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Ferroglobus placidus belongs to the order Archaeoglobales within the archaeal phylum Euryar-
chaeota. Strain AEDII12DO is the type strain of the species and was isolated from a shallow 
marine hydrothermal system at Vulcano, Italy. It is a hyperthermophilic, anaerobic chemoli-
thoautotroph, but it can also use a variety of aromatic compounds as electron donors. Here we 
describe the features of this organism together with the complete genome sequence and anno-
tation. The 2,196,266 bp genome with its 2,567 protein-coding and 55 RNA genes was se-
quenced as part of a DOE Joint Genome Institute Laboratory Sequencing Program (LSP) project. 

Introduction 
Strain AEDII12DO (=DSM 10642) is the type strain 
of the species Ferroglobus placidus. It was isolated 
from a shallow hydrothermal vent system at Vulca-
no Island, Italy [1]. F. placidus is metabolically quite 
versatile. It was isolated based on its ability to use 
ferrous iron as an electron donor, and was also 
shown to use hydrogen and sulfide as electron do-
nors, with nitrate or thiosulfate as electron accep-
tors [1]. Subsequently, it was shown to produce 
N2O from nitrite, which is an unusual ability for an 
anaerobic organism [2]. It can also oxidize acetate 
and several aromatic compounds using ferric iron 
as the electron acceptor [3,4]. F. placidus is the first 
archaeon found to anaerobically oxidize aromatic 
compounds [4]. The genes and pathways involved 
in degradation of benzene, benzoate, and phenol 
have been recently characterized [5,6]. 
F. placidus is the only species in the genus Ferroglo-
bus. It belongs to the family Archaeoglobaceae, 
which also contains the genera Archaeoglobus and 
Geoglobus. Genome sequences have been published 
for A. fulgidus and A. profundus [7,8]. Figure 1 
shows the phylogenetic relationships between 
members of the family Archaeoglobaceae. 

Organism information 
F. placidus was isolated from a mixture of sand 
and water at a beach close to Vulcano Island, Italy 
[1]. The sample was taken from a depth of 1 m; the 
temperature of the sample was 95°C and the pH 
was 7.0 [1]. A 1.0 mL aliquot of the sample was 
incubated in FM medium at 85°C with shaking. 
The medium contained FeS as an electron donor 
[1]. F. placidus was isolated from the enrichment 
culture using optical tweezers [1]. The cells are 
irregular cocci with a triangular shape, and one or 
two flagella were present [1]. Growth occurred 
between 65°C and 95°C with an optimum of 85°C 
[1]. The optimal pH for growth was 7.0, and 
growth was observed over a range of 6.0 to 8.5 
[1]. The optimal salinity for growth was 2.0%, 
with growth occurring between 0.5 and 4.5% NaCl 
[1]. F. placidus could use ferrous iron, hydrogen, or 
sulfide as electron donors and nitrate or thiosul-
fate as electron acceptors [1]. F. placidus also can 
anaerobically oxidize aromatic compounds with 
ferric iron as electron acceptor. The aromatic 
compounds it can utilize include benzene, ben-
zoate, phenol, 4-hydroxybenzoate, benzaldehyde, 
p-hydroxybenzaldehyde and t-cinnamic acid [4,5]. 
The features of the organism are listed in Table 1. 
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Figure 1. 16S ribosomal RNA phylogenetic tree of Archaeoglobaceae. The tree was generated with weighbor [9] 
through the Ribosomal Database Project website [10] and displayed with njplot [11]. Organisms with two aste-
risks after the name are those with complete genomes sequenced and published. Those with one asterisk have a 
genome project in progress, according to the Genomes OnLine Database [12]. Methanocaldococcus jannaschii 
is the outgroup. 

Genome sequencing information 
Genome project history 
This organism was selected for sequencing based 
on its phylogenetic position and its phenotypic dif-
ferences from other members of the family Arc-
haeoglobaceae. It is part of a Laboratory Sequenc-
ing Program (LSP) project to sequence diverse arc-
haea. The genome project is listed in the Genomes 
On Line Database [12] and the complete genome 
sequence has been deposited in GenBank. Sequenc-
ing, finishing, and annotation were performed by 
the DOE Joint Genome Institute (JGI). A summary of 
the project information is shown in Table 2. 

Growth conditions and DNA isolation 
The strain Ferroglobus placidus AEDII12DO 
(containing plasmid XY) has been deposited in the 
Deutsche Sammlung von Mikroorganismen und 
Zellkulturen (DSMZ) by Prof. Dr. K. O. Stetter, 
Lehrstuhl für Mikrobiologie, Universität Regensburg, 
Universitätsstr. 31, D-93053 Regensburg, Germany 
as DSM 10642. 
F. placidus strain AEDII12DO was obtained from 
the DSMZ. Strict anaerobic culturing and sampling 
techniques were used throughout [22,23]. Ten 100 
ml bottles of F. placidus cells were grown with ace-
tate (10 mM) as the electron donor, and Fe(III) ci-
trate (56 mM) as the electron acceptor. F. placidus 
medium was prepared as previously described [4]. 
After autoclaving, FeCl2 (1.3 mM), Na2SeO4 (30 
µg/L), Na2WO4 (40 µg/L), APM salts (1 g/L MgCl2, 
0.23 g/L CaCl2), DL vitamins [24] and all electron 
donors were added to the sterilized medium from 

anaerobic stock solutions. Cultures were incubated 
under N2:CO2 (80:20) at 85 °C in the dark. 
For extraction of DNA, cultures (100 ml in 156 ml 
serum bottles) were divided into 50 ml conical 
tubes (Falcon), and cells were pelleted by centrifu-
gation at 3,000 x g for 20 minutes. Cell pellets were 
resuspended in 10 ml TE sucrose buffer (10 mM 
Tris, pH 8.0, 1 mM EDTA, and 6.7% sucrose). The 
resuspended cells were distributed into 10 differ-
ent 2 ml screw cap tubes and 3 µl Proteinase K (20 
mg/ml), 30 µl sodium dodecyl sulfate (10% solu-
tion), and 10 µl RNase A (5 ug/ul) were added to 
each tube. Tubes were incubated at 37ºC for 20 
min, and centrifuged at 16,100 x g for 15 minutes. 
The supernatant was transferred to a new set of 
tubes and 600 µl phenol (TE saturated, pH 7.3), and 
400 μl chloroform-isoamyl alcohol were added. 
These tubes were then mixed on a Labquake rota-
tor (Barnstead/Thermolyne, Dubuque, Iowa) for 10 
min and centrifuged at 16,100 x g for 5 min. The 
aqueous layer was removed and transferred to new 
2-ml screw cap tubes. The phenol/chloroform ex-
traction step was performed again. The aqueous 
layer was transferred to a new tube, and 100 µl 5 M 
ammonium acetate, 20 µl glycogen (5 mg/ml; Am-
bion), and 1 ml cold (-20 °C) isopropanol (Sigma) 
were added. Nucleic acids were precipitated at -30 
°C for 1 hour and pelleted by centrifugation at 
16,100 x g for 30 min. The pellet was then cleaned 
with cold (-20 °C) 70% ethanol, dried, and resus-
pended in sterile nuclease-free water (Ambion). 
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Table 1. Classification and general features of F. placidus AEDII12DO according to the MIGS recommendations [13]. 

MIGS ID Property Term Evidence codea 

 Current classification Domain Archaea TAS [14] 

  Phylum Euryarchaeota TAS [15] 

  Class Archaeoglobi TAS [16,17] 

  Order Archaeoglobales TAS [17,18] 

  Family Archaeoglobaceae TAS [17,19] 
  Genus Ferroglobus TAS [1,20] 

  Species Ferroglobus placidus TAS [1,20] 

  Type strain AEDII12DO TAS [1] 

 Cell shape irregular coccus TAS [1] 

 Motility motile TAS [1] 

 Sporulation nonsporulating NAS 
 Temperature range 65-95°C TAS [1] 

 Optimum temperature 85°C TAS [1] 

MIGS-6.3 Salinity 0.5-4.5% NaCl (optimum 2%) TAS [1] 

MIGS-22 Oxygen requirement anaerobe TAS [1] 

 Carbon source CO2 TAS [1] 

 Energy metabolism chemolithotrophic, chemoorganotrophic TAS [1,3,4] 

MIGS-6 Habitat marine geothermally heated areas TAS [1] 

MIGS-15 Biotopic relationship free-living TAS [1] 

MIGS-14 Pathogenicity none NAS 

 Biosafety level 1 NAS 

 Isolation geothermally heated sediment TAS [1] 

MIGS-4 Geographic location Vulcano island, Italy TAS [1] 

MIGS-5 Isolation time unknown  
MIGS-4.1 Latitude 38.4154 TAS [1] 
MIGS-4.2 Longitude 14.9609 TAS [1] 
MIGS-4.3 Depth 1 m TAS [1] 
MIGS-4.4 Altitude not applicable  

a) Evidence codes – IDA: Inferred from Direct Assay; TAS: Traceable Author Statement (i.e., a direct 
report exists in the literature); NAS: Non-traceable Author Statement (i.e., not directly observed for 
the living, isolated sample, but based on a generally accepted property for the species, or anecdotal 
evidence). These evidence codes are from the Gene Ontology project [21]. 

Genome sequencing and assembly 
The genome of F. placidus was sequenced at the 
Joint Genome Institute using a combination of Il-
lumina and 454 technologies. An Illumina GAII 
shotgun library with reads of 539 Mb, a 454 Tita-
nium draft library with average read length of 
292.3 bases, and a paired-end 454 library with an 
average insert size of 15.5 Kb were generated for 
this genome. All general aspects of library con-
struction and sequencing performed at the JGI can 
be found at the DOE JGI website [25]. 

Illumina sequencing data was assembled with 
Velvet [26], and the consensus sequences were 
shredded into 1.5 kb overlapped fake reads and 
assembled together with the 454 data. Draft as-
semblies were based on 104 Mb 454 draft data 
and 454 paired end data. The initial Newbler as-
sembly contained 33 contigs in 1 scaffold. We 
converted the initial 454 assembly into a phrap 
assembly by making fake reads from the consen-
sus, collecting the read pairs in the 454 paired end 
library.  
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The Phred/Phrap/Consed software package [27] 
was used for sequence assembly and quality as-
sessment [28-30] in the following finishing 
process. After the shotgun stage, reads were as-
sembled with parallel phrap (High Performance 
Software, LLC). Possible mis-assemblies were 
corrected with gapResolution (Cliff Han, unpub-
lished), Dupfinisher [31], or sequencing cloned 
bridging PCR fragments with subcloning or 
transposon bombing (Epicentre Biotechnologies, 
Madison, WI). Gaps between contigs were closed 
by editing in Consed, by PCR and by Bubble PCR 
primer walks. A total of 43 additional reactions 
were necessary to close gaps and to raise the 
quality of the finished sequence. 

Genome annotation 
Genes were identified using Prodigal [32], fol-
lowed by a round of manual curation using Ge-
nePRIMP [33]. The predicted CDSs were trans-
lated and used to search the National Center for 
Biotechnology Information (NCBI) nonredundant 
database, UniProt, TIGRFam, Pfam, PRIAM, KEGG, 
COG, and InterPro databases. The tRNAScanSE 
tool [34] was used to find tRNA genes, whereas 
ribosomal RNAs were found by using BLASTn 
against the ribosomal RNA databases. The RNA 
components of the protein secretion complex and 

the RNase P were identified by searching the ge-
nome for the corresponding Rfam profiles using 
INFERNAL [35]. Additional gene prediction anal-
ysis and manual functional annotation was per-
formed within the Integrated Microbial Genomes 
(IMG) platform [36] developed by the Joint Ge-
nome Institute, Walnut Creek, CA, USA [37]. 

Genome properties 
The genome includes one circular chromosome 
and no plasmids, for a total size of 2,196,266 bp 
(Table 3 and Figure 2). This genome size is al-
most the same as that of A. fulgidus and approx-
imately 0.6 Mbp larger than that of A. profundus. 
The mol percent G+C is 44.1%, close to the values 
found in the Archaeoglobus genomes. A total of 
2,622 genes were identified, 55 RNA genes and 
2,567 protein-coding genes. There are 87 pseu-
dogenes, comprising 3.4% of the protein-coding 
genes. The start codon is ATG in 83.7% of the 
genes, GTG in 12.2%, and TTG in 5.8%. This dis-
tribution is more similar to that of A. profundus, 
to which F. placidus is closely related (Figure 1), 
than to that of A. fulgidus. There is one copy of 
each ribosomal RNA. The 5S rRNA is not found 
adjacent to the 16S and 23S rRNAs. Table 4 
shows the distribution of genes in COG catego-
ries.

Table 2. Genome sequencing project information 
MIGS ID Property Term 

MIGS-31 Finishing quality Finished 

MIGS-28 Libraries used 
Illumina standard library, 454 standard library, 
454 15 kb paired end library 

MIGS-29 Sequencing platforms Illumina GA II, 454 GS FLX Titanium 

MIGS-31.2 Sequencing coverage Illumina 245×, 454 47× 

MIGS-30 Assemblers Velvet, Newbler, phrap 

MIGS-32 Gene calling method Prodigal, GenePRIMP 

 INSDC ID CP001899 

 Genbank Date of Release February 16, 2010 

 GOLD ID Gc01209 

 NCBI project ID 33635 

MIGS-13 Source material identifier DSM 10642 

 Project relevance Phylogenetic diversity, biotechnology 
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Table 3. Nucleotide content and gene count levels of the genome 
Attribute Value % of totala 
Size (bp) 2,196,266 100.0% 
G+C content (bp) 969,331 44.1% 
Coding region (bp) 1,996,425 90.9% 
Number of replicons 1  
Extrachromosomal elements 0  
Total genes 2,622  
RNA genes 55  
rRNA operons 1  
Protein-coding genes 2,567 100.0% 
Pseudogenes 87 3.4% 
Genes with function prediction 1,619 63.1% 
Genes in paralog clusters 350 13.6% 
Genes assigned to COGs 1,820 70.9% 
Genes assigned Pfam domains 1,889 73.6% 
Genes with signal peptides 269 10.5% 
Genes with transmembrane helices 502 19.6% 
CRISPR repeats 6 100.0% 

a) The total is based on either the size of the genome in base pairs or 
the total number of protein coding genes in the annotated genome. 

Table 4. Number of genes associated with the 25 general COG functional categories 
Code Value %agea Description 

J 163 6.3% Translation 
A 2 0.1% RNA processing and modification 
K 90 3.5% Transcription 
L 110 4.3% Replication, recombination and repair 
B 8 0.3% Chromatin structure and dynamics 
D 23 0.9% Cell cycle control, mitosis and meiosis 
Y 0 0.0% Nuclear structure 
V 16 0.6% Defense mechanisms 
T 37 1.4% Signal transduction mechanisms 
M 42 1.6% Cell wall/membrane biogenesis 
N 24 0.9% Cell motility 
Z 0 0.0% Cytoskeleton 
W 0 0.0% Extracellular structures 
U 27 1.1% Intracellular trafficking and secretion 
O 88 3.4% Posttranslational modification, protein turnover, chaperones 
C 207 8.1% Energy production and conversion 
G 44 1.7% Carbohydrate transport and metabolism 
E 147 5.7% Amino acid transport and metabolism 
F 50 1.9% Nucleotide transport and metabolism 
H 118 4.6% Coenzyme transport and metabolism 
I 76 3.0% Lipid transport and metabolism 
P 94 3.7% Inorganic ion transport and metabolism 
Q 22 0.9% Secondary metabolites biosynthesis, transport and catabolism 
R 293 11.4% General function prediction only 
S 246 9.6% Function unknown 
- 747 29.1% Not in COGs 

a) The total is based on the total number of protein coding genes in the genome 
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Figure 2. Graphical circular map of the chromosome. From outside to the center: Genes on forward 
strand (colored by COG categories), genes on reverse strand (colored by COG categories), RNA genes 
(tRNAs green, rRNAs red, other RNAs black), GC content, and GC skew. 

Insights from the genome 
Nitrogen metabolism 
Some aspects of the genome of F. placidus have 
been compared with those of A. fulgidus and A. 
profundus [8]. Here we will focus on some addi-
tional aspects of the F. placidus genome. F. placidus 
has been found to use nitrate as an electron accep-
tor and produces N2O with NO as an intermediate 
[2]. Genes likely to encode a nitrate reductase 
(Ferp_0311-0314) and an adjacent nitrate trans-
porter (Ferp_0315) were identified. Based on the 
experimental results, F. placidus is expected to 
have a nitric oxide-forming nitrite reductase. 

There are two types of this protein: cytochrome 
cd1 type and copper type [38]. F. placidus appears 
to lack both of these types of nitrite reductase, so 
it may have a new version of this enzyme. F. placi-
dus was found to produce N2O, and it has a NorBC-
type nitric oxide reductase (Ferp_1340-1341). 
Surprisingly it also has a nitrous oxide reductase 
(Ferp_0128), suggesting that under some condi-
tions F. placidus may carry out complete denitrifi-
cation from nitrate to N2. 

http://standardsingenomics.org/�


Ferroglobus placidus AEDII12DO 

56 Standards in Genomic Sciences 

Central metabolism 
F. placidus likely can not metabolize sugars as the 
Entner-Doudoroff pathway is absent from its ge-
nome, and the critical rate-limiting enzyme in the 
glycolysis pathway, 6-phosphofructokinase, also 
could not be identified. A complete gluconeogene-
sis pathway is present (Figure 3), including the 
recently discovered archaeal bifunctional fructose 
bisphosphate aldolase/phosphatase (Ferp_1532) 
[39]. A second fructose bisphosphate phosphatase 
may be present (Ferp_0896). Biosynthesis of C5 
sugars for anabolic purposes proceeds through 
the reverse ribulose monophosphate pathway 
[40,41], in which fructose 6-phosphate is con-
verted to hexulose 6-phosphate, from which for-
maldehyde is cleaved and ribulose 5-phosphate is 
generated. 
Similar to Archaeoglobus species, F. placidus is ca-
pable of autotrophic growth. The genome contains 
a gene coding for the large subunit of ribulose-1,5-
bisphosphate carboxylase/oxygenase (RubisCO, 
Ferp_1506), which fixes CO2 in photosynthetic or-
ganisms, but many other enzymes of the Calvin-
Benson cycle are missing. F. placidus probably 
uses RubisCO as part of an AMP recycling pathway 
[42] rather than for carbon fixation. F. placidus 
also contains the complete acetyl-CoA reductive 
pathway. Based on experimental results it was 
predicted to use this pathway for carbon fixation 
[2]. This pathway is composed of a methyl branch 
that reduces CO2 into a methyl group by a se-
quence of reactions similar to those found in me-
thanogenesis (Fig. 3, inset), and a carbonyl branch 
that converts a second CO2 molecule into a car-
bonyl group. The two moieties are then joined to 
form acetyl-CoA. 
Interestingly, there are two full copies of pyruvate 
ferredoxin oxidoreductase (POR, Ferp_0892-95 and 

Ferp_1823-26, 32-42% identical/47-60% similar), 
which generates pyruvate from acetyl-CoA and CO2. 
Conversely, the genome does not contain genes 
coding for the pyruvate dehydrogenase complex. 
All of the enzymes that comprise the TCA cycle 
could be accounted for, with the exception of a typ-
ical aconitase. However, two genes annotated as 
homoaconitate hydratase (Ferp_0702 and 
Ferp_2485) are 40% similar to the characterized 
aconitase from the thermoacidophilic archaeon Sul-
folobus acidocaldarius [43]. Also F. placidus has the 
two subunits of a predicted aconitase (Ferp_0107-
0108) [44]. 
Even though the genes involved in central meta-
bolism are typically scattered in the genome, it is 
worth noting that many of these genes are 
grouped in clusters in F. placidus. For instance, the 
genes coding for the formylmethanofuran dehy-
drogenase (FMFDH, Ferp_0601-04) are located 
near the methenyltetrahydromethanopterin cyc-
lohydrolase gene (MTHMC, Ferp_0606) from the 
reductive acetyl-CoA pathway. Similarly, two sub-
units of FMFDH (Ferp_0728-29), the methylenete-
trahydromethanopterin reductase gene (MTHMR, 
Ferp_0743), the whole CO dehydrogenase/acetyl-
CoA synthase operon (CODH/ACS, Ferp_0731-33, 
Ferp_0735-36), and the pyruvate kinase gene (PK, 
Ferp_0744), are in close proximity. The operon 
that contains the genes coding for one of the POR 
complexes (Ferp_0892-96) also includes genes 
coding for other enzymes that belong to central 
metabolism, such as one of the FBPases 
(Ferp_0896), an ATP-NAD kinase (Ferp_0897), 
and shikimate dehydrogenase (Ferp_0898), which 
participates in the biosynthesis of aromatic amino 
acids. 
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Figure 3. Central metabolism of the hyperthermophilic archaeon Ferroglobus placidus. Abbreviations: 
G6PI: glucose-6-phosphate isomerase. FBPase: fructose-1,6-bisphosphatase. FBPA: fructose-1,6-
bisphosphate aldolase. G3PDH: glycerol-3-phosphate dehydrogenase. TPI: triose-phosphate isomerase. 
PGK: phosphoglycerate kinase. PGM: phosphoglycerate mutase. PEP: phosphoenolpyruvate. PEPC: phos-
phoenolpyruvate carboxylase. PK: pyruvate kinase. PPDK: phosphoenolpyruvate dikinase. OadC: oxaloa-
cetate decarboxylase. POR: pyruvate ferredoxin reductase (pyruvate synthase). ACL: acetyl-CoA ligase. 
AP: acetate phosphatase. CS: citrate synthase. ACN: aconitase. ICDH: isocitrate dehydrogenase. AKGD: 
alpha-ketoglutarate dehydrogenase. SuCoAS: succinyl-CoA synthase. SDH: succinate dehydrogenase. 
FUM: fumarase. MDH: malate dehydrogenase. PHI: 3-hexulose-6-phosphate isomerase. HPS: 3-hexulose-
6-phosphate synthase. RPI: ribose-5-phosphate isomerase. FDH: formate dehydrogenase. MF: methanofu-
ran. FMFDH: formylmethanofuran dehydrogenase. THM: tetrahydromethanopterin. THMFT: tetrahydro-
methanopterin formyl transferase. MTHMC: methenyltetrahydromethanopterin cyclohydrolase. MTHMR: 
methylentetrahydromethanopterin reductase. CODH/ACS: CO dehydrogenase/acetyl-CoA synthase. Gene 
designations in colors indicates association in clusters. 
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