient cell-detection 
algorithm based on the Faster-R-CNN technique: the Resnet-152 convolutional neural network 
architecture. Additionally, a region proposal network and a network combined with principal 
component analysis are proposed for cell location and recognition in microscopic images. Our 
algorithm achieved a mean average precision of 84% and a 723 ms detection time per sample for 
40,560 fecal images. Thus, this approach may provide a solid theoretical basis for real-time detection 
in routine clinical examinations while accelerating the process to satisfy increasing demand.

From a biological perspective, the metabolic process is an important bridge between biological function and 
structure1. In the human digestive process, food or water enters the oral cavity first; after a series of chewing 
cycles, the content flows through the esophagus into the stomach. Gastric acid and enzymes digest the contents 
under gastric motility2. Several hours later, the contents are delivered through the duodenum to the small intes-
tine and large intestine3. Therefore, fecal matter clearly contains abundant biological information4, and images 
of fecal samples may help identify early abnormal matter at the early stage.

The total worldwide population is close to 7.8 billion, and the male to female ratio is approximately 1.025. 
According to the WHO disease report, the incidence of digestive disease is 20–40%, and the incidence of gyneco-
logical disease is 24.94%6,7. Clearly, there is abundant demand for routine clinical examination of feces. Fur-
thermore, these kinds of biological samples are widely accepted in diagnosis due to characteristics such as 
noninvasiveness8,9 and representativeness10 and their ability to provide disease-related information11. However, 
another challenge is becoming clear: how to overcome the limitations of manual operation, such as bad odor 
and aseptic, inefficient and tedious operation12. Solutions to these problems have become increasingly urgent 
for routine clinical examination.

At present, the automatic recognition of tangible components such as cells under the microscope applies 
mainly to machine vision. However, the traditional machine vision method requires the design of complex feature 
extractors (such as morphological features and texture features), and many images must be preprocessed before 
training13,14. In addition, the training process is inadequate and complex.

The lack of an automatic recognition algorithm for organic components under the microscope seriously 
restricts the automation of routine stool analysis. Recently, deep learning technology has been successfully used 
in image classification, object detection and other computer vision tasks15,16. Compared with traditional machine 
learning methods, convolutional neural networks automatically extract image features, simplify and avoid unnec-
essary image preprocessing, and improve the validity and accuracy of detection17–19. Therefore, we introduce 
an automated cell-detection approach based on a faster region-based convolutional neural network (Faster 
R-CNN)20, which we term principal component analysis (PCA)-based21 Faster R-CNN (PCA-Faster R-CNN).
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Methods
Ethics approval and consent to participate.  The Institutional Review Board and Ethics Committee 
of the Fourth Affiliated Hospital of Nanchang University approved this study (SFYLL-PJ-2015-001). Written 
informed consent was provided by all participants. All biological samples were anonymized. All methods were 
carried out in accordance with relevant guidelines and regulations.

Fecal sample collection.  In total, 676 positive samples were collected from the Fourth Affiliated Hospital 
of Nanchang University. These samples were diluted, stirred, allowed to stand and finally sent to a flow cell. To 
observe a clear sample image, an OLYMPUS CX31 was used in the optical system as the basic optical structure 
with a 40 × objective lens [numerical aperture (NA): 0.65, material distance: 0.6 mm]. An EXCCD01400KMA 
CCD camera was used to capture images with 6.45 µm resolution, and a standard halogen lamp was chosen for 
illumination. Ten to 15 images were collected from each subject in different visual fields.

The size of the collected images was 1600 × 1200. Annotation of each image was conducted manually as the 
ground truth. The location and size of (RBCs), white blood cells (WBCs), pyocytes (PYOs), and mildews (Mids) 
were recorded according to the image analysis. Only the standard cell structure was annotated from the images, 
and the defocused image was not marked to reduce false detection of impurities. A total of 8785 images with 
stylized components were collected. Training a on a small number of images can affect the test performance of 
a model. Therefore, to reduce the effect of overfitting, data augmentation was performed using random vertical 
and horizontal flipping and random contrast and saturation adjustments.

Proposal.  Four main elements must be identified during routine fecal examination: RBCs, WBCs, PYOs, 
and Mids. Other components, such as calcium oxalate crystals, starch granules, pollen, plant cells, plant fibers 
and food residues, are classified as impurities with less clinical significance. For details, please see Fig. 1a–h.

Faster R-CNN20 consists of three main parts: (1) a feature extraction layer, (2) a region proposal network 
(RPN), and (3) a classification and regression network; see Fig. 2 for a detailed model schematic diagram. Among 
them, the RPN and classification and regression network share the previous feature extraction layer, as shown 
in Fig. 2a. The feature extraction layer is composed of a series of convolutional neural networks composed of a 
convolutional layer, pooling layer, and activation layer. According to the feature map generated by the feature 
extraction layer, the RPN can generate anchors of different sizes and aspects, which are then used to generate the 
region proposal. The proposed region generated by RPN is input into the classification and regression network 
for the type recognition and box accurate regression. Because the scale of the feature map layer corresponding 
to different foreground regions is inconsistent, Fast R-CNN adopts a region of interest (ROI) pooling strategy to 

Figure 1.   Cells and impurities in fecal samples. (a) RBC, first layer with a black outer cycle, second layer with a 
highlighted irregular cycle, inner with brown cycle; (b) WBC, generally round, with noise like the texture inside; 
(c) Mid, budding mold is generally composed of multiple spherical joints; (d) PYO, usually formed by adhesion 
of multiple leukocytes; (e,f) are different impurities; (h) impurity.
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unify the dimensions. Although the calculation is simplified, some features are lost; therefore, we propose PCA 
dimension reduction to normalize the dimensions of the features.

The feature extraction layers use Resnet20, a 152-layer network composed of four residual network blocks: 
the first three residual network blocks are selected as feature extractors (see Fig. 2b).

The RPN was used to generate a batch of proposals, similar to the selective search used in R-CNN22 and Fast 
R-CNN23. The network structure is consistent with the RPN used in Faster R-CNN: a 256-channel output is 
generated by a 3 × 3 convolutional layer after the feature map layer (conv4b_35), which is used to fuse the infor-
mation around the features and to fuse information across channels. Meanwhile, the fused layer is connected by 
two branches, termed the SoftMax classification head and box location regression head; for details, see Fig. 3a. 
In contrast to the RPN in Faster R-CNN, whose box dimensions are hand selected, the generated anchors are 
based on the average size of the foreground target, which allows the regression network to run smoothly to learn 
and predict good locations; for details, see Fig. 3b.

In the training process, the RPN module is trained jointly, rather than alternately, with the object recognition 
network. Since the structure of the Faster R-CNN is end to end, both the RPN and the object recognition network 
can provide feedback on the feature extraction layer. During backpropagation, the loss functions from both the 
RPN and the Fast R-CNN are combined and calculated together. Moreover, we introduce the PCA strategy in the 
classification and regression component of Faster R-CNN that should be trained separately. The original Faster 
R-CNN model, denoted by M0, can improve the RPN network (3.1.2) and the ROI pooling strategy. PCA-based 
Faster R-CNN is denoted by M1. The training process is shown in Fig. 4.

Figure 2.   Overall workflow of the proposed approach and sharable 143 CNN layers of ResNet-152. (a) Image 
acquisition system. (b) Output feature map. Drawn by DXH.
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Experimental setup.  All experiments were conducted using models developed based on TensorFlow24, 
which provides libraries to build the main structure of deep learning models. The experiments were executed on 
a Windows system with an Intel Core i7-5960X CPU @ 3.0 GHz × 8, an NVIDIA GeForce GTX 1080 Ti GPU and 
32 GB of RAM. The microscopy process involved taking five images with different focal lengths and recording 12 
fields of view by means of a movable platform.

Results
In total, 676 biological samples were obtained from the Fourth Affiliated Hospital of Nanchang University. 
Therefore, 40,560 fecal images were used to develop the detection algorithm based on Faster R-CNN. All images 
were collected independently from the microscopic imaging system. The best resolutions of the 12 images were 
collected for each sample. To further validate the algorithm, experienced laboratory experts annotated the cells 

Figure 3.   (a) Architecture of RPN; (b) Generation of anchors. Drawn by DXH.

Figure 4.   Training process of the PCA-based Faster R-CNN. Drawn by DXH.
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of all images in the development dataset with different colors of rectangular boxes as the ground truth. For more 
details, please see Supplementary Information S1. Detailed fecal sample information and the dataset split are 
summarized in Table 1.

After training, the network was tested. The WBCs are marked with blue squares and percentages (Fig. 5a–c), 
while the RBCs are marked with green squares and percentages (Fig. 5a). PYOs are marked with light blue squares 
and percentages (Fig. 5a). Furthermore, the remaining components, Mids, are marked with gray squares and 
percentages (Fig. 5b,d); for details, please see Fig. 5.

Average precision (AP) and mean average precision (mAP) were used to detect the cells and identify their 
location from the microscopic images. Due to the insufficient sample size during training, the detection recog-
nition rate was low. For example, for RBCs, WBCs and Mids, the detection results reflected the performance 
of the model, and the mAP value was 84%. Two established classes of methods are used for object detection in 
images: one based on morphology segmentation or selective search, which is used in R-CNN and Fast R-CNN, 

Table 1.   Overview of the dataset. The dataset is divided randomly. As some samples are negative, they contain 
fewer cells.

Contents Dataset A: training Dataset B: validation Dataset C: testing

# images 6150 880 1755

Cells 12,348 388 2628

RBCs 5588 1 1572

WBCs 682 5 454

PYOs 70 0 54

Mids 6008 382 548

Figure 5.   Curated examples of this model on our dataset. A score threshold of 0.6 is used for display. (a) PYO, 
WBC and RBC; (b) WBC, Mid, (c) WBC, (d) Mid.
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and the other based on region proposal classification. We compared the proposed model of PCA-based Faster 
R-CNN with R-CNN, Fast R-CNN, Faster R-CNN and R-FCN25. The mAP of our method was the highest 
(0.84). Moreover, the time consumed per image (723 ms) was significantly shorter than that of R-CNN and Fast 
R-CNN, whereas no significant difference was observed with respect to Faster R-CNN and R-FCN. Specifically, 
the AP values for RBCs, WBCs, PYOs and Mids were 0.92, 0.85, 0.81, and 0.75, respectively. The AP was 0.84; 
moreover, the AP values for the four types of cells obtained with our proposed method were higher than those 
of the other four methods (see Table 2).

Clearly, the selective search segmentation method used by R-CNN and Fast R-CNN consumed substantial 
time. With the introduction of PCA into the feature extraction layer, the features were assigned the main compo-
nent during the classification and regression process, and the features of Faster R-CNN and R-FCN were filtered 
out through the pooling strategy. These results also indicate that the Faster R-CNN method based on PCA had 
the highest overall recognition rate.

The large number of impurities in the fecal samples made the background of the images complex. Inevitably, 
the pattern components in the images were difficult to address. However, our algorithm can effectively distinguish 
the adhesive type components. Unfortunately, the morphological or selective search method cannot accomplish 
this task. For instance, when an RBC and Mid in the image were stuck together, our algorithm could distinguish 
the two components (see Fig. 6).

Table 2.   Comparison of 5 cell-detection algorithms. Dataset C was used to validate the average precision.

Model mAP Dur/image

AP

RBC WBC Mid PYO

R-CNN 0.64 14.9 s 0.80 0.74 0.77 0.26

Fast R-CNN 0.66 4.2 s 0.81 0.77 0.79 0.28

Faster R-CNN 0.80 517 ms 0.89 0.81 0.78 0.72

R-FCN 0.81 468 ms 0.90 0.80 0.80 0.73

SSD300 0.63 78 ms 0.475 0.615 0.621 0.821

SSD512 0.74 123 ms 0.630 0.752 0.654 0.812

YOLOv3 0.58 149 ms 0.548 0.628 0.655 0.486

Cascade R-CNN 0.69 263 ms 0.551 0.629 0.775 0.815

PCA-Faster-R-CNN 0.84 723 ms 0.92 0.85 0.81 0.78

Figure 6.   Detection result for adhesion example.
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Discussion
In summary, 676 fecal samples and 40,560 microscopic images were prepared for algorithm development. Our 
algorithm presented good performance in identifying four kinds of cells and their locations in microscopic 
images. The algorithm has two major advantages, the average time required to analyze a sample and accuracy.

Clearly, our algorithm consumes significantly less time than R-CNN and Fast R-CNN, which may be due 
to the introduction of RPN. The R-CNN and Fast R-CNN models use selective search in the segmentation of 
foreground objects, which requires considerable running time. Each foreground target unit propagates forward 
to extract features in R-CNN post segmentation22, while Fast R-CNN shares the convolutional layer, which can 
extract features by propagating forward once23. However, no significant exhaustion time difference was found 
between Faster R-CNN and R-FCN. R-FCN uses the position-sensitive map method to avoid the fully connected 
layer and simplify the training parameters; consequently, the time consumption is slightly lower than that of 
Faster R-CNN. The time consumption of PCA-Faster-R-CNN is slightly higher, mainly because of the introduc-
tion of the PCA strategy after feature extraction.

With respect to the AP performance for four kinds of cells from a single image, the AP of RBCs was the 
best (0.92), which we believe to be a result of the obvious characteristics of RBCs and the fact that there are no 
significant morphological changes for different RBCs. The number of RBCs in the collected dataset is large, and 
data enhancement is adopted to improve the training of RBCs.

The AP values of WBCs and Mildew were 0.85 and 0.81, respectively. This reduced performance may be 
caused by the specific characteristics of cells in different views. In different samples, leukocytes may be round 
and influenced by osmotic pressure or be shaped as irregular ellipses. Similarly, different Mids have different 
spore numbers, sizes and shapes after budding, so the recognition rate is lower than that of RBCs. Meanwhile, 
due to the sample size, the accuracy of Mids is slightly better than that of WBCs. Furthermore, the AP of PYOs 
was 0.78, likely a result of the small sample size and insufficient training. PYOs are usually composed of many 
WBCs with large irregular shapes. Due to the small sample size, the training model suffered from a certain 
degree of overfitting.

Notable, our algorithm presented better mAP (0.84) than the other methods. The results indicate that PCA 
plays an important role in feature selection. After introducing PCA into our algorithm model, we proposed 
a model training method that did not follow the end-to-end architecture of the original Faster R-CNN. The 
disadvantage is that the model did not represent imbalanced samples well. For example, the number of PYOs 
was small, and the AP was relatively low compared with that of other types of cells. The PCA-Faster-R-CNN 
model can be used in other fields of recognition of components in microscopic images, such as target detection 
in leucorrhea, type component detection in urine, and cell counting in blood.

Conclusion
A deep learning model for cell detection is proposed for locating and identifying objects from microscopy images. 
The algorithm achieves the highest mAP and has the ability to detect and locate RBCs, WBCs, Mids, and PYOs 
rapidly. The mAP is approximately 84%, and the detection time is 723 ms per image (1600 × 1200 resolution).

Limitation.  Due to the small sample size in the collected dataset, fat globules were not considered in this 
analysis. When the number of samples belonging to a certain category is small—for example, PYOs—as training 
proceeds, the model can easily suffer from overfitting. Artificial adhesion of leukocytes can be used to expand 
the number of samples via data enhancement.
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