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Abstract

Protein subcellular localization is a major determinant of protein function. However, this important protein feature is often
described in terms of discrete and qualitative categories of subcellular compartments, and therefore it has limited
applications in quantitative protein function analyses. Here, we present Protein Localization Analysis and Search Tools
(PLAST), an automated analysis framework for constructing and comparing quantitative signatures of protein subcellular
localization patterns based on microscopy images. PLAST produces human-interpretable protein localization maps that
quantitatively describe the similarities in the localization patterns of proteins and major subcellular compartments, without
requiring manual assignment or supervised learning of these compartments. Using the budding yeast Saccharomyces
cerevisiae as a model system, we show that PLAST is more accurate than existing, qualitative protein localization annotations
in identifying known co-localized proteins. Furthermore, we demonstrate that PLAST can reveal protein localization-function
relationships that are not obvious from these annotations. First, we identified proteins that have similar localization patterns
and participate in closely-related biological processes, but do not necessarily form stable complexes with each other or
localize at the same organelles. Second, we found an association between spatial and functional divergences of proteins
during evolution. Surprisingly, as proteins with common ancestors evolve, they tend to develop more diverged subcellular
localization patterns, but still occupy similar numbers of compartments. This suggests that divergence of protein
localization might be more frequently due to the development of more specific localization patterns over ancestral
compartments than the occupation of new compartments. PLAST enables systematic and quantitative analyses of protein
localization-function relationships, and will be useful to elucidate protein functions and how these functions were acquired
in cells from different organisms or species. A public web interface of PLAST is available at http://plast.bii.a-star.edu.sg.
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Introduction

Proteins have to be localized at the appropriate subcellular

compartments to perform their functions. Using high-throughput

protein labeling and imaging techniques, several proteome-wide

studies have found that protein localization and function are

strongly correlated to each other [1–4]. However, unlike sequence,

structure, expression level, or other protein features, subcellular

localization has limited applications in quantitative analyses of

protein functions, such as predictions of protein functions [5] and

studies of protein function evolution [6,7].

One of the main difficulties is that protein subcellular

localization is often described or represented in terms of discrete,

qualitative categories of subcellular compartments, such as the

Gene Ontology (GO) categories [8]. Although automated image

processing algorithms have been useful in extracting quantitative

descriptors for protein localization patterns, the resulting descrip-

tors are often being converted back into these discrete categories

using supervised classification or unsupervised clustering methods

[9–13]. These discrete representations have several limitations.

First, they cannot fully describe the continuous and complex

spatial distributions of proteins that are localized across multiple

compartments [14] and/or distribute non-uniformly within the

same compartments [15]. Second, they are often assigned based

on manual and/or visual inspections [1,3,4], which are prone to

bias and imprecision. Third, they only allow simple qualitative

comparisons of protein localization patterns, which are often

insufficient to distinguish complex or subtle changes. Despite all

these limitations, discrete categories of subcellular compartments

are still commonly used because they can be easily interpreted by

humans.

To overcome these limitations, we have developed an

automated analysis framework for converting raw image descrip-

tors into quantitative signatures (or ‘‘profiles’’) of protein

subcellular localization patterns. We refer to this framework as

Protein Localization Analysis and Search Tools (PLAST). First, we

measure a large number of unbiased image descriptors that

capture different spatial properties of protein localization patterns,

and use a support vector machine (SVM) algorithm [16] to reduce

the contributions of non-informative descriptors. The resulting
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profiles allow PLAST to maintain continuous representations of

protein localization patterns throughout its analysis workflow, and

do not require supervised learning of pre- or manually-defined

categories of subcellular compartments. Second, PLAST is fully

automated and designed to systematically quantify protein

localization patterns at the proteome scale. Third, PLAST allows

quantitative comparisons of complex protein localization patterns

based on standard dissimilarity or distance measurements. Last,

PLAST produces human-interpretable protein localization maps

that quantitatively describe the similarities in the localization

patterns of proteins and major subcellular compartments. These

maps can be thresholded to make ‘‘hard’’ compartment-to-protein

assignments at user-desired significance levels. Therefore, PLAST

allows researchers to quantify and rank a set of proteins according

to their localization dissimilarities to a given protein or organelle,

much like searching for proteins with similar sequences in the

GenBank or UniProt databases.

An important application of PLAST is to study changes in

protein localization and function during evolution. Gene duplica-

tion is a main source of new genes [6,17]. A fundamental question

in evolutionary biology is how duplicate genes acquired new or

altered biological functions. Change in protein subcellular

localization, or ‘‘protein relocalization’’, is a possible mechanism

for duplicate genes to achieve functional divergence [18]. This is

supported by observations that protein localization may be easily

changed just by single amino-acid substitutions [18], relocalization

is sufficient to alter the functions of some enzymes even in the

absence of any mutation in their catalytic sites [19], and many

gene families encode proteins with different subcellular localiza-

tions [20,21]. Two different models of protein relocalization have

been proposed [22]. The ‘‘neolocalization’’ model suggests that

duplicates relocalize and adapt to previously unoccupied com-

partments [23], whereas the ‘‘sublocalization’’ model suggests that

duplicates develop more specific localization patterns over their

ancestral compartments [24]. Based on these models, neolocalized

duplicates are expected to occupy higher total numbers of

compartments than their ancestors; and conversely, sublocalized

duplicates are expected to occupy similar total numbers of

compartments as their ancestors. However, both neo- and

sublocalized duplicates are expected to show more diverged

subcellular localization patterns and occupy lower ratios of shared

compartments as they evolve. PLAST allows us to compare and

test these two models by quantitatively measuring the degree of

spatial divergence between duplicates and the number of

compartments occupied and shared by them.

Here, we describe the key components of PLAST, and show

that PLAST is, on average, more accurate than existing,

qualitative protein localization annotations in identifying known

co-localized proteins. Furthermore, we demonstrate that PLAST

can reveal protein localization-function relationships that are not

obvious from these annotations. We found that PLAST can 1)

identify similarly-localized proteins that participate in closely-

related biological processes but do not necessary form stable

complexes with each other or localize at the same organelles, and

2) reveal an association between spatial and functional divergences

of proteins during evolution.

Results

Overview of PLAST
PLAST can be generally applied to microscopy images of

proteins labeled with fluorescent protein fusion tags, fluorophore-

conjugated antibodies, or other labeling techniques. PLAST has

five major steps: cell segmentation, feature extraction, protein

localization profile (‘‘P-profile’’) construction, P-profile dissimilar-

ity computation, and compartment mapping (Fig. 1A). First, we

automatically segment cells from microscopy images. To avoid

segmentation bias that may be introduced by protein-to-protein

variations in expression levels [25], we do not use fluorescent

signals from the labeled proteins. Instead, we have developed a

segmentation algorithm based on differential interference contrast

(DIC) illumination and fluorescent nuclear stains (Supplemen-
tary Fig. S1). Other segmentation algorithms based on fluores-

cent whole-cell stains [26] may also be used in this step.

Second, we extract a large number of quantitative image

descriptors (or ‘‘features’’) from the segmented cells. We have

designed several new image features based on subcellular regions

and local structures of protein distribution patterns (Local
structure features). We also extract standard intensity, texture,

and moment features [9,10,27].

Third, we have generalized a SVM-based drug profiling

algorithm [27], which was originally designed to compare the

same proteins under perturbed and control conditions, to compare

different proteins under the same cellular conditions. For each

protein, this method removes the contributions of non-informative

features by finding an optimum SVM hyperplane that can

separate cells labeled for the protein from a fixed set of reference

cells (P-profileSVM construction and Fig. S2A). We used the

unit vector orthogonal to the hyperplane as a quantitative profile

representing the spatial localization signature of the protein. As an

alternative, we also construct profiles by averaging each feature

value across all cells. We denote these two profile types as ‘‘P-

profileSVM’’ and ‘‘P-profilemean’’, respectively.

Fourth, we measure and store the pairwise dissimilarity scores

(dp) between the P-profiles of all proteins into a database. Lower dp

values correspond to more similar subcellular localization patterns.

To compare the localization patterns of a protein to a group of

proteins, such as those that constitute a subcellular organelle or

compartment, we compute the mean of all the pairwise dp values

between the protein and each of the group members (P-profile
dissimilarity score). If the protein is part of the group, the dp to

itself will be excluded from the calculation.

Author Summary

Proteins are fundamental building blocks of cells. They
perform a variety of biological functions, many of which
are essential to the vitality and normal functioning of cells.
Proteins have to be located at the appropriate regions
inside a cell to perform their functions. Therefore, when
proteins change their locations, they may acquire new or
different functions. However, the relationships between
the locations and functions of proteins are difficult to
analyze because protein locations are often represented in
distinct and manually-defined categories of subcellular
regions. Many proteins have complex or subtle differences
in their localization patterns that can be hardly represent-
ed by these categories. Here, we present an automated
analysis tool for generating quantitative signatures of
protein localization patterns without requiring manual or
automated assignments of proteins into distinct catego-
ries. We show that our tool can identify proteins located at
the same subcellular regions more accurately than existing
categorization-based methods. Our tool allows compre-
hensive and more accurate studies of the relationships
between protein localizations and functions. By knowing
where proteins are located and how their locations were
changed, we may discover their functions and better
understand how they acquire these functions.

Protein Localization Analysis and Search Tools
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Fifth, we map a comprehensive catalog of major subcellular

compartments to each of the proteins in our database. For each

protein, we estimate the probability distribution of dp between the

protein and the compartments that are not specifically occupied by

the protein (Fig. 1A). Then, we standardize the dp values between

the protein and all compartments based on this distribution

(Compartment assignment). The resulting z-scores (~ddp)

constitute a localization map of all the proteins, and allow us to

use the same significance thresholds to assign compartments to

proteins.

Subcellular localization profiles of the yeast proteome
To assess the performance of PLAST, we used the budding

yeast Saccharomyces cerevisiae (S. cerevisiae) as a model system due to

the availability of a genome-wide GFP-fusion-protein image

dataset (Fig. 1B, the ‘‘UCSF dataset’’) [1] and a large number

Figure 1. Construction of quantitative protein subcellular localization profiles. (A) Schematic showing the major components of Protein
Localization Analysis and Search Tools (PLAST). (B) Example images of GFP-tagged Saccharomyces cerevisiae strains from the UCSF dataset [1]. The
intensity of each image has been scaled to the same range. (C) Multi-dimensional scaling plot based on the dissimilarity scores (dp) among all the P-
profilesSVM constructed for the UCSF dataset. ORFs manually assigned to ‘‘nucleus’’, ‘‘cytoplasm’’, or ‘‘mitochondrion’’ categories by UCSF are shown
in purple, red, or green dots, respectively. (D) Multidimensional scaling plot of 20 representative protein localization patterns (dots) or ‘‘exemplars’’
identified using an affinity-propagation clustering algorithm. The radius of the circle around each dot is proportional to the number of ORFs assigned
to the exemplar. Each exemplar is colored and named according to the most enriched UCSF category among its assigned ORFs (Supplementary
Fig. S4A). The exemplars of MC2 (Cox8), CP3 (Rbg1), and NC3 (Hda2) are shown in B. (E) Comparison of the performances of P-profiles and
quantitative features extracted using two other previous analysis frameworks (‘‘Chen07’’ and ‘‘Huh09’’) [11,13] in classifying ORFs according to UCSF
categories. The accuracies shown were estimated using a multi-class SVM classifier and 5-fold cross validation, and averaged over all UCSF categories.
doi:10.1371/journal.pcbi.1003504.g001
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of known protein complexes in this organism [28]. The dataset

covers ,75% of the S. cerevisiae proteome. We extracted 623

quantitative features from ,20 single cells per yeast strain, and

constructed P-profiles for all the strains (Supplementary Fig.
S2A and B). After quality control (Quality control), we obtained

P-profiles for 4066 open reading frames (ORFs) (Fig. 1C).

To determine the correspondence between P-profiles and

compartment categories manually assigned by UCSF via visual

inspections (‘‘UCSF categories’’), we clustered P-profiles using an

affinity propagation algorithm [29] (Fig. 1D and Supplemen-
tary Fig. S3) and determined the enrichments of UCSF

categories and GO biological processes in each of the 20 identified

clusters. We found that PLAST divides most ‘‘cytoplasmic’’,

‘‘nuclear’’, or ‘‘mitochondrial’’ proteins into ,4 to 6 clusters that

are enriched in proteins involved in different biological processes

(Supplementary Fig. S4). Thus, PLAST can reveal protein

subcellular localization patterns that are not obvious under

manual inspections.

Previously, two other analysis frameworks were also developed

to quantify and classify the same image dataset according to UCSF

categories [11,13]. We found that P-profiles can achieve higher

mean classification accuracy than these two previous frameworks

(Fig. 1E). The increase in accuracy mostly came from better

detections of categories with small numbers of ORFs, such as

‘‘early Golgi’’, ‘‘bud neck’’ and ‘‘microtubule’’, which were

completely missed by these two other frameworks (Supplemen-
tary Fig. S2C). These improvements were likely due to our better

cell segmentation algorithm that does not rely on the fluorescence

intensities of the GFP-tagged proteins (Supplementary Fig. S1),

and our SVM-based profiling algorithm that reduces the

contributions of non-informative features.

Performance in identifying co-localized proteins
Proteins must localize in close proximity to interact physically.

We next studied to what extent PLAST can be used to search for

physically interacting proteins. We first made use of two high-

quality protein-protein interaction datasets obtained from affinity-

purification mass spectrometry (AP-MS) and yeast two-hybrid

(Y2H) screening [30]. AP-MS can identify components of larger

complexes that may not necessary directly interact with each

other, whereas Y2H screening can identify direct and sometimes

more transient interactions between components from different

complexes or pathways [30]. We found that AP-MS interactors

have significantly lower median and mean intrapair dp values than

Y2H interactors (P,0.001, two-sided permutation test; Fig. 2A).

These results show that PLAST is better in detecting stable protein

complexes than transient interactors.

To further test the ability of PLAST in searching subunits of

stable protein complexes, we used a comprehensive catalog of 197

protein complexes with different subunit numbers and subcellular

localization patterns (Datasets). Identifying subunits of complex-

es that localized at multiple compartments, such as ribosome and

proteasome [15,31], is expected to be very challenging. For each

complex, we randomly selected a subset of its subunits as query

proteins, and ranked all other proteins, except the query proteins,

according to their mean dp to the query proteins (Fig. 2B). We

systematically measured the precision, recall and F1 scores, which

are commonly-used criteria for information retrieval performance

[32], for different numbers of query proteins (Fig. 2C). We also

ranked proteins based on their similarities in UCSF or SGD

GoSlim localization annotations (Subunit search based on
UCSF or SGD GOSlim annotations). These two annotations

are not independent from each other, because a large fraction of

SGD GoSlim annotations are based on UCSF annotations. We

performed paired t-tests between the maximum F1 scores obtained

from different profiling/annotation methods for all the protein

complexes (Fig. 2D and E). The resulting test statistic is only

weakly correlated to protein complex size (R = 20.136, P = 0.056;

Fig. S5). Overall, we found that predictions based on P-

profilesSVM have significantly higher maximum F1 scores than

other methods (P,3.361026, Bonferroni-adjusted, one-sided

paired t-test; Figs. 2C and E). Therefore, in the subsequent

analyses, we will be using P-profilesSVM to represent protein

subcellular localization patterns. Notably, some of the ‘‘false

positives’’ selected by PLAST may also interact with the query

proteins. For example, RNA polymerase II subunit (Rpb2) and

ubiquitin activating enzyme (Uba1) were previously found to be

physically associated with proteasome [33,34] (Fig. 2B). Thus, our

estimated performances of PLAST are conservative. Our results

show that, at least for most of the tested protein complexes, P-

profiles are more accurate than existing localization annotations in

associating subunits of the same protein complexes together.

Construction of a subcellular localization map
To generate a human-interpretable localization map of the yeast

proteome, we used another catalog of cellular compartments as

‘‘landmarks’’ of the subcellular space in a yeast cell. This catalog

consists of known protein components of 23 major organelles and 50

large protein complexes (Catalog of subcellular compart-
ments). For each protein, we systematically queried the P-profile

database for the dp scores between the protein and all the

compartments. We assumed that the probability distribution for

these dp scores could be modeled by a mixture of Gaussian

distributions, in which the component distribution with the highest

mean dp value was the distribution for non-specifically localized

compartments. We estimated the mean and standard deviation of

this ‘‘null’’ distribution and standardized all the dp scores based on

the estimated values (Compartment assignment and Fig. 3A).

We found that the null distributions for most proteins are dominant

(Supplementary Fig. S6), indicating most proteins are localized

only at small subsets of components in our catalog. The resulting z-

scores (~ddp) constitute the final localization map (Fig. 3B and S7,

Supplementary Dataset S1), and allow us to assign compart-

ments to different proteins using the same Bonferroni-adjusted P-

value thresholds. This standardization step does not change the

relative dissimilarities of different compartments to a protein.

Spatially-associated proteins tend to participate in
related biological processes

We identified several general trends from this localization map.

First, compartments involved in similar or related biological

processes tend to be spatially associated to similar sets of proteins.

We performed a hierarchical clustering of all the compartments

based on the localization map, and found that functionally-related

compartments tend to be grouped into the same clusters (Fig. 3B
and S7). For example, we obtained two clusters of compartments

that are related to cellular bud/cytoskeleton and endomembrane

system, respectively. These two clusters are also closest to each

other, and form a larger supercluster in the dendrogram (Fig. 3B).

Similarly, we obtained separate clusters for ribosomal subunits,

polysome, and degradation compartments, which together also

form a larger supercluster (Fig. 3B). These protein machineries

are known to work together to regulate gene expression [35].

The spatial associations of these functionally-related compart-

ments suggest that PLAST, which is based on microscopy

images, can identify spatially-associated proteins that participate

in closely-related biological processes or pathways but do not

Protein Localization Analysis and Search Tools
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necessary form stable complexes with each other or localize at the

same organelles. Most affinity-purification-based methods, such as

the aforementioned AP-MS method, would have difficulties in

relating these proteins together.

To perform hard assignments of compartments to proteins, we

used a Bonferroni-adjusted threshold of ~PP,1.0610212. We

studied all the compartments that had been assigned to at least

one protein, and found that, on average, ,90% of the proteins

Figure 2. Performance of PLAST in identifying known co-localized proteins. (A) Probability distributions of the P-profile dissimilarity scores
(dp) between interactors and between non-interactors detected by affinity-purification mass spectrometry (AP-MS) or yeast two-hybrid screening
(Y2H). (M = medians, m= means of the distributions; P-values from two-sided permutation tests for differences in means or medians.) (B) An example
of PLAST search result obtained from using 19S proteasomal base subunits as query proteins. The mean dp between the query proteins and all other
proteins are shown as red (known subunits) or gray (other ORFs) vertical lines. Most of the red lines have low dp values, indicating that they are placed
at the top of the search result. (Black line graph = precisions, red line graph = recalls, black dashed line = decision threshold at optimum F1-score,
black box = magnified region, parenthesis = number of known subunits.) (C) Performances of subunit searches obtained from using different
numbers of query proteins randomly selected from known subunits of a proteasome (left) or cytosolic ribosome (right). For each query protein
number, we tested max(100, number of all possible combinations) random combinations of query proteins, and computed the mean value of these
tested combinations (parentheses = numbers of known subunits). (D) Normalized F1-score differences between P-profileSVM and UCSF annotation for
a catalog of 197 protein complexes. Some of the complexes with the highest F1-score differences are highlighted. (Red line = the mean of the
normalized differences, which is also the test statistic used in the paired t-test between the F1-scores of these two methods; gray areas = statistically
insignificant differences with P.0.001; red text = unadjusted P-value obtained for the paired t-test.) (E) Bonferroni-adjusted P-values obtained from
one-sided, paired t-tests between the F1-scores of of all the possible pairs of profiling/annotation methods (F1A vs. F1B).
doi:10.1371/journal.pcbi.1003504.g002
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Figure 3. A subcellular localization map for the yeast proteome. (A) An example of how PLAST assigns compartments to an ORF, YDR110W
(black curve = estimated probability distribution of the dp scores between the ORF and a catalog of 73 major subcellular compartments; dashed red
vertical line = local maxima of the distribution with the highest dp value; red curve = estimated ‘‘null’’ distribution of the dp scores between the ORF
and non-specifically localized compartments; blue vertical line = a threshold for compartments with dp significantly less than the null distribution at
Bonferroni-adjusted P̃,2.561024.) The estimated mean and standard deviation of the null distribution are used to standardize the dp scores between
the ORF and all compartments. (B) A subcellular localization map showing the standardized P-profile dissimilariy scores (~ddp) between 4066 ORFs (x-
axis) and the 73 major subcellular compartments (y-axis) in a budding yeast cell. The compartments (rows) were ordered using a hierarchical
clustering algorithm with cosine dissimilarity scores, and labeled with color codes according to their known functions or localizations (‘‘common’’
compartments = compartments assigned to large numbers of ORFs.) A fully annotated map is shown in Supplementary Fig. S7. (C) Using a
Bonferroni-adjusted threshold of P̃,1.0610212, we assigned compartments to each and every ORF. Among the 73 compartments, we found 22
compartments whose known components and ‘‘non-components’’ assigned by PLAST share at least one common, significantly-enriched GO
biological process (P̃,0.05 with false-discovery-rate adjustment, hypergeometric test). Shown are the percentages of known- and non-components
in all the ORFs assigned with these compartments by PLAST. The list of (up to three) common enriched GO biological processes for each
compartment is also shown (pol. = polymerase, reg. = regulation, RNP = ribonucleoprotein).
doi:10.1371/journal.pcbi.1003504.g003
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assigned to a compartment are not known components of the

compartment. We wonder to what extent these ‘‘non-compo-

nents’’ may perform similar biological functions as other known

components of the compartment. For each compartment, we

systematically identified significantly enriched GO biological

processes among all its known components, and among all its

non-components assigned by PLAST. Interestingly, we found 22

compartments whose non- and known components are signifi-

cantly enriched with at least one common biological process

(~PP,0.05, FDR-adjusted, hypergeometric test; Fig. 3C and

Supplementary Dataset S2). For example, several translation

factors (eIF1A, eIF4B, and eIF4G) and synthases (glycyl-tRNA and

glutamyl-tRNA synthases) were assigned to cytosolic ribosomes;

and several splicing factors (Prp11, Prp39, Prp45, and Prp5),

topoisomerase (Top2), and transcription initiation factor (Tfc8)

were assigned to RNA polymerase II (Supplementary Dataset
S2). Furthermore, we also found that the non-components

assigned by PLAST to cytosolic ribosome were also significantly

enriched with ORFs that were experimentally found to co-purify

with cytosolic ribosome [36] (P,0.001, hypergeometric test; Fig.
S8). Importantly, some of these non-components have unchar-

acterized functions or not known to be functionally associated with

their corresponding compartments. Therefore, our localization

map provides a repertoire of potentially novel components of the

biological processes or pathways performed at major subcellular

compartments in the budding yeast.

Most proteins are localized at multiple compartments
The second general trend is that most proteins are localized at

multiple compartments. To perform a fair comparison between

PLAST and UCSF annotations, we used a more relaxed

Bonferroni-adjusted threshold of ~PP#2.561024, which assigns

major organelles, namely cytoplasm and nucleus, to similar

numbers of proteins as UCSF annotations [1] (Fig. 4A). However,

among proteins with assigned compartments, the median and

mean numbers of compartments assigned to a protein by PLAST

(,13.0 to 14.5) are significantly higher than UCSF (,1) and SGD

GOSlim annotations (,2.0 to 2.5, Fig. 4B). We observed the

same trends even if we used a reduced set of 22 major

compartments for compartment mapping by PLAST (Fig. 4B).

Many of the compartments that we used as landmarks are located

in the cytoplasm, therefore it is not surprising that PLAST would

also assign them to proteins that are localized at the cytoplasm. On

average, PLAST assigned 14.9 compartments to cytosolic proteins,

but only 1.9 compartments to non-cytosolic proteins (Fig. 4C).

Nevertheless, in all cases, PLAST and SGD GoSlim assign

significantly more compartments than UCSF annotations

(P,0.001, Fig. 4C). This is likely due to the inefficiency of

human scorers to separate complex composite patterns into

individual compartments, and therefore analyses of protein

localization based on UCSF annotations may be inaccurate.

Duplicates with different divergence times occupy similar
numbers of compartments

An important application of PLAST is to study spatial and

functional divergences of proteins during evolution. Individual

cases of neo- and sublocalization (Introduction) have been

reported in yeasts and hominoids [22–24], and thus both

mechanisms were likely to contribute to protein relocalization.

Given that the subcellular localization data for ancestral proteins is

not available, we use two different approaches to test the

prevalence of neo- and sublocalization models. All our subsequent

analyses are based on the compartment assignments from the

previous section, and also P-profileSVM, which has the best overall

benchmark performance (Fig. 2E).

In the first approach, we studied duplicates with different

divergence times. We assumed that the localization patterns of

more recently duplicated gene pairs are more similar to their

ancestors. We used a phylogeny of orthologous gene groups

estimated for seventeen Ascomycota fungi [37]. We obtained six

sets of S. cerevisiae duplicates with different divergence times (T1 to

T6), each of which consists of ,10–400 duplicate pairs (Fig. 5A).

We used PLAST to quantify the spatial divergence levels of all the

duplicates. Because protein expression may influence protein

localization pattern, we also obtained the protein expression levels

of all the duplicates [25]. To treat each divergence time equally,

we only used the mean values of all its associated duplicates. A

whole genome duplication (WGD) was estimated to occur around

,100 million years ago after the divergence of Kluyveromyces lactis

(K. lactis) in the phylogeny [6,38] (Fig. 5A). We refer to pre-WGD

duplicates as ‘‘old’’ duplicates (T4 to T6), and all other duplicates

as ‘‘young’’ duplicates (T1 to T3). We found that old duplicates

have significantly larger intrapair dp values, lower shared

compartment ratios, and lower average protein expression levels

than young duplicates (P = 0.041, 0.066, and 0.066, two-sided t-

tests; Fig. 5B–D). However, we did not observe a significant

difference in the total numbers of occupied compartments

(P = 0.796, two-sided t-test; Fig. 5E). To test if localization

divergence could be predicted based on divergence time or protein

expression level, we performed linear regression modeling and

found that only divergence time is a significant predictor of both dp

and shared compartment ratio (P,0.001, Fig. 5F). Our results are

consistent with the expected behaviors of sublocalized duplicates

(Introductions), and suggest that localization divergence might

be more frequently due to sublocalization. One of the limitations

of our analysis is that duplicates with different divergence times

may undergo different evolutionary paths. Furthermore, we could

only obtain small numbers (,10) of duplicates for some of the

divergence times, and thus could not perform meaningful

enrichment analyses of protein functions on them.

Large portion of WGD duplicate proteins have diverged
localization patterns

In the second approach, we addressed these limitations by

studying the large number (,544) of duplicates generated from

WGD [38,39]. We assumed that the localization patterns of

duplicates with lower intrapair dp values are more similar to their

ancestors. Sixty eight percent of these WGD duplicates were

detected in T3 of the phylogeny that we used in the previous

section. Based on UCSF annotations, a previous study estimated

that ,24–37% of these WGD duplicates now have diverged

localizations and occupy significantly higher numbers of compart-

ments than their ancestors [22]. Thus, the study concluded that

localization divergence might be more frequently due to

neolocalization. However, UCSF annotations tend to underesti-

mate the number of compartments localized by a protein

(Fig. 4C), and we wonder if PLAST can provide additional

insights into the localization-function relationships between these

duplicate proteins.

To quantify the spatial divergence of WGD duplicates, we

determined the dp for all 326 duplicate pairs that have P-profiles

(Supplementary Dataset S3), and also the empirical distribu-

tion of dp for 10,000 randomly selected non-duplicate pairs from

the proteome (Fig. 6A). As expected, we found that WGD

duplicates as a whole have significantly lower dp values and higher

shared compartment ratios than random non-duplicates (both

P,0.001, two-sided permutation test for difference in medians and
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means; Fig. 6A and B). However, we did not find significant

difference in the total numbers of occupied compartments

(Fig. 6C). We refer to protein pairs with dp less than a certain

percentile of the dp distribution for random pairs as ‘‘similarly

localized’’ (SL) pairs, otherwise as ‘‘dissimilarly localized’’ (DL)

pairs. We estimated that ,42–84% of duplicates are now DL pairs

(based on 1st- and 20th-percentile thresholds), which are higher

than the ,24–37% estimated based on UCSF annotations [22]. In

the following analyses, we will use a 10th-percent threshold to

separate SL and DL pairs. Among the ten biological processes

with the highest numbers of duplicates, ‘‘cytoplasmic translation’’

and ‘‘signaling’’ have the lowest and highest DL-duplicate ratios,

respectively (Fig. 6D). This is consistent with the slower and faster

amino acid divergence rates of translational proteins and kinases,

respectively, in S. cerevisiae [6]. Some of our automatically identified

DL duplicates, such as the sterol esterases Yeh1 and Yeh2, protein

kinases Ypk1 and Ypk2, and transcription factors Pdr1 and Pdr3,

are known to have diverged localizations [40–42] (Fig. 6E). Thus,

our results suggest that a large portion of duplicate proteins have

diverged localization patterns.

Protein relocalization is significantly associated with
divergence of biological process but not molecular
function

Next, we studied if localization and functional divergences are

statistically associated events. We considered two different types of

functional annotations, namely GO molecular functions and

biological processes [8]. Interestingly, we found that protein

relocalization in WGD duplicate genes is significantly associated

with divergence of biological process (P = 0.0064) but not

molecular function (P.0.10, both two-sided Fisher’s exact tests;

Fig. 7). Few DL and SL duplicates have dissimilar molecular

functions (18% and 14% respectively, and also see examples in

Fig. 6E), but ,45% of DL duplicates are now involved in

dissimilar biological processes (Fig. 7). To the best of our

knowledge, this is the first time that such localization-function

relationships are demonstrated systematically and quantitatively at

the proteome level. Relocalized duplicates maintain similar

molecular functions, likely due to their highly conserved sequenc-

es; but they also start to involve in different biological processes,

likely due to their interactions with different proteins specific to

their occupied compartments. Therefore, our results support the

hypothesis that protein relocalization may facilitate functional

divergence.

Spatial divergence is not significantly correlated to
number of occupied compartments

Finally, we studied neo- and sublocalization using WGD

duplicates. Surprisingly, unlike previous analysis based on UCSF

annotations [22], we found that dp is significantly correlated to

shared compartment ratio, but not total number of occupied

compartments (P,0.001 and = 0.286, respectively; Fig. 8A and
B). We also found that dp is negatively correlated to protein

expression level (P,0.001, Fig. 8C), which is consistent with the

Figure 4. Most proteins are localized at multiple subcellular compartments. (A) The ten compartments with the highest numbers of
assigned ORFs at a Bonferroni-adjusted threshold of ~PP,2.561024 (RNP = ribonucleoprotein). (B) Distributions of ORFs with different numbers of
assigned subcellular compartments. The assignments were based on P-profileSVM with all 73 compartments, P-profileSVM with a reduced set of 22
compartments, UCSF, and SGD GoSlim cellular component annotations (M = medians, m= means of the distributions). (C) Comparisons of the mean
numbers of compartments assigned to an ORF by different profiling/annotation methods. (Cytoplasmic/Non-cytoplasmic ORFs = ORFs assigned or
not assigned with cytoplasm, respectively; error bars = standard errors; *** = P,0.001, two-sided permutation test for the difference in means.)
doi:10.1371/journal.pcbi.1003504.g004
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slow evolutionary rates of highly expressed proteins [43].

However, using regression modeling, we found that protein

expression level is not a significant confounding factor between

the association of dp and shared compartment ratio (Fig. 8D).

Importantly, these results agree with the results that we obtained

from duplicates with different divergence times. All of our results

Figure 5. Duplicates with different divergence times have significantly different spatial divergence levels but similar numbers of
occupied subcellular compartments. (A) We used a phylogeny of orhtologous gene groups estimated for Ascomycota fungi [37] (inset = number
of S. cerevisiae duplicates that we could traced to their originating ancestors without any loss event; blue = ‘‘old’’ duplicates; red = ‘‘young’’ duplicates;
WGD = whole genome duplication.) The (B) mean P-profile dissimilarity scores (dp), (C) shared compartment ratios, (D) mean protein expression
levels, and (E) total numbers of occupied compartments for duplicates with different divergence times (dashed black vertical line = division between
‘‘young’’ and ‘‘old’’ duplicates; error bars = standard errors; red/blue line = mean values for the young or old duplicates, respectively; P-values from
two-sided t-tests between young and old duplicates.) (F) Results from linear regression modeling of dp and shared compartment ratio using
divergence age and protein expression level as factors (T = T-statistics of the factors; F = F-statistics for the analyses of variance (ANOVA) between two
regression models with different factors; R2 = squared correlation coefficients between the actual and predicted values of dp or shared compartment
ratio.)
doi:10.1371/journal.pcbi.1003504.g005
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Figure 6. Large portion of WGD duplicates now have diverged localization patterns. Distributions of (A) P-profile dissimilarity scores (dp),
(B) ratios of shared compartments, and (C) numbers of compartments assigned to WGD duplicate (red) and random non-duplicate (black) pairs
(M = medians, m= means of the distributions; two-sided permutation tests for differences in medians or means.) Protein pairs with dp$10th-percentile
of non-duplicate pairs are referred to as ‘‘dissimilarly localized’’ (DL) pairs, or otherwise as ‘‘similarly localized’’ (SL) pairs. (D) Ratios of DL duplicate
pairs in the ten biological processes with the highest numbers of duplicate pairs (parentheses = numbers of duplicate pairs with P-profiles, red
dashed line = DL-duplicate ratio for all duplicate pairs.) (E) Example images from the UCSF dataset [1] showing DL duplicate pairs with different dp

values. The intensity of each image has been scaled to the same range. The molecular functions of the duplicates are also shown if they are known.
doi:10.1371/journal.pcbi.1003504.g006
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could be explained by multi-compartment localizations of

ancestral genes. After duplication, different duplicate copies of a

gene evolved to develop more specific localization patterns over

ancestral compartments. Therefore the total numbers of occupied

compartments remain largely unchanged, while the shared com-

partment ratios are decreasing. Our results suggest that localiza-

tion divergence was more frequently due to sublocalization.

Discussion

Using PLAST, we demonstrate that protein subcellular localiza-

tion can be quantitatively compared and analyzed to reveal protein

localization-function relationships that are not obvious under

qualitative representations of protein localization. First, protein

localization in multiple subcellular compartments is common.

Second, spatially-associated proteins tend to participate in related

biological processes, and we have identified a repertoire of

potentially novel components of biological processes performed at

major subcellular compartments. Third, ,42–84% of duplicate

proteins now have diverged localization patterns. Fourth, most of

these proteins still perform the same molecular functions, but close

to half of them have started to involve in different biological

processes, likely due to adaptations to more specific or new

subcellular compartments. Fifth, duplicate proteins occupy similar

numbers of compartments irrespective of their divergence times or

spatial divergence levels, and therefore protein relocalization might

be more frequently due to sublocalization. The sublocalization

model is very similar to an extensively studied model of functional

evolution called ‘‘subfunctionalization’’, where duplicate genes

evolved to complement each other by jointly retaining the full

functions of their ancestral genes [44]. However, the sublocalization

model does not preclude further functional evolutions via sub-

Figure 7. Divergence of protein subcellular localization is
significantly associated with divergence of biological process
but not molecular function. Contingency tables showing the
numbers of SL and DL-pairs with similar or dissimilar (A) biological
processes or (B) molecular functions based on the SGD GOSlim
annotations. Only duplicate pairs with both P-profiles and GOSlim
annotations were considered. (Duplicate pairs with 75% or more
matching functional annotations = ‘‘similar’’ BP or MF pairs, otherwi-
se = ‘‘dissimilar’’ BP or MF pairs; P-values shown were obtained using
two-sided Fisher’s exact tests.)
doi:10.1371/journal.pcbi.1003504.g007

Figure 8. Spatial divergence level of WGD duplicates is significantly correlated to shared compartment ratio but not total number
of occupied compartments. Scatter plots showing (A) shared compartment ratio, (B) total number of compartments, and (C) mean protein
expression level of WGD duplicates with different dp values (R = Pearson’s correlation coefficient, dashed lines = best linear regression fits of the data.)
(D) Results from linear regression modeling of shared compartment ratio using dp and protein expression level as factors (T = T-statistics of the
factors; F = F-statistic for the analysis of variance (ANOVA) between two regression models with different factors; R2 = squared correlation coefficients
between the actual and predicted values of shared compartment ratio.)
doi:10.1371/journal.pcbi.1003504.g008

Protein Localization Analysis and Search Tools

PLOS Computational Biology | www.ploscompbiol.org 11 March 2014 | Volume 10 | Issue 3 | e1003504



functionalization or other evolutionary mechanisms [45]. Together,

our results underscore the importance and utility of quantitative

localization profiles in studying protein localization and function.

How can an ancestral gene, or a gene in general, produce

proteins localized in multiple compartments? Several molecular

mechanisms are possible. First, the budding yeast Lachancea kluyveri,

which diverged from S. cerevisiae before WGD, has a single ortholog

to the S. cerevisiae SKI7 and HBS1 genes (Fig. 6E). This pre-WGD

ancestral gene is alternatively spliced to generate two different

conserved proteins that can perform similar functions as S. cerevisiae

Ski7 or Hbs1, respectively [46]. Second, the filamentous fungus

Aspergillus nidulans has a single NADP-dependent isocitrate dehy-

drogenase (idpA) that has two Homo sapiens orthologs (IDH1, IDH2)

and three S. cerevisiae orthologs (IDP1, IDP2, and IDP3) [47].

Interestingly, this gene has two alternative transcription start sites

that specify mitochondrial or cytoplasmic and peroxisomal locali-

zations; whereas the H. sapiens IDH1 and IDH2 are specifically

localized to cytoplasm and peroxisome or mitochondrion, respec-

tively; and the S. cerevisiae IDP1, IDP2, and IDP3 are specifically

localized each of these three compartments. Third, several core

glycolytic enzymes were also recently found to be targeted to both

cytoplasm and peroxisome via alternative splicing and stop codon

read-through of the same genes in fungi [48]. Similar transcriptional

and/or other post-translational mechanisms [14] may also produce

proteins with multi-compartment localization patterns. Quantita-

tive localization profiles are therefore essential to analyze the

complex localization patterns of these proteins.

PLAST has several limitations. First, it only works for proteins

that can be fluorescently labeled without affecting their localiza-

tions. Second, it does not work well for proteins with very low

abundance levels. Third, it has poor detection of yeast two-hybrid

interactions, likely due to the more transient nature of these

interactions [30]. Nevertheless, it can still achieve better overall

performances than current protein localization annotations,

especially for protein complexes that localized at multiple

subcellular compartments. Recent advances in the developments

of brighter fluorescent probes and higher-resolution imaging

techniques [49] may further improve the performance of PLAST.

As more genome-wide protein localization image datasets

become available for different organisms or species [3,4], PLAST

can be readily used to compare protein localizations across different

levels of a phylogenetic tree. Protein localization maps can be

constructed for cells from different organisms or species using a

common set of conserved subcellular compartments. Other possible

extensions of PLAST include predicting targeting signals or protein-

protein interactions based on proteins that have similar subcellular

localization patterns. We have implemented the cell segmentation

and feature extraction steps of PLAST using a user-friendly and

publicly-available bioimage analysis software platform called

‘‘cellXpress’’ [50], and the P-profile construction and compartment

mapping steps using standard R scripts. We have also developed a

public web interface (http://plast.bii.a-star.edu.sg) that allows

researchers to query protein localization maps created using

PLAST. These resources enable systematic and quantitative

analyses of protein localization-function relationships, and will help

researchers to elucidate protein functions and the causes of their

changes.

Materials and Methods

Datasets
We used the S. cerevisiae GFP image dataset and annotations

generated by UCSF [1], the phylogeny of orthologous gene groups

estimated by Wapinski et al. [37], the WGD duplicate gene list

predicted by Gordon et al. [39], and the AP-MS and Y2H datasets

generated by the Dana-Farber Cancer Institute [30]. We retrieved

the lists of valid ORFs, GO annotations, GO Slim annotations,

GO protein complexes from the Saccharomyces Genome Data-

base (SGD) [28]. Further information about these datasets is

included in the Supplementary Text S1.

Overview of our image processing pipeline
For the UCSF yeast GFP dataset, we have developed an

image-processing pipeline to estimate cell boundaries based on

DIC illumination and DAPI staining. Our method consists of

four major steps: background subtraction, image alignment, cell

segmentation, and cell combination (Supplementary Fig.
S9).

Background subtraction
We minimized non-uniform background intensities in micros-

copy images using background subtraction. For fluorescence

images, we used the rolling ball background subtraction algorithm

implemented in ImageJ [51]. We set the rolling ball size to 50

pixels, which is larger than the average diameter of a budding

yeast cell in the images. For DIC images, we used ImageJ to

convolve the original images with a Gaussian function (s~20) and

divide the original images with the convolved images.

Image alignment
We noticed non-zero lateral offsets between the DIC and

fluorescence images (both GFP and DAPI) in the UCSF yeast GFP

dataset. These offsets might be due to misalignment of image

acquisition instruments. To reduce these artifacts, we have

developed a three-step image alignment procedure based on

cross-correlation (Supplementary Fig. S10). In the first step, a

DIC image was segmented to obtain a binary cell mask (MDIC )

using the Otsu’s thresholding method [52], followed by six

successive dilations and eight successive erosions with a 363

diamond-shape structuring element. In the second step, we

estimated the displacement dx,dy

� �
between the binary cell mask

and a GFP image using the standard cross-correlation algorithm:

dx,dy

� �
~ arg max

x,y

X
x’

X
y’

IGFP x,yð ÞMDIC x{x’,y{y’ð Þ
" #

,

where IGFP is the fluorescence intensities of the GFP image at

position (x,y). In the third step, we translated the DIC image by

IDIC x{dx,y{dy

� �
to align it with the GFP image. The same

alignment algorithm was also used to align a DAPI image.

Cell segmentation
After image alignment, we identified individual budding yeast

cells from the images (Supplementary Fig. S9). First, to

suppress high-frequency noise in the images, we smoothed the

DIC and DAPI images by convolving them with a 969 2D

Gaussian lowpass filter (s~5). Then, we identified the nuclear

regions from the DAPI images using a local structure identification

algorithm (see Local structure identification section below).

We set the algorithm’s window size (w) to be 35 pixels, and bias

constant (e) to be 260. Last, to identify cellular regions from the

DIC images, we applied the watershed segmentation algorithm

implemented in OpenCV to the gradient of the DIC images. The

identified nuclear regions were used as initial seeds for the

algorithm.
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Local structure identification
We estimated binary local structures using an adaptive thresh-

olding algorithm [53]. Let a 8-bit image of a single budding yeast

cell be I x,yð Þ[ 0,255½ � where x and y are the x and y coordinates,

respectively. We computed an adaptive threshold k x,y,w,eð Þ for

each pixel in the image using

k x,y,w,eð Þ~m x,y,wð Þ{e,

where m x,y,wð Þ is the mean of the intensity values of a w|w
window centered at x,yð Þ, and e is a user-defined bias constant.

Then, we estimated binary local structures, S x,y,w,eð Þ, by

applying the thresholds to all pixels in the image:

S x,y,w,eð Þ~
1, if I(x,y)wk(x,y,w,e)

0, otherwise

�
:

Cell combination
To reduce oversegmentation, we combined two attached

cellular regions if they satisfy the following two criteria:

a1za2vA \
t1{t2j j
t1zt2j jwT ,

where a1 and a2 are the areas of the two cellular regions, t1 and t2

are the total DNA intensity of the two cellular regions, A is a

threshold for maximum cell area, and T is a threshold for

minimum DNA intensity difference between the two regions. For

the UCSF yeast GFP dataset, we used A~1800 and T~0:1.

Evaluation of cell segmentation
We compared cell masks obtained from our segmentation

algorithm, a previous graphical-model-based segmentation algorithm

[11], and manual segmentation (Supplementary Fig. S1). We

selected 20 images with sparsely distributed yeast cells and 20 images

with densely distributed yeast cells. These two image sets represent

easy and difficult conditions for automated cell segmentation. We

expect the segmentation errors of the dense images to be lower than

the sparse images. To obtain a ground truth for comparing

segmentation errors, we manually segmented each images using a

pen-based digitizer (Toshiba M200 laptop). The cell masks for the

graphical-model-based algorithm were obtained using the Matlab

source code downloaded from http://murphylab.web.cmu.edu/

software/2007_Bioinformatics_Yeast/ without any modification.

We used two different segmentation performance criteria: the

boundary and Rand error indices [54]. The boundary error index

(Eboundary) measures the averaged distance between the boundaries

of cell masks obtained from manual and automated segmentation,

respectively. Smaller boundary error index values mean higher

automated segmentation accuracy. We define the boundary error

index between two sets of boundary pixels (B and B’) from a

manual segmentation mask (M ) and an automated segmentation

mask (M ’), respectively, to be:

Eboundary(M,M ’)~
1

Bj j
X
b[B

min
b’[B’
f b{b’k k2g,

where b and b’ are individual pixels within sets B and B’,
respectively; :j j is the cardinality operator; and :k k is the Euclidean

norm.

We also used the Rand error index [54], which measures the

frequency in which the two segmentation masks disagree over

whether a pair of pixels belongs to same or different segmented

cellular regions. Let us denote the set of labeled regions in a

manual segmentation mask M to be L~ Rif g and the set of

labelled regions in an automated segmentation mask M ’ to be

L’~ R’if g, where Ri and R’j are the i-th and j-th connected pixels

within the respective masks. Furthermore, we denote c to be the

number of pixel pairs in the original image that belongs to the

same sets in L and the same sets in L’, and d to be the number of

pixel pairs in the original image that belongs to different sets in L
and different sets in L’. Then, the Rand error index is:

ERand (M,M ’)~1{
czd

N

2

� � :

where N is the total number of pixels in the original image.

Identification of subcellular regions
Based on the cellular and nuclear (DNA) regions identified from

our segmentation algorithm (see Cell Segmentation above), we

defined three additional subcellular regions, namely cytoplasmic

(non-DNA), cytoplasmic boundary, and inner cytoplasmic regions

(Supplementary Fig. S11). The cytoplasmic region was

computed by subtracting the nuclear regions from the cellular

regions. The cytoplasmic boundary region was computed from the

cytoplasmic region using a binary erosion operator with a circular

structuring element (radius = 3 pixels). Finally, the inner cytoplas-

mic region was computed by subtracting the cytoplasmic

boundary region from the cytoplasmic region.

Single-cell intensity normalization
To eliminate the effects of protein-to-protein variations in

expression levels and only consider protein spatial localization

patterns, we divided the GFP intensity values of all the pixels

within the detected cellular regions (see Identification of
subcellular regions above) of individual yeast cells to their

sums. So, the total GFP intensity of each normalized cell became

one. All features were extracted only after this normalization step.

Feature extraction
We extracted 623 features from the normalized GFP images of

each budding yeast cell. They include 81 morphology, 45

intensity, 20 intensity ratio, 273 Haralick texture [55], 18 moment

[56], and 186 local structure features of the five identified

subcellular regions. Most of these features were commonly used to

describe protein subcellular localization patterns [57]. Local

structure features are developed by us for PLAST, and described

in more detail below.

Local structure features
We have designed a new feature type, called ‘‘local structures’’,

to describe protein distribution patterns in local subcellular

regions. Extraction of local structure features consists of three

steps: local structure identification, global ratio feature computa-

tion, and stepwise ratio feature computation. In the first step, we

applied the local structure detection algorithm (see Local
structure identification above) to identify local structures

from the GFP images. A smaller window size (w) will extract finer

local structures, while a larger window size will extract coarser

global structures in the protein localization patterns. For the

UCSF yeast GFP dataset, we set e~10 and found that the local
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structures of most yeast cells converged to similar global patterns

after w = ,33 (Supplementary Fig. S12). Therefore we only

used 16 different window sizes (w~3,5,7, � � � ,33 pixels) for feature

extraction.

In the second step, we extracted six features (Fi(w) where

i~1,2, � � � ,6) based on the identified local structures of window

size w~3,5,7, � � � ,33. These features are total GFP intensity, mean

GFP intensity, standard-deviation GFP intensity, binary object

number, binary object total area, and binary object mean area.

We also extracted the same features (F ’i) but based on the cellular

regions of the same images. Then, we computed global ratio

features (GRi(w)) of the local structures using

GRi(w)~1z
Fi(w){F ’i
Fi(w)zF ’

:

These features are designed to detect the concentrations of GFP

signals in the identified local structures. For the UCSF yeast GFP

dataset, this amounted to 6 features per window size616 window

sizes per cell = 96 features per cell.

In the third step, we computed the stepwise ratios (SRi(w)) of

the same six features between local structures of two consecutive

window sizes, namely

SRi(w)~1z
Fi(w){Fi(wz1)

Fi(w)zFi(wz1)
,

where w~3,5,7, � � � ,31. These ratios are designed to detect

changes in the concentrations of GFP signals from finer to coarser

local structures (Supplementary Fig. S12). For the UCSF yeast

GFP dataset, this amounted to 90 additional features per cell.

Therefore, the total number of local structure features was

96+90 = 186.

Quality control
To automatically remove badly or wrongly segmented cells, we

used two quality control criteria, namely cell area and solidity (cell

area/convex hull area). First, we removed segmented cells that

have cell area ,300 pixels or .2000 pixels. Then, we removed

segmented cells that have solidity value .0.2. There were 33

strains with more than one image set, and for each strain we used

only one image set. We removed three yeast strains (YDL125C,

YJL026W, YLR109W) that have abnormal image size (58658

pixels). After feature extraction, there were 15 cells with NaN

values, and we replaced these values with the medians across all

cells in each of the yeast strains. We obtained ,20 segmented cells

per yeast strain on average. Only one of the yeast strains, namely

YHR011W, has less than two cells, and thus the whole strain was

removed from further analysis. We also removed 55 strains that

have mislocalized proteins due to the GFP tags [1], and 34 strains

that have invalid ORFs according to SGD (see Datasets). The

final number of yeast strains that we used in our study was 4066.

P-profileSVM construction
To construct P-profilesSVM for yeast strains that have been

labeled for a protein, we used a SVM [16] with a linear kernel

function that has good performance in many real classification

problems [58,59]. The decision function of the SVM is given by

f (X )~SW ,XTzb

~
Xn

i~1

aiyiSX ’i,XTzb

where W is a normal vector to the decision hyperplane

(Supplementary Fig. S2A), b is a bias term, X is an input

sample, X ’i is a training sample, ai is a coefficient determined by

the SVM algorithm, yi is the class label of the i-th training sample,

n is the number of training sample, and S,T is the dot product

operator. We trained the SVM to find the optimum W that can

separate yeast cells labeled for a protein, and a fixed set of

reference cells. Then, we divided W with the sum of all its elements

so that it becomes a unit vector. A SVM algorithm with linear

kernel function has two main parameters, the cost parameter for

constraint violation (cost), and the tolerance of termination

criterion (epsilon). We set epsilon to its default value, 0.01. For

each yeast strain, a grid search on the values of

2{12,2{11,2{10, � � � ,22,23,24
� �

was performed to determine the

cost parameter with the maximum training classification accuracy

between the two set of cells. We used the SVM training algorithm

implemented in the ‘‘LiblinearR’’ v1.80-6 package [60] under the

R environment.

To generate the reference cell set, we first randomly sampled 9

sets of reference cells (with 10, 20, 30, …, or 90 cells) from yeast

strains that have been assigned to four of the largest UCSF

categories, namely ‘‘cytoplasm’’, ‘‘nucleus’’, ‘‘mitochondrion’’, and

‘‘endoplasmic reticulum’’. Then, based on each of the reference

sets, we constructed a set of P-profiles (SVM) for all the yeast

strains, and trained a multi-class SVM classifier (see Supervised
classification of UCSF categories) to classify 2654 ORFs with

single UCSF category assignments. The evaluation process was

repeated five times with different random selections of reference

cell sets, and we chose the set of P-profiles with the highest average

accuracy in classifying the 2654 ORFs to represent protein

subcellular localization (Supplementary Fig. S2B).

Supervised classification of UCSF categories
We used a multi-class SVM with linear kernel proposed by

Crammer and Singer [61] and implemented in the ‘‘LiblinearR’’

v1.80-6 package under the R environment. Similar to two

previous supervised learning studies of the UCSF yeast GFP

datasets [11,13], we used six fold cross validation with six random

trials to estimate the classification accuracy for all UCSF

categories. In order to make our results comparable to these two

previous studies, we performed the supervised classification

analysis only on the 2654 yeast strains that had been assigned to

single subcellular compartments by UCSF, and without the quality

control step as described in the Quality Control section.

P-profile dissimilarity score
We computed the dissimilarity score between two P-profiles h

and g as

dp h,gð Þ~1{
h:g

hk k gk k :

To compare the P-profiles of a protein (h) and a group of proteins

(G), we took the mean of all the pairwise dissimilarity scores:

dp h,Gð Þ~ 1

n

Xn

i~1

dp h,gið Þ,

where G~ g1,g2, � � � ,gnf g.

Affinity propagation clustering
Affinity propagation is an algorithm that identifies representa-

tive data points, called ‘‘exemplars’’, and forms clusters of data
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points around these exemplars [29]. It starts by considering all

data points as potential exemplars, and exchange messages

between data points until convergence of a set of exemplars or

clusters. Preferences of data points are used to control the number

of selected exemplars. Low or high preference values lead to low or

high numbers of clusters, respectively. To cluster P-profiles, we

used the same preference values for all data points, and varied the

values to determine the optimum number of clusters (Supple-
mentary Fig. S3A). We used the affinity propagation clustering

algorithm implemented in ‘‘apcluster’’ v1.3.2 package under the R

environment.

Hierarchical clustering of P-profiles
We used the standard agglomerative hierarchical clustering

algorithm implemented in the hclust() function under the R

environment. The P-profile dissimilarity scores and Ward

agglomeration method were used.

Precision, recall and F1-score
The definitions of precision, recall, and F1-scores are:

Precision~
TP

TPzFP
,

Recall~
TP

TPzFN
, and

F1-score~2:
Precision:Recall

PrecisionzRecall
,

where TP is the number of true positives, FP is the number of false

positive, and FN is the number of false negatives. F1-score is the

harmonic mean of precision and recall. All of these three criteria

are commonly used to measure information retrieval performances

[32].

For each profiling/annotation method and each protein

complex, we measured the maximum F1-score of the method

across all the tested query-protein sizes for the protein complex.

To compare the performances of two different methods, we

performed a paired t-test between the maximum F-1 scores of the

methods obtained from all the protein complexes. The p-values for

all pair-wise comparisons of the four methods (P-profileSVM, P-

profilemean, UCSF and SGD Go Slim) were Bonferroni adjusted.

Subunit search based on UCSF or SGD GOSlim
annotations

Given a set of known subunits of a protein complex, we

identified the UCSF or SGD GOSlim cellular component

category associated with the highest number of subunits. Then,

we predicted all other ORFs annotated with this category to be the

other ‘‘subunits’’ of the complex, and measured the corresponding

precision, recall and F1 scores.

Catalog of subcellular compartments
To construct a localization map, we used a catalog of subcellular

compartments that consists of known protein components of 23

major organelles and 50 large protein complexes. The list of protein

components for major organelles is based on the manually curated

SGD GoSlim cellular component dataset (see Datasets). The

original dataset has 25 categories. We removed the ‘‘cellular_com-

ponent’’, ‘‘microtubule organizing center’’, ‘‘extracellular region’’,

‘‘unknown’’, and ‘‘other’’ categories, and included the ‘‘lipid

particle’’, ‘‘endosome’’, and ‘‘nuclear envelope’’ categories. The list

of components for large protein complexes is based on the manually

curated SGD GO protein complex dataset (see Datasets). The

original dataset has 416 protein complexes. We only considered

protein complexes with at least 15 subunits, and removed the

‘‘microtubule organizing center’’ complex because it overlaps with

the ‘‘spindle pole body’’ complex.

Compartment assignment
For each ORF, we systematically queried the P-profile database

for the dp scores between the ORF and all the compartments (see

Catalog of subcellular compartments above). Then, we removed

outliers by trimming the upper and lower fifth percentiles of the

obtained dp scores, and estimated the probability distribution of the

retained scores using the kernel density estimation method,

density(), implemented in the R environment. We identified

the local maximum of the distribution with the largest dp value,

and used the dp value as the mean (mnull) of the distribution of non-

specifically localized compartments. We assumed the non-specific

distribution is Gaussian, and estimated its standard deviation (snull)

from all dp scores larger than mnull. Then, we standardized all the dp

scores using ~ddp~ dp{mnull

� �	
snull , and also calculated their

corresponding P-values based on a normalized non-specific

distribution with zero mean and unit variance. Finally, we

performed Bonferroni correction on all the obtained P-values,

and assigned compartments with adjusted P-values less than a

given threshold to the ORF.

Duplicates with different divergence times
We obtained a phylogeny of orthologous gene groups estimated

for seventeen Ascomycota fungi [37]. We only used S. cerevisiae

duplicates that could be traced to their originating ancestors

without any loss events. The approximate divergence ages of the

phylogenetic tree are based on past estimations [38,62,63], and

only used for visualization in Fig. 5. In our analysis, we always

divided the duplicates into two groups: ‘‘old’’ (pre-WGD) or

‘‘young’’ (other) duplicates, and never use the estimated values of

these divergence ages.

Permutation test for difference in means or medians
To perform a non-parametric test for the statistical signifi-

cance of the observed difference in means or medians between

two sets of values, we randomly permutated the labels of the

datasets for 10,000 times. For each permutation, we measured

the mean or median difference between the two sets according

to the permutated labels. The P-value was estimated to be the

fraction of permutations with absolute mean or median

difference larger than the observed absolute mean or median

difference.

Software implementation and availability
We have developed ‘‘cellXpress’’ v1.10 (http://www.cell

Xpress.org) to perform all the image processing and feature

extraction steps [50]. The software package is general and

could also be used to process images of other cell types. The

extracted features were then loaded and processed using the R

computing environment v3.0.1 under Gentoo Linux operating

system. All the R source code for PLAST and datasets that we

used in this study can be downloaded from http://plast.bii.a-

star.edu.sg.
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Supporting Information

Dataset S1 Global subcellular localization map of the
budding yeast Saccharomyces cerevisiae proteome.
(CSV)

Dataset S2 List of proteins assigned with select subcel-
lular compartments.
(CSV)

Dataset S3 P-profile dissimilarity scores and numbers
of subcellular compartments localized by WGD dupli-
cate genes.
(CSV)

Figure S1 A DIC-based segmentation algorithm for
budding yeast cells. Example images from the UCSF dataset

[1] showing DIC and GFP channels overlaid with cell boundaries

detected using manual segmentation, Chen07’s graphical model

method [11], and PLAST on (A) sparse or (B) dense populations of

budding yeast cells (white lines = detected cell boundaries). The

overall boundary and Rand error indices are shown in the lower

panel for these two conditions (n.s. = P.0.05, *** = P,0.001,

n = 20 images, two sided t-test).

(TIF)

Figure S2 Construction of profile vectors from single-
cell feature measurements. (A) Schematic showing how P-

profiles are constructed to represent cells labeled for a protein. In

the m-dimensional feature space, each cell is represented by a

vector (red circles). ‘‘P-profilemean’’ is the mean or centroid (white

arrow in left panel) of all feature vectors for the cells labeled for the

protein. ‘‘P-profileSVM’’ is a unit vector (white arrow in right panel)

orthogonal to a hyperplane that optimally divides the cells labeled

for the protein (red circles) and a fixed set of reference cells (blue

circles). The hyperplane is determined using a linear support

vector machine (SVM). (B) Classification accuracies of all the

randomly selected sets of reference cells. Please refer to P-
profileSVM construction for the procedures to generate these

reference sets. The maximum and final selected reference cell set is

circled in red. (C) Comparisons of P-profilesSVM, P-profilesmean,

and quantiative features generated by two previous analysis

frameworks (‘‘Chen07’’ and ‘‘Huh09’’) [11,13] in classifying 2654

ORFs with single UCSF category assignments.

(TIF)

Figure S3 Clustering of P-profiles using an affinity
propagation algorithm. (A) Number of clusters (or exemplars)

selected by an affinity propagation algorithm as a function of

preference value. We chose to divide all the P-profiles into 20

clusters, before the number of clusters started to increase

dramatically. Each cluster was named according to its most

enriched UCSF category (see Fig. S4; NC = ‘‘nucleus’’, NL = ‘‘nu-

cleolus’’, CP = ‘‘cytoplasmic’’, MC = ‘‘mitochondrial’’, ER = ‘‘en-

doplasmic reticulum’’, PM = ‘‘plasma membrane’’, and AB = ‘‘am-

biguous’’). (B) Microscopy images from the UCSF dataset [1]

showing the final exemplars selected by the affinity propagation

algorithm. The intensity levels of each image have been scaled to the

same range to show protein subcellular localization patterns. The

ORF, protein name (if known), and the UCSF categories of the

exemplars are shown below their cluster names.

(TIF)

Figure S4 Automated clustering of P-profiles reveals
novel localization patterns. Heatmaps showing P-values for

the enrichments of (A) UCSF categories or (B) selected

significantly enriched GO biological process categories

(P,0.001) in the 20 identified clusters (Fig. 1D and S3) as

determined by one-sided hypergeometric tests. Each cluster is

labeled according to its most enriched UCSF category. The total

number of proteins in each UCSF or GO biological process

category is listed in parenthesis after the category name.

(TIF)

Figure S5 Normalized differences between F1-scores
are weakly correlated to protein complex sizes.

(TIF)

Figure S6 Examples of P-profile dissimilarity score
distributions for non-specifically localized compart-
ments. (Black curves = probability distributions of the dp values

between 10 randomly chosen ORFs and all 73 major subcellular

compartments; red dashed lines and curves = estimated means and

distributions, respectively, of the dp values between the ORFs and

non-specifically localized compartments; blue lines = Bonferroni-

adjusted P-value thresholds of 2.561024).

(TIF)

Figure S7 Subcellular localization map for the Saccha-
romyces cerevisiae proteome. A subcellular localization map

showing the standardized P-profile dissimilarity scores (dp) between

4066 ORFs (x-axis) and a comprehensive catalog of 73 major

subcellular compartments (y-axis) in a yeast cell. The compartments

(rows) were ordered using a hierarchical clustering algorithm with

cosine dissimilarity scores, and labeled with color codes according to

their known functions or localizations (‘‘common’’ compart-

ments = compartments assigned to large numbers of ORFs.)

(TIF)

Figure S8 ORFs assigned with cytosolic ribosome are
enriched with ORFs co-purified with cytosolic ribosome.
We obtained the list of ORFs that co-purified with cytosolic

ribosome from [36]. Shown are the numbers of ORFs in different

subsets of the data, and the P-values obtained from hypergeo-

metric tests.

(TIF)

Figure S9 An image-processing pipeline to segment
budding yeast cells.

(TIF)

Figure S10 Automated alignment of DIC and fluores-
cence images based on cross-correlation.

(TIF)

Figure S11 Example images showing the five subcellu-
lar regions identified using PLAST.

(TIF)

Figure S12 Example of binary local structures detected
using different window sizes.

(TIF)

Text S1 Sources of the datasets that we used in our
study.

(DOCX)
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