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Anomalous Decay of Quantum 
Resistance Oscillations of 2D Helical 
Electrons in Magnetic Field
S. Abedi1, S. A. Vitkalov1 ✉, N. N. Mikhailov2 & Z. D. Kvon2,3

Shubnikov de Haas resistance oscillations of highly mobile two dimensional helical electrons 
propagating on a conducting surface of strained HgTe 3D topological insulator are studied in magnetic 
fields B tilted by angle θ from the normal to the conducting layer. Strong decrease of oscillation 
amplitude A is observed with the tilt: A exp cos( / ( ))ξ θ∼ − , where ξ is a constant. Evolution of the 
oscillations with temperature T shows that the parameter ξ contains two terms: T1 2ξ ξ ξ= + . The 
temperature independent term, ξ1, signals possible reduction of electron mean free path lq and/or 
enhancement of in-homogeneous broadening of the oscillations in magnetic field B. The temperature 
dependent term, ξ T2 , indicates increase of the reciprocal velocity of 2D helical electrons: ∼δ v B( )F

−1  
suggesting modification of the electron spectrum in magnetic fields. Results are found in good 
agreement with proposed phenomenological model.

Two- and three-dimensional topological insulators (3D TIs) represent a new class of materials with an insulating 
bulk and topologically protected conducting boundary states1–10. In 3D TIs, due to a strong spin-orbit interaction, 
a propagating surface electron state with wave vector k is non-degenerate and keeps the electron spin polarization 
locked perpendicular to the wave vector k in the 2D plane (2D helical electrons)5,9,10. Due to the spin-momentum 
locking, the electron scattering on impurities is suppressed since the scattered electron should change both the 
linear and the angular (spin) momenta. It leads to a topological protection of the helical electrons against the scat-
tering. In particular, the 180° backscattering is expected to be absent8–10. The topological protection is predicted 
to enhance the mobility of helical electrons and is the reason why TIs are considered for various applications11.

A predicted 3D topological insulator, based on strained HgTe films5, has been recently realized12,13 and a very 
high mobility (approaching 100 m2/Vs) of 2D helical electrons in this system is achieved14,15. The high mobility 
facilitates measurements of transport properties, in particular, Landau quantization of helical electrons down to 
low magnetic fields12–15 and has provided a transport verification of the non-degeneracy of the helical surface 
states in strained HgTe films16.

Below we present transport investigations of quantum resistance oscillations of highly mobile 2D helical elec-
trons in HgTe strained films placed in tilted magnetic fields. Due to the spin-momentum locking a propagating 
quantum state of a 2D helical electron is non-degenerate and, thus, cannot split in a magnetic field. In contrast 
the spin degenerate propagating state of an ordinary 2D electron splits on spin-up and spin-down levels by the 
magnetic field that leads to large variations of the amplitude of Shubnikov de Haas (SdH) oscillations in tilted 
magnetic fields17,18. Figure 1 illustrates the difference between two spectra. Thus, the angular variations of SdH 
resistance oscillations of 2D helical electrons are not expected since the electron spin non-degenerate quantum 
states do not split.

Experiments presented below demonstrate that, despite the spin non-degeneracy of the electron spectrum, a 
tilt of the magnetic field B with respect to 2D layer strongly reduces the amplitude of the quantum oscillations. 
Mechanisms leading to the effect are not known. A phenomenological model of the effect is proposed. 
Comprehensive investigations of this unusual effect show that both temperature independent and temperature 
dependent factors are responsible for this anomalous damping of SdH oscillations of the 2D helical electrons. The 
temperature independent factor is consistent with a reduction of an effective quantum mean free path in magnetic 
fields. The temperature dependent factor indicates an increase of the reciprocal Fermi velocity −vF
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electrons in magnetic field: δ ∼−v B( )F
1 . This outcome suggests a modification of the electron spectrum k( )ε

→
 and 

the dynamics of 2D helical electrons in magnetic fields.

Results
In Fig. 2 the insert shows the studied structures and geometry of the experiments (see subsection “Experiment” 
in section “Methods” for detail). The top and bottom surfaces of HgTe thick film contain 2D helical electrons with 
density nt and nb. Investigations of quantum resistance oscillations of 2D electrons located at the top surface are 
presented below.

Figure 2 shows the dissipative magnetoresistivity ρ B( )xx  taken at different angles θ as labeled. Quantum resist-
ance oscillations are visible at θ = 0°, 24° and 58° and are significantly suppressed at θ > 68°. To facilitate the 
analysis of the oscillating content, the monotonic background ρ B( )xx

b , obtained by an adjacent point averaging over 
the period of the oscillations in reciprocal magnetic fields, is removed from the magnetoresistivity ρ B( )xx .

Figure 3 presents the remaining oscillating content of the magnetoresistivity, δρ ρ ρ= −SdH xx xx
b , normalized 

by ρ =B( 0)xx  as a function of the reciprocal perpendicular magnetic field ⊥
−B 1. As expected, the SdH oscillations 

are periodic in ⊥
−B 118,19. In agreement with Fig. 2, SdH oscillations decrease with the angle θ and are absent at θ = 

82°. The upper insert shows the Fourier spectrum obtained by Fast Fourier Transformation (FFT) of the oscilla-
tions taken between ⊥B1/ L = 1.09 (1/T) and ⊥B1/ R = 5 (1/T) at θ = 0°. The SdH frequency F = 4.5(T) yields the 2D 
electron density =n e h F( / )t  = 1.1 1015 m−2 18,19. At a fixed gate voltage, Vg , the density nt is found to be the same 
at different angles θ indicating that the magnetic field does not change the electron density. A comparison of the 
density nt with the total density obtained from the Hall resistance, shown in Fig. 9(b), indicates a presence of 
second group of 2D electrons with a density nb = 0.8 1015 m−2. This density provides SdH oscillations at frequency 
3.3 (T). These oscillations are absent in the spectrum at small ⊥B , which is consistent with previous 
experiments14.

In Fig. 3 the lower insert shows a comparison of the electron densities, n1 and nt, obtained by different methods 
at different gate voltages. The filled symbols present the density n1, extracted from a comparison of the magnetore-
sistivity and Hall resistance with a two-subband model20. Subsection “Two subband model” of section “Methods” 
contains details of this analysis. Open symbols demonstrate the density, nt, computed from the frequency of 
quantum oscillations. For a non-degenerate spectrum, =n e h F( / )t , and the computations yield density presented 
by open circles. This density is in good agreement with the density n1. For the spin degenerate electron spectrum 

=n e h F2( / )t  and computations yield density presented by open squares. This density is approximately twice as 
large compared to n1 obtained from the two-subband model. Thus, the comparison indicates that the studied 
electron system has spin non-degenerate spectrum. This outcome is in accord with previous works12–16.

Analysis of angular dependence.  To analyze the observed angular decrease of the amplitude of SdH oscil-
lations in the spin non-degenerate electron system, one should assume that some physical parameters, controlling 
the SdH amplitude in Lifshits-Kosevich formula18,19, change with the magnetic field. Subsection “Model” of sec-
tion “Method” contains a derivation of Lifshits-Kosevich formula and presents a logic and detail of modifications 
leading to the angular dependence. In Fig. 4(a) the presented data indicate an exponential decrease of the oscilla-
tions amplitude with θ= =⊥u B B cos/ 1/ ( ). This property suggests that possible modifications of the parameters 
within the exponential Dingle, δ, and temperature dependent, A(T), factors, controlling the amplitude of SdH 
oscillations, should be proportional to ⊥B B/  (see Eq. (13)). The following dependence of the effective quantum 
mean free path lq and Fermi velocity vF on the magnetic field B:

α β= + = +− − − −l l B v v B(1 ); (1 ) (1)q F F
1

0
1 1

0
1

where α βl v, , ,F0 0  are constants, lead to the exponential decrease of δ and A T( ) with ⊥B B/ . Derived under this 
assumption Eq. (17) demonstrates the exponential decrease of the amplitude of SdH oscillations with the 

θ=⊥B B cos/ 1/ ( ).
Described by Eq. (17) small relative variations of the conductivity, δσSdH, are related to small relative variations 

of the resistivity, δρSdH, measured in the experiment:

δσ σ δρ ρ=/ / (2)SdH D SdH N

where σD is classical (Drude) conductivity and ρN  is a normalizing resistivity (see subsection“Normalization” of 
Section “Method” for detail).

To analyze the fundamental harmonic of the resistivity, oscillating at frequency F in Fig.(3), we use Fast 
Fourier Transformation (FFT) of the normalized oscillations of the resistivity, δρ ρ/SdH N  with normalization 
ρ ρ= (0)N xx . The Fourier analysis separates SdH oscillations from the top and bottom layers and/or 3D bulk (if 
any) exhibiting different frequencies. The experimental FFT amplitude is compared with the Fourier amplitude 
obtained from the Fourier transformation of the normalized oscillations of the conductivity described by Eq. 
(17). The Fourier analysis of Eq. (17) yields the following dominant term for the Fourier amplitude of the funda-
mental harmonic at frequency F:

δσ σ
β

=
+ +

× = ×⊥FFT aT u B k
k

FFT C FFT( / ) 4 [(3 1/ ) 1]
(3)SdH D n n n2

where Cn is a normalizing function and the normalized amplitude =FFT FFT C/n n reads:
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FFT u T B A exp k
B

exp u( , , ) ( )
(4)

n 0 ξ=




−






−⊥
⊥

here π=d k el/( )F 0 , π=a k k ev2 /( )B F F
2

0  and ξ ξ ξ α β= + = +T d aT1 2 , = +k d aT , u = ⊥B B/  = θcos1/ ( ). 
=A 10  is a constant. In Eq. (4) the second exponential factor describes the observed angular dependence of the 

SdH amplitude. The first exponent describes the usual decay of the oscillations at small magnetic fields, ⊥B . Below 
Eq. (4) is used to analyze the angular dependence of the normalized FFT amplitude of quantum oscillations of the 
resistivity via the relation based on Eqs. (2) and (3):

FFT C FFT FFT C( / )/ ( / )/ (5)SdH D n n SdH N nδσ σ δρ ρ= =

Figure 1.  Evolution of 2D electron spectrum with an increase of the total magnetic field from B1 to B2 at fixed 
cyclotron energy: Δ = ΔC C1 2. (a) In spin degenerate spectrum magnetic field B2 increases the spin splitting 
Δ > ΔZ Z2 1 of Landau levels leading to a decrease of the amplitude of fundamental harmonic of the density of 
states: <A A2 1 and, thus, the amplitude of SdH oscillations17,18. (b) In spin non-degenerate spectrum magnetic 
field B does not split Landau levels and, thus, keeps the amplitude of fundamental harmonic intact: =A A2 1.

Figure 2.  Dependence of resistivity ρxx of 2D helical electrons on magnetic field, B, applied at different angles θ 
with respect to HgTe layers as labeled. Visible at θ = 0° oscillating content is suppressed at θ > 73°. The insert 
shows the studied structures and geometry of the experiments. Sample TI5. Vg = 2.5 V. T = 4.2 K.
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Figure 4(a) presents the dependence of the normalized FFT amplitude of the SdH resistance oscillations, nor-
malized by ρ ρ= (0)N xx , on = ⊥u B B/  at different ⊥B  as labeled with the different symbols. The experiment indi-
cates, that in a broad range of ⊥B , the SdH amplitude decreases exponentially with u. This result is in good 
agreement with Eq. (4), which is presented by thin straight lines in Fig. 4(a). The fit with Eq. (4) yields the param-
eter ξ and amplitude A. Figure 4(b) shows that the extracted parameter ξ is nearly independent on ⊥B . The 
obtained magnitude, A, drops exponentially with ⊥B1/ . This decrease is in good agreement with Eq. (4) presented 
by the straight thin lines: = − ⊥A A exp k B( / )0 . Similar results are obtained at different densities nt on both 
samples.

In the studied system the normalizing resistivity, ρN , is not well defined (see subsection “Normalization” for 
detail). Figure 4(b) indicates that the particular normalization of quantum oscillations is not essential for the 
angular dependence. Indeed, the extracted parameter ξ, describing the exponential angular decay of SdH ampli-
tude is practically the same: ξ = . ± .1 3 0 15 for quite different normalization: δρ ρ/ (0)SdH xx  presented by open 
squares and δρ ρ ⊥B/ ( )SdH xx

b  presented by filled circles. Here ρ ⊥B( )xx
b  is the background resistivity, obtained by aver-

aging out the oscillating content shown in Fig. 2.
The normalization affects significantly the overall amplitude of SdH oscillations, A0, and quite weakly the 

extracted decay rate k. The widely used normalization by the resistivity at zero magnetic field, δρ ρ/ (0)SdH xx , yields 
the following rate of the SdH decay with ⊥B1/ : = .k 3 2 and the SdH magnitude A0=3.35. The normalization by the 
background resistivity in magnetic fields, δρ ρ ⊥B/ ( )SdH xx

b , yields the similar decay rate: = .k 2 8 but considerably 
smaller SdH magnitude A0 = 0.45. The magnitude A0 = 0.45 is within expectations of two subband model indi-
cating a partial contribution of the top layer to the total conductivity.

Analysis of temperature dependence.  Measurements at different temperatures reveal a temperature 
dependent contribution to ξ. Figure 5 presents the magnetic field dependence of the resistivity ρxx at different 
temperatures. The insert shows the dependence of normalized resistance oscillations δρ ρ/ (0)SdH xx  of 2D helical 
electrons on the reciprocal perpendicular magnetic field, ⊥

−B 1, at the same set of temperatures. Figure 5 demon-
strates that an increase of the temperature reduces the oscillation amplitude as expected from Eq. (17).

To analyze the temperature dependence of the SdH amplitude we rewrite Eq. (4) in the following form, sepa-
rating the temperature dependent decay of SdH amplitude:

η= −⊥FFT u T B A exp T( , , ) ( ) (6)n T

where AT = α− − ⊥A exp du d B( / )0  and η = β + ⊥au a B/ . The second term in η describes the usual exponential 
decay of SdH amplitude with the temperature T 18,19. The first term is due to the anomalous contribution of the 
total magnetic field to the reciprocal velocity in Eq. (1) that leads to an additional temperature decay of SdH oscil-
lations: η β ξ= = ∼ ⊥au u B B/0 2 .

Figure 6 presents a temperature dependence of the normalized FFT amplitude, FFTn, of the normalized SdH 
oscillations, shown in the insert to Fig. 5. At a fixed temperature different symbols present FFTn amplitude, 
obtained in the interval [ ⊥

−B 1, 3] 1/T, at different ⊥
−B 1. From the top to bottom ⊥

−B 1 = 0.38, 0.59, 0.8, 1 and 1.21 1/T. 
At a fixed ⊥B  the FFTn amplitude decreases exponentially with the temperature. In Fig. 6 straight lines present fits, 

Figure 3.  Dependence of normalized resistance oscillations δρ ρ/ (0)SdH xx  of 2D helical electrons on reciprocal 
perpendicular magnetic field, ⊥

−B 1, at different angles θ as labeled. The amplitude of the SdH oscillations reduces 
with the angle and is zero at θ = 82°. Upper insert shows FFT spectrum of the oscillations started at ⊥

−B( )
L1

=1.09(1/T) at θ = 0°. Lower insert shows electron density determined by different methods. Filled circles 
present the density, n1, obtained from comparison of the magnetoresistance with two subband model (see 
Fig. 9(c)). Open circles (squares) present the density determined from the frequency of SdH oscillations for spin 
non-degenerate (degenerate) spectrum. Sample TI5. Vg=2.5 V. T = 4.2 K.
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using Eq. (6) with AT and η as fitting parameters. Figure 6 demonstrates good agreement between the experiment 
and Eq. (6).

Figure 7(a) shows the dependence of the fitting parameter η on ⊥B1/ . In Fig. 7(a) the parameter η decreases 
linearly with decreasing ⊥B1/  in good agreement with the behavior of the parameter η β= + ⊥au a B/  expected 
from Eq. (6) and presented by the thin straight lines. At θ = 0° the fit yields a = 0.28 ± 0.03(T/K) and Fermi 
velocity v F0  = 7.5(±0.8)105 m/s. However, in contrast to the ordinary 2D electrons, the parameter η does not 
extrapolate to zero at →⊥B1/ 0. Instead the comparison with Eq. (6) indicates the presence of the anomalous term 
η β= au0  = 0.15 ± .0 3 yielding β = 0.5 ± 0.15 at u = 1 (θ = 00). Taken at different angle θ=50° measurements 
show the consistent increase of the term η θ∼ =u cos1/ ( )0  with the angle: η = .u( 1 54)0 = 0.21 ± 0.03. The pre-
sented results are obtained for the data normalization δρ ρ/ (0)SdH xx . The normalization δρ ρ ⊥B/ ( )SdH xx

b  yields the 
same a = 0.28 ± 0.03(T/K) and slightly higher β = 0.6 ± 0.15.

In Fig. 7(b) symbols present a behavior of the amplitude AT, obtained from the fits shown in Fig. 6. The ampli-
tude AT decreases exponentially with the reciprocal magnetic field, ⊥B1/ . In Fig. 7(b) the straight lines present fits, 
using the expression: α= − + ⊥A A exp du d B[ ( / )]T 0  for the parameter AT in Eq. (6). The fits indicate good agree-
ment between the experiment and Eq. (6). The slope of the linear dependence ln A( )T  vs. ⊥B1/  yields d = 3.5 ± .0 3. 
In accordance with Eq. (17) π=d k el/( )F 0  and, thus, at density nt = 1.2 1015 m−2 the effective quantum mean free 
path is l0 = 73 nm in the studied sample. At θ = 50° (u = 1.54), the dependence shifts down yielding ξ1 = αd = 
0.76 ± 0.15 and α = 0.22 ± 0.05.

Using the obtained parameters α βa d, , ,  we evaluate the parameters ξ α β= +d aTev  = 1.58 ± 0.35 and 
= +k d aTev  = 5 ± 0.8 at temperature T  = 5.5 K The estimated parameters are close to the ones obtained in 

independent experiment executed at different angles and fixed temperature T = 5.5 K: ξ = 1.5 ± 0.1 and k = 5.8 ± 
0.3. In Fig. 7 the insert shows this data. Thus, the cross examination indicates a consistency of the obtained results.

Discussion and Possible Mechanisms
The presented above data reveal a strong suppression of SdH oscillations of 2D helical electrons in tilted magnetic 
fields. For the spin non-degenerate spectrum of 2D helical electrons the result is unexpected. Figure 4, Fig. 6 and 
Fig. 7 show good agreement between the experiments and a phenomenological model, assuming a magnetic field 
dependence of the quantum mean free path: α= +− − )l l B(1q

1
0

1  and Fermi velocity β= +− −v v B(1 )F F
1

0
1 , that leads 

to Eqs. (4,6,17). The comparison between the model and experiment yields α = 0.22 ± 0.03(T−1) and β = 0.5 ± 
0.15(T−1) at nt = 1.2 1015 m−2. There is no quantitative theory of the observed anomalous angular dependence. 
The question regarding the dominant mechanisms leading to the observed effect is open. Below we discuss mech-
anisms, which may contribute to the magnetic field induced decrease of SdH oscillations.

Figure 4.  (a) Dependence of normalized FFT  amplitude of normalized resistance oscillations δρ ρ/ (0)SdH xx  on 
⊥B B/ . FFTn amplitude is obtained for SdH oscillations in interval [ ⊥

−B 1, 5] T−1. Different symbols correspond to 
different ⊥

−B 1 as labeled. Thin straight lines are fits in accordance with Eq. (4) yielding A and ξ. (b) Dependence 
of fitting parameters ξ and ln A( ) on ⊥

−B 1. The parameter ξ = 1.3 ± 0.15 indicates uniform ( ⊥B -independent) 
relative decrease of SdH amplitude with angle θ. Open squares (filled circles) present results for δρ ρ/ (0)SdH xx  
(δρ ρ ⊥B/ ( )SdH xx ) normalization. Sample TI5. Vg = 2.5 V. T = 4.2 K.
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The amplitude of SdH oscillations decreases exponentially with = ⊥u B B/ : ξ∼ − ⊥A exp B B[ ( / )]SdH  and, thus, 
at a fixed ⊥B  with the total magnetic field B. The proportionality of the anomalous contributions in l1/ q and v1/ F 
(see Eq. (1)) to the total magnetic field suggests a possible relevance of spin effects proportional to B. In response 
to the Lorentz force, = ×F ev BL , electrons in a single band move in accordance with the quasi-classical theory, 
considering effects of the Lorentz force on the band structure to be negligibly small20. In the systems with no 
spin-orbit interaction the k-space and spin s-space are disentangled. A change of the electron energy via Zeeman 
effect repopulates the spin-up and spin-down subbands in the k-space keeping the energy dispersion of electrons 
intact: ε↑ k( ) = ε↓ k( ). Thus at a fixed kF (electron density) both the Lorentz force and Zeeman effect should not 
change the Fermi velocity vF. In systems with a spin-orbit coupling a variation in the s-space via the Zeeman term, 
may change the electron dispersion in the k-space and lead to a variation of the electron velocity vF. To illustrate 
this effect we consider a simple model of 2D helical electrons affected by the Zeeman term Δ ∼ =B B(0,0, )z . The 
following Hamiltonian describes 2D helical states of a 3D topological insulator (see Eq. (34) in ref. 9,21

σ σ σ= + − + Δ( )H C E k k (7)
x

y
y

x
z

where C and E are material constants, σ x y z, ,  are Pauli matrices and = k kk ( , )x y  is the 2D electron wave vector. 
The Zeeman term ∆σz changes the electron spectrum leading to a spectral gap:

k C E k( ) ( ) (8)2 2 2 1/2ε ∆= ± +

Figure 5.  Dependence of resistivity ρxx on magnetic field at different temperatures. From bottom to top T = 5.5, 
7.5, 10.5 and 12.5 K. Insert shows dependence of normalized resistance oscillations δρ ρ/ (0)SdH xx  of 2D helical 
electrons on reciprocal perpendicular magnetic field, ⊥

−B 1, at the same set of temperatures. Sample TI1. Vg = 
1.7 V. Angle θ = 0°. nt = 1.2 1015 m−2.

Figure 6.  Dependence of normalized amplitude FFTn on temperature. FFTn amplitude is obtained from SdH 
oscillations in the interval [ ⊥

−B 1, 3] 1/T. From top to bottom different symbols correspond to different ⊥
−B 1 = 

0.38, 0.59, 0.8, 1 and 1.21 1/T. Straight lines are fits, using Eq. (6) with AT and η as fitting parameters. Sample 
TI1. Vg = 1.7 V. nt = 1.2 1015 m−2.
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Figure 8(a) presents the electron spectrum at different strengths of the Zeeman term as labeled and E = 1. The 
vertical thin line indicates the electron wave number kF at Fermi energy. Figure 8(b) shows the increase of the 
reciprocal Fermi velocity ε= ∂ ∂− −v k( / )F

1 1(k = kF) with Δ, following from Eq. (8). The increase is proportional to 
B at a large Δ.

This simple model also exhibits an increase of the electron scattering in magnetic fields. By polarizing electron 
spins in the z-direction the magnetic field increases the spin overlap between incident θk ( )F in  and scattered θ( )kF fin  
electron states. Figure 8(c) presents the dependence of a normalized rate of the electron backscattering 
(θ θ π− = )fin in  on the Zeeman term Δ ∼ B. The presented probability is a square of the magnitude of the scalar 
product of two eigenvectors of Hamiltonian (7) corresponding to incident θk ( )F in  and scattered θ( )kF fin  electron 
states. At Δ=0 the rate is zero indicating the topological protection of the backscattering. With increasing Δ the 
rate increases imitating a linear dependence on Δ in the interval from 0.5 to 2. At high Δ the rate approaches 1 
indicating that at high magnetic fields there are no spin restrictions on the impurity scattering since all electron 
spins are polarized along B.

The presented illustrative model demonstrates variations of both the reciprocal velocity, v1/ F, and the scatter-
ing time τ1/  of 2D helical electrons with the total magnetic field, which are qualitatively similar to variations of the 
corresponding parameters, observed in the experiments. However, some properties of the model indicate an 
inconsistency with the experiment. An estimation of the magnitude of the Zeeman energy, Δ, for HgTe quantum 
well yields Δ∼ 1 meV at B = 1 T. This value is of an order of magnitude smaller than both the energy gap Δ ≈g  
15 meV and the Fermi energy of 2D helical electrons = ∼E v kF F F  60 meV. These estimations suggest a rather 
weak effect of the Zeeman energy on the electron spectrum. Furthermore, for a linear spectrum the Zeeman term, 
produced by an in-plane magnetic field, is found to be ineffective. This term shifts the energy spectrum in the 
xy-plane of the k-space, but does not change the Fermi velocity and the backscattering. Recent theoretical inves-
tigations indicate, however, that an account of nonlinear momentum terms in the TI Hamiltonian leads to a tilt of 
the Dirac cone by in-plane magnetic fields22. The tilt of the cone may increase the electron backscattering and, 
thus, may contribute to the anomalous decay presented in this report. The studied 2D helical electrons are result 
of a linear superposition of electron states from several subbands and additional terms may also affect the spec-
trum23. A quantitative comparison with the experiment requires a development of more realistic models and is 
beyond of this report.

Presented at the end of the section “Results” data analysis indicates a short effective quantum mean free path 
of electrons: ∼lq  100 nm. A comparison of the positive magnetoresistance with the two-subband model, presented 
in section “Methods”, yields the transport mean free path, ltr, which is about few microns. Such a large difference 
between two lengths suggests either dominant contribution of a very small angular scattering of electrons or a 
strong in-homogeneous broadening of the SdH oscillations or both effects. The small angular scattering is a gen-
eral property of highly mobile 2D electron systems with a remote doping24. In the studied electron system, how-
ever, the remote doping is absent. The spin restrictions for the electron-impurity scattering, due to the 
spin-momentum locking for 2D helical electrons, do not provide a large difference between the transport and 
quantum mean free times of 2D helical electrons since τ ϕ τ ϕ∼1/ ( ) 1/ ( )q tr  for the most of scattering angles ϕ 
except an angular sector around ϕ π=  (see Fig. 8(c)). Thus the large difference between lq and ltr points toward a 
presence of a substantial in-homogeneous broadening of the SdH oscillations.

Figure 7.  (a) Dependence of parameter η obtained from the fits shown in Fig. 6 on ⊥
−B 1. Straight lines present 

fits, using the relation η β= + ⊥au a B/  from Eq. (6). (b) Dependence of amplitude AT obtained from the fits 
shown in Fig. 6 on ⊥

−B 1. Straight lines present fits, using the relation α= − + ⊥A exp du d B[ ( / )]T  from Eq. (6). 
Different symbols correspond to different angles θ as labeled. Insert shows parameters ξ and k obtained from 
experiment at different angles θ and fixed temperature T = 5.5 K. Sample TI1. Vg  = 1.7 V. nt = 1.2 1015 m−2.
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A possible reason of the in-homogeneous broadening is a spatial non-uniformity and/or fluctuations of the 
mechanical strain, induced by the intentional lattice mismatch between HgTe film and CdTe substrate. The strain 
is anticipated to be non-uniform in the direction perpendicular to the boundary between HgTe and CdTe sub-
strate since at a large distance the strain should relax. In the lateral direction the strain may fluctuate due to 
growth defects such as dislocations or growth steps.

The induced mechanical strain creates the insulating gap Δg  in the bulk of the HgTe film, which is, thus, spa-
tially non-uniform: r( )gΔ . Since the 2D helical electron state is a linear combination of electron and hole states 
from the conduction and valence band of the bulk 3D insulator9 the gap r( )gΔ  affects both the spectrum and the 
density of 2D helical electrons. The spatial variations of the gap lead to spatial variations of the spectrum and the 
electron density resulting in the in-homogeneous broadening of SdH oscillations.

To produce the observed magnetic field response the spatial dispersion of the strain magnitude should 
increase with the magnetic field, B. A possible mechanism, which may lead to such increase, is the effect of mag-
netostriction25. The magnetostriction induces a mechanical strain of materials upon application of a magnetic 
field. The effect is strong in ferromagnetic metals since a substantial part of electrons contribute to the magneti-
zation, and, thus, to the free energy in magnetic field. In contrast in nonmagnetic normal metals, due to the spin 
degeneracy of electron spectrum, only a small part of electrons (∆ ∆≈ ∼n n E/ /Z F  1) contribute to the magneti-
zation20 and the magnetostriction is small. 2D helical electrons have the spin non-degenerate spectrum and, thus, 
similarly to the ferromagnetic metals, should all contribute to the magnetization, enhancing the magnetostriction 
effect.

Summary
In summary, the angular dependence of quantum resistance oscillations of 2D helical electrons in 3D topological 
insulators, based on strained HgTe films, demonstrates exponentially strong reduction of the oscillation ampli-
tude A in tilted magnetic field B: ξ∼ − ⊥A exp B B[ ( / ) ]. The temperature dependence of the amplitude A reveals 
two terms contributing to the parameter ξ ξ ξ= + T1 2 . The temperature independent term, ξ1, indicates consid-
erable reduction of the effective quantum mean free path lq in the magnetic field B. The reduction is consistent 
with the form: δ




− −( )l l/q
1

0
1 = αB, where α = 0.22 ± 0.03(T−1) at electron density nt = 1.2 1015 m−2. A suppression 

of the topological protection of the helical electron states against the impurity scattering in magnetic fields may 
contribute to the effect. Observed large difference between the effective quantum and transport mean free paths 
points toward mechanisms, leading to an increase of in-homogeneous broadening of SdH oscillations in mag-
netic fields. The temperature dependent term, ξ T2 , is consistent with an increase of the reciprocal velocity −vF

1 of 
2D helical electrons in the magnetic field: δ β=− −v v B[ ]/F F

1
0

1 , where β = 0.5 ± 0.15(T−1) at nt = 1.2 1015 m−2. This 
increase suggests a modification of the dynamics of 2D helical electrons in the magnetic field.

Figure 8.  (a) Counted from C energy dispersion ε k( ) of 2D helical electrons at different values of Zeeman 
energy Δ as labeled; (b) variations of reciprocal Fermi velocity with Zeeman energy; (c) variations of 
normalized probability P of electron backscattering with Zeeman energy. E = 1; kF = 2. All parameters are in 
relative units.
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Methods
Experiment.  Studied, 80 nm wide, strained HgTe films are grown by molecular beam epitaxy on (0,1,3) CdTe 
substrate. Since HgTe films grown directly on CdTe suffer from dislocations due to the lattice mismatch, our 
80 nm thick HgTe films were separated from the CdTe substrate by a 20 nm thin Cd0.7 Hg0.3 Te buffer layer. This 
buffer layer significantly increases the electron mobility up to 40 m2/(Vs)14. In Fig. 2 the insert shows the studied 
structures. The 2D helical electrons are formed at the top and the bottom surfaces of the HgTe film. The structures 
are equipped with a TiAu gate providing the possibility to tune the Fermi energy EF inside the insulating gap ∆ ≈g  
15 mV14 and to change the density = +n n nt b of 2D helical electrons, where nt (nb) is the density of 2D electrons 
located at the top (bottom) of HgTe film. Magnetotransport experiments indicate that at a large positive gate 
voltage Vg , >n nt b since the top HgTe surface is closer to the gate14. Reported in this paper measurements are 
done, when Fermi energy is inside the gap Δg .

Samples are etched in the shape of a Hall bar with width μ=W 50 m. Two samples are studied in magnetic 
fields up to 8 Tesla applied at different angle θ relative to the normal n to 2D layers and perpendicular to the 
applied current. The angle θ is evaluated using Hall resistance Rxy, which is proportional to the perpendicular 
component, θ=⊥B Bcos( ), of the total magnetic field B. Experiments indicate that 2D helical electrons located at 
the top of HgTe film provide the dominant contribution to SdH oscillations at small magnetic fields14,15. The den-
sity nt is estimated from the frequency of SdH oscillations taken at θ = 0° (see upper insert to Fig. 3) and from a 
comparison of the observed positive magnetoresistance with a two-subband model. Both methods yield very 
consistent results for the electron density, nt, shown by the circles in the lower insert to Fig. 3. An averaged mobil-
ity obtained from Hall resistance and the resistivity at zero magnetic field for sample TI1 (TI5) is μ = 43 m2/Vs 
(37 m2/Vs). Sample resistance was measured using the four-point probe method. We applied a 133 Hz ac excita-
tion Iac = 0.5 μ A through the current contacts and measured the longitudinal (in the direction of the electric 
current, x-direction) and Hall (along y-direction) voltages. The measurements were done in the linear regime in 
which the voltages are proportional to the applied current.

Model.  To analyze the observed decrease of the amplitude of SdH oscillations in a spin non-degenerate elec-
tron system, one should assume that some physical parameters, controlling the SdH amplitude in 
Lifshits-Kosevich formula18,19, change with the magnetic field. We start with a derivation of the standard formula 
for the amplitude of the fundamental harmonic of the quantum oscillations for the spin degenerate case and a 
parabolic spectrum: ε = k m/22 2 , where m is an effective mass.

In the case of small quantizing magnetic fields ω τ <1c q , where ω = ⊥eB m/c  is cyclotron frequency and τq is 
quantum scattering rate, the main contribution to SdH oscillations comes from the fundamental harmonic of 
quantum oscillations of the density of states (DOS) corresponding to spin-up and spin-down subbands. The total 
DOS, ν ε( ), reads18:

Figure 9.  (a) Dependence of the longitudinal resistivity, ρxx and (b) dependence of the Hall resistance, Rxy, on 
the magnetic field, B, directed perpendicular to the 2D plane. Different curves present dependencies taken at 
different gate voltages, Vg . From the top to the bottom: Vg  is from 1 V to 3.5 V with step 0.5 V. Solid (dash) lines 
present experimental data (fits, using two subband model); (c) filled symbols present electron densities in two 
subbands, n1 and n2, extracted from the fits shown in (a,b). Open circles present electron density obtained from 
the frequencies of SdH oscillations =n e h F( / )SdH ; (d) Electron mobility, μ1 and μ2, in two subbands, extracted 
from the fits shown in (a) and (b). Sample TI5. T = 4.2 K.
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where δ π ω τ= −( )exp / c q  is Dingle factor, ν0 is the total DOS at zero magnetic field, μΔ = gBZ  is Zeeman energy 
and g  is g-factor. Equation (9) indicates that the amplitude of the fundamental harmonic is controlled by the spin 
dependent factor π ω= Δp cos( / )Z c . An evolution of the total (spin-up and spin-down) DOS with the magnetic 
field is shown in Fig. 1(a). At a fixed cyclotron energy, ωc , the amplitude of DOS oscillations decreases with the 
total magnetic field B due to a destructive interference of DOS oscillations of spin-up and spin-down subbands, 
decreasing the spin dependent factor p in Eq. (9). At a critical angle corresponding to ωΔ = /2Z c  the spin 
dependent factor p = 0 and the amplitude of the fundamental harmonic of DOS is zero.

The 2D conductivity σ is obtained from the following relation:
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The integral is an average of the conductivity σ ε( ) taken essentially for energies ε inside the temperature inter-
val kT  near Fermi energy, where εf ( ) is the electron distribution function at the temperature T18. The brackets 
represent this integral below.

The following expression approximates the conductivity σ ε( ) at small quantizing magnetic fields26,27:

σ ε σ ν εΔ = Δ⊥ ⊥ ⊥
B B B( , , ) ( ) ( , , ) (11)Z D Z

2

where σ ⊥B( )D  is Drude conductivity in magnetic field ⊥B 20 and ν ε ν ε ν=

( ) ( )/ 0 is normalized total density of states.

A substitution of Eq. (11) and Eq. (9) into Eq. (10) yields an additional term to the Drude conductivity, δσSdH, 
describing quantum oscillations of conductivity:
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 is SdH temperature factor19. Due to the presence of the spin 

factor π∆ ω=p cos( / )Z c  the SdH amplitude depends substantially on the ratio between Zeeman and cyclotron 
energies. In 2D electron systems this ratio varies with the angle θ: θΔ Δ ∼ =⊥B B cos/ / 1/ ( )Z C  since the cyclotron 
energy depends on the perpendicular magnetic field ⊥B , while the Zeeman energy is proportional to the total 
magnetic field B. It leads to the angular variations of the amplitude SdH oscillations in 2D electron systems17,18.

For a spin non-degenerate spectrum Eq. (9) contains only one oscillating term. Below we use the term with 
positive Zeeman energy yielding the following expression for SdH oscillations:
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Due to the presence of only one spin subband, the spin factor p = 1 and, in contrast to Eq. (12), Eq. (13) does 
not exhibit the standard angular dependence17,18. In the last part of the equation we have substituted ε ω/( )F c  by 
n n/ L, where n is electron density and π= ⊥n eB /2L  is the orbital degeneracy of a Landau level20. This substitution 
allows to use this formula for 2D electrons with a general spectrum. The substitution yields the correct relation 
between the electron density, n, and the SdH frequency, F: =n e h F( / ) 18,20, which has been used to find the elec-
tron density shown in the lower insert to Fig. 2. We have also introduced a phase of the SdH oscillations, ϕ. In 
addition to the Zeeman effect contribution, the phase may contain contributions from other properties of the 
electron spectrum such as Berry phase correction, which have been ignored in Eq. (9).

Below we consider possible modifications of the Eq. (13), which may lead to angular variations of the SdH 
amplitude at a fixed ⊥B . There are several parameters in Eq. (13), which affect the amplitude of the SdH oscilla-
tions. One of the parameters is the Dingle factor δ π ω τ= −exp( / )c q . This parameter may vary with the angle θ if 
the cyclotron frequency ωc or quantum scattering rate τ1/ q or both change with the total magnetic field B or with 
the component of the magnetic field parallel to 2D layer, B par . The SdH temperature factor A T( ) may change if ωc 
depends on B or B par . Finally spatial fluctuations of Fermi energy, εF, cyclotron frequency, ωc and/or SdH phase ϕ 
may lead to a destructive interference of the SdH oscillations from different parts of a sample resulting in, so 
called, in-homogeneous broadening of Landau levels28,29. If the in-homogeneous broadening depends on B and/
or B par , then the amplitude of SdH oscillations may depend on the angle. Variations of the described physical 
parameters lead to the angular variations of SdH amplitude. Below these variations are accounted via magnetic 
field dependent contributions to Dingle, δ, and temperature dependent, A T( ), factors.

We use the following expression for the cyclotron frequency:

ω = ⊥ev B
k (14)c
F

F
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This relation follows from the semi-classical equation of the electron motion in the magnetic field, ⊥B 20. To 
simplify the analysis of the Dingle factor, we re-write this factor δ π ω τ= −( )exp / c q  in term of a quantum mean 
free path τ=l vq F q:


δ

π
=






−





⊥

k
el B

exp
(15)

F

q

where π=k n(4 )F t
1/2 is the electron wave number and vF is electron velocity at Fermi energy. FFT analysis indi-

cates that the SdH frequency F, shown in Fig. 3, and, thus, nt and kF do not depend on the angle θ. Thus, the Eq. 
(15) is more convenient for further analysis, since only one material parameter: lq depends on θ (B). Below we 
assume that the lq is an effective parameter containing contributions from both the impurity scattering and 
in-homogeneous broadening28.

The SdH temperature factor =A X X sin h X( ) / ( ), where π ω π= = ⊥X k T k Tk ev B2 / 2 /( )B c B F F
2 2 . At >X 1, cor-

responding to our experiments at small magnetic fields, the factor = ≈ −A X X sinh X Xexp X( ) / ( ) 2 ( ) decreases 
exponentially with ⊥B1/ . A modification of the Fermi velocity, vF, with B may lead to variations of the factor A T( ).

In Fig. 4(a) the presented data indicate an exponential decrease of the SdH oscillations amplitude with ⊥B B/ . 
This property suggests that the possible modifications of the parameters within the exponential Dingle and tem-
perature dependent factors should be proportional to ⊥B B/ . The following relations of the effective quantum mean 
free path lq and Fermi velocity vF with the magnetic field B lead to the required exponential decrease of δ, A T( ) 
and, thus, SdH amplitude with ⊥B B/ :

α β= + = +− − − −l l B v v B(1 ); (1 ) (16)q F F
1

0
1 1

0
1

where α βl v, , ,F0 0  are constants, Indeed, a substitution of the relations (16) into Eq. (9), Eq. (11) and Eq. (13) 
yields the following expression for the amplitude of SdH oscillations:
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where π=d k el/( )F 0 , π=a k k ev2 /( )B F F
2

0 . In the derivation of the result we have approximated the temperature 
dependent factor = ≈ −A X X sinh X Xexp X( ) / ( ) 2 ( ) for >X 1. We have assumed also that β < <B 1. Variations 
of the reciprocal Fermi velocity with magnetic field in Eq. (16) leads to variations of the density of states ν ε( )F , 
since ν ε π= k v( ) /(2 )F F F . In Eq. (9) the DOS ν0 is replaced by ν β+ B(1 )0 .

In Eq. (17) the first exponential factor describes the usual decay of SdH amplitude with ⊥B1/ : parameters d and 
a are coming from the Dingle and temperature damping factors of the SdH amplitude18,27. The second exponential 
factor describes the angular variations of the SdH amplitude of 2D helical electrons. This factor leads to the expo-
nential decrease of SdH amplitude with θ=⊥B B cos/ 1/ ( ). At α β= = 0 the angular variations of the SdH amplitude 
are absent and expression (17) reduces to the standard Eq. (13) with =l lq 0 and =v vF F0 .

Normalization.  Quantitative analysis of SdH oscillations is based on the relation between Eqs. (12,17) and 
relative variations of the resistivity measured in experiments:

δσ σ δρ ρ=⊥B/ ( ) / (18)SdH D SdH N

where ρN  is a normalizing resistivity. In strong magnetic fields, at which the Hall resistivity, ρxy, is much larger the 
longitudinal resistivity, ρxx, the longitudinal conductivity, σxx is proportional to the resistivity ρxx: σ ρ= ⊥en B( / )xx xx

2 , 
where n is carrier density20 This property leads to a relation

δσ σ δρ ρ=/ / (19)SdH xx SdH xx

where δσSdH (δρSdH) is a quantum contribution to the conductivity σxx (resistivity ρxx). In the simplest case of a 
single group of carriers the classical (Drude) resitivity does not depend on the magnetic field20: ρ ρ=⊥B( ) (0)xx xx  
and the above relation yields:

B/ ( ) / (0) (20)SdH D SdH xxδσ σ δρ ρ=⊥

where σ ⊥B( )D  is Drude conductivity used in Eq. (12) for the conductivity of the single group of carriers. Equation 
(20) provides the relation between oscillations in the conductivity, which are evaluated theoretically, and the 
oscillations of the resistivity, which are measured in experiments for systems with single group of carriers.

If several groups of carriers contribute to the conductivity, as in the studied case, the situation is less certain. 
The reason of the uncertainty is the lack of a direct relation between the Drude conductivity σ ⊥B( )D , used in Eq. 
(17) for a single group of carriers, and the measured resistivity ρxx, which contains contributions from several 
groups of carriers. In Eq. (17) the conductivity σ ⊥B( )D  is the conductivity, σt, of electrons at the top conducting 
surface of the HgTe layer. The total conductivity, σ σ σ σ= + +⊥B( )tot t b vol, is a sum of conductivities of the top 
and bottom (σb) surfaces and, possibly, the bulk of the film (σvol). Thus, the δσ σ/SdH t is not equal to δρ ρ ⊥B/ ( )SdH xx  
for the studied system with several groups of carriers. It leads to an uncertainty of the normalizing resistivity, ρN , 
in Eq. (18).
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We have investigated the effect of the resistance normalization on results of the analysis of the angular depend-
ence of the SdH oscillations. For very different normalizing resistance: ρ ρ= (0)N xx1  and ρ ρ= ⊥B( )N xx2  we have 
found no difference in the extracted parameter ξ controlling the angular dependence (see Fig. 4(b)). It provides a 
confidence that the obtained parameter ξ is quantitatively correct. In addition we have found that the normaliza-
tion ρ ρ= ⊥B( )N xx2  provides an amplitude of the SdH oscillations, which is more consistent with our model.

Two subband model.  Presented in Fig. 2 data demonstrate a positive magnetoresitance. Usually the positive 
magnetoresistance indicates a presence of two or more groups of carriers20. In this section we compare the posi-
tive magnetoresistance with two subband model. In this model we assume that two groups of carriers are located 
at top and the bottom surfaces of the HgTe film as shown in the insert to Fig. 2. In contrast to the regular quantum 
wells with two populated subbands30–32, these two conducting 2D layers are separated from each other and do 
not interact. This is supported by the fact, that the magneto-inter-subband oscillations, induced by the electron 
inter-subband scattering30,33,34, are absent in the studied system. This allows us to use a simplified version of the 
two subband model20 ignoring the inter-subband scattering35.

We compare the two-subband model with experiments at θ = 0°. The model considers two groups of 
non-interacting electrons in a perpendicular magnetic field, B. Each group has electron density ni, mobility μi and 
conductivity σ μ= eni i i at B = 0 T, where the index i = 1,2 labels each group. In a magnetic field the total Drude 
conductivity σxx and Hall conductivity, σxy, read20:
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The longitudinal resistivity, ρxx, and Hall resistance, ρ=Rxy xy, are obtained by the inversion of the conductivity 
matrix:
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Figure 9(a,b) present a comparison of the resistivity, ρxx, and Hall resistance, ρ=Rxy xy, with the two subband 
model. Solid lines demonstrate the experimental data, while the dashed lines are computed, using Eq. (21) and 
Eq. (22). The electron density, ni, and mobility, μi, are fitting parameters for the computations of ρxx and Rxy. A 
good agreement is found between ρ B( )xx  and the model at magnetic fields below 0.05 T. At the same fitting param-
eters the Hall resistance follows the two subband model for larger magnetic fields.

Figure 9(c) presents a dependence of the electron densities n1 and n2, obtained from the fit shown in Fig. 9(a,b), 
on the gate voltage Vg . The top layer with density nt is related to the electron group with density n1: =n nt 1. The 
top layer is located closer to the gate and, thus, more sensitive to the gate voltage variations. This layer provides an 
additional screening for the bottom layer that leads to the weaker dependence of the electron density =n nb 2 on 
Vg . Open circles present the density obtained from the frequency F of SdH oscillations using spin non-degenerate 
spectrum: =n e h F( / )SdH . For a broad range of gate voltages there is a good agreement between density n1 and 
nSdH. This agreement indicates that the spectrum of 2D electrons in the top layer is non-degenerate.

Figure 9(d) presents a dependence of the mobility μi on the gate voltage Vg . The mobility at the bottom layer is 
found to be μ ≈2  20 (Vm2/s) and is weakly dependent on Vg . The mobility at the top layer, μ1 has a higher value and 
exhibits a considerable increase at high Vg . Below we evaluate the transport mean free path, ltr, of the electrons. 
The mobility μ τ= e m/tr , where τtr is a transport mean free time, can be rewritten in the following form μ = el

k
tr

F
, 

where τ=l vtr F tr and =k mvF F . For the transport mean free path we found ≈ltr
(1)  4.4 microns ( ≈ltr

(2)  1.3 microns) 
for the electrons at the top (bottom) layer at Vg  = 2.5 V.

The transport mean free path ltr found to be is much longer than the effective quantum mean free path, lq ≈ 
100 nm, obtained from the decay of SdH oscillations. For sample TI1 we have found d ≈ 3.5(T) yielding lq = 
73 nm at nt = 1.2 1015 m−2. For sample TI5 k ≈ 2.8–3.2 (T) (see Fig. 4(b)), yielding d = k−aT ≈ 1.7–2.2 (T) at 
T = 4.2 K and a ≈ 0.28 T/K and, thus, lq ≈ 110–140 (nm). The comparison of the two lengths suggests a substantial 
in-homogeneous broadening of SdH oscillations.
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