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Closing the structure-function divide is more challenging in the brain than in any other
organ (Lichtman and Denk, 2011). For example, in early visual cortex, feedback projections
to V1 can be quantified (e.g., Budd, 1998) but the understanding of feedback function is
comparatively rudimentary (Muckli and Petro, 2013). Focusing on the function of feedback,
we discuss how textbook descriptions mask the complexity of V1 responses, and how
feedback and local activity reflects not only sensory processing but internal brain states.
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IS V1 (SOMETIMES) AT THE TOP OF THE HIERARCHY?
The era of Mountcastle, Hubel and Wiesel had “profound phys-
iological implications” for the study of cortical processing (see
Kandel,2014). Hubel and Wiesel (1959) characterized the response
properties of visual cortical neurons in columns: V1 neurons
respond to their selective stimulus (e.g., a line of a certain orien-
tation), and are embedded in a cortical architecture that exposes
a functional map of columnar orientation preference and ocular
dominance. These milestone findings furnished the (still current)
textbook accounts of V1, which are dedicated to the feedfor-
ward cascade of processing and biased to neuronal spiking as
recorded in electrophysiology. However, owing to increasingly
sophisticated methodologies to assess functional responses, such
as high-resolution magnetic resonance imaging or optogenet-
ics combined with electrophysiology, this feedforward model of
V1 can be updated to incorporate the rich response properties
conferred by cortical feedback.

Neurons in early visual areas do not act as linear feature detec-
tors when faced with complex inputs such as natural scenes,
emphasizing the contribution of response modulation beyond the
classical receptive field (Kayser et al., 2004). For example, non-
linear receptive field models using natural stimuli predict V1
activity more optimally than a model fit using grating stimuli
(David et al., 2004); V1 responses to bars embedded in a natural
scene are reduced compared to bars on a uniform background
(MacEvoy et al., 2008); and during natural scene viewing, the sur-
round, local field potential (LFP) and spike history contribute to
V1 spiking almost as much as the classical receptive field (Haslinger
et al., 2012). Furthermore, V1 neurons are active even during
occlusion (Sugita, 1999; Lee and Nguyen, 2001), revealing that
non-stimulus-driven inputs allow early neurons to respond even
to stimuli which are inferred but not directly presented to the
retina. Early visual neurons therefore do not only transform retinal

signals, but integrate top–down and lateral inputs, which convey
prediction, memory, attention, reward, task, expectation, loco-
motion, learning, and behavioral context. Such higher processing
is fed back (monosynaptically or otherwise) to V1 from cortical
and subcortical sources (Muckli and Petro, 2013). Understanding
the function of feedback has implications not only for vision, but
for structural and dynamic networks for cognition and behavior
(Harris and Mrsic-Flogel, 2013). Indeed, Gilbert and Li (2013)
suggest that each cortical neuron is a “microcosm of the brain as
a whole, with synapses carrying information originating from far
flung brain regions.” Top–down influences modulate feedforward
(classical) receptive fields and also many of the contextual inter-
actions performed by intrinsic V1 neurons. Here, we discuss some
effects of top–down inputs to V1, culminating in the tempting
speculation that V1 is misplaced as merely the earliest, sensory
stage of the visual cortical hierarchy.

NON-GENICULATE INPUT TO V1 – INTERNAL PROCESSING
Aptly, the visual brain is classically studied by presenting it with
visual stimuli, revealing extrinsically driven receptive fields in
V1. However: (1) sensory areas are neither monomodal (e.g.
Vetter et al., 2014) nor immune to higher processes; (2) feedback
and lateral inputs outnumber feedforward inputs and (3) the
brain is now more commonly referred to as a parallel rather than
serial processor (Singer, 2013). Much can therefore be learned
about intrinsically driven “response fields” in V1 (Muckli, 2010),
and there is abundant evidence that V1 is involved in process-
ing distinct from the classical feedforward activation that defines
its position as the first cortical stage of vision. The reciprocal
nature of the visual system suggests that in fact, in an inversion
of sensory processing, visual scenes can be back-projected to V1
(Harth et al., 1987). If so, intuitively this “internal vision” would
be accessible in V1 during sleep or mental processing, i.e., when
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there is no feedforward input. It is possible to study internal pro-
cessing by examining V1 in the absence of feedforward activation,
such as in visual occlusion (Smith and Muckli, 2010) or illusion
(Lee and Nguyen, 2001; Muckli et al., 2005; Murray et al., 2006;
Weigelt et al., 2007; Maus et al., 2010; Kok and de Lange, 2014),
in the blind (e.g., Amedi et al., 2004), blindfolded (Vetter et al.,
2014) or sleeping (Horikawa et al., 2013), and during working
memory, (Harrison and Tong, 2009), imagery (Albers et al., 2013)
and expectation (Kok et al., 2014). During eyes-closed, resting
state functional magnetic resonance imaging (fMRI), hyperactive
V1 has been observed in individuals with posttraumatic stress
disorder who score highly on scales for re-experiencing (Zhu
et al., 2014). In addition to feedback from higher visual areas,
such as during occlusion or illusion, top–down influences sig-
nal behavioral context so that V1 neurons respond adaptively to
the functional state of the brain (Gilbert and Li, 2013). We dis-
cuss higher processing that can be read out in V1, and suggest
that not only is V1 activity linked to higher vision, but to brain
states such as attention or expectation (that are determined by net-
work interactions, Park and Friston, 2013) and tasks (Petro et al.,
2013).

PREDICTION
A great deal is established about which external inputs make
visual neurons spike. In contrast, less is known about the inputs
which do not directly signal feedforward information transmis-
sion. One eminent theory is that feedback is actively involved
in the analysis of feedforward signaling. Feedback may perform
hypothesis-testing by transmitting Bayesian priors generated from
memory or internal models down the visual hierarchy (e.g. Lee
and Mumford, 2003). For example, one candidate mechanism
for perceptual inference is that of predictive coding, in which
descending predictions arising from deep pyramidal cells are com-
pared to incoming sensory signals, and the computed mismatch
(prediction error) is transferred in the feedforward stream of the
superficial pyramidal cells up to the next higher cortical level to
update internal models (reviewed in detail Friston, 2005; Clark,
2013). Several models in which neurons engage in probabilistic
processing in order to infer the causes of their inputs have been
proposed (e.g., Rao and Ballard, 1999; George and Hawkins, 2009;
Lochmann and Deneve, 2011; Dura-Bernal et al., 2012), posing
a challenge to feedforward theories of vision. The role of inter-
nal models in mediating predictive processing has been suggested
by data from ferret V1, where, over development, spontaneous
activity becomes increasingly similar to the activation induced by
natural scenes (Berkes et al., 2011). This indicates that intrinsic
(spontaneous) activity is akin to the responses that were previ-
ously experienced. Furthermore, when the visual flow of grating
stimuli is selectively de-coupled to the rate at which a mouse
runs on a ball, neurons in layer II/III of V1 signal the mismatch
between actual visual flow feedback and that predicted by locomo-
tion (Keller et al., 2012), which could be the putative error signal
in V1. Visual evoked potentials in mouse V1 have been shown
to be specific to previously learned spatiotemporal sequences of
grating stimuli, and are even predictive of individual sequence
elements during omissions (Gavornik and Bear, 2014). Further-
more, there are experimental observations indicating cortical

prediction in human V1. Using fMRI,Alink et al. (2010), measured
a reduction in blood oxygen level dependent (BOLD) signal to
spatiotemporally predictable stimulation. This reduction is con-
sistent with the suppression of predictable inputs in lower levels
by feedback from higher areas (in this instance, V5; Vetter et al.,
2013). Such observations are tailored to the assumptions made
by predictive coding, and it is known that the hemodynamic sig-
nal is sensitive to top–down afferents to V1 (Logothetis, 2008;
Muckli, 2010). However, relating theoretical models with empir-
ical data will require more invasive strategies. Techniques such
as optogenetic fMRI (ofMRI, which permits the study of neu-
ronal function whilst measuring brain activity, Lee et al., 2010)
promise to shed light on how to extrapolate from the macroscopic
level of the BOLD signal to the microscopic level of neurons pre-
scribed in the predictive coding framework, during testable visual
stimulation.

Theories of cortical prediction are elegant, biologically conceiv-
able and mathematically valid, however, they remain data-modest
in early visual cortex. We identify at least two key areas that
require substantiation: (1) How are predictions and errors imple-
mented by V1 neurons? Models of prediction are constrained
by anatomy (cortical laminae, feedback/feedforward projections,
cell subtype, e.g. local GABAergic inhibitory interneurons and
long-range glutamatergic excitatory neurons, and synaptic phys-
iology), but it remains theoretical to what extent or how V1
neurons implement prediction in their ion channels, membrane
voltage, and synapses (see Fiorillo, 2008). Furthermore, (2) how
does the abstract language spoken by higher areas translate to
the detailed language of V1 neurons? V1 projects upwards a fine-
grained representation, which becomes increasingly invariant as
it advances the hierarchy, but it is unclear how abstract repre-
sentations are transmitted back down the hierarchy. If feedback
contains probabilities or predictions of sensory inputs, and V1
assimilates these with the actual sensory inputs, then V1 is best
conceptualized as an interactive hierarchical loop and not as a
“first pass analysis” (Lee et al., 1998). How sensory inputs, which
signal detail, are combined with internal templates, which may
signal predicted means or variances of sensory details, needs to
be tested further. A candidate for the integration of feedforward
and feedback signals is back-propagation-activated calcium sig-
naling (BAC; Larkum, 2013). The anatomical substrate of this
“BAC” mechanism is the layer I tuft dendrites of the pyrami-
dal cells which reside in layer V. Vast feedback inputs arrive to
these tuft dendrites, triggering Ca2+ spikes proximal to the api-
cal dendrites. The consequence of these dendritic Ca2+ spikes
is that feedback inputs may dictate the firing of the pyramidal
neuron far more than was previously thought. Via this Ca2+
spiking mechanism, the response to feedforward somatic input
(or sensory signals) is strengthened if it matches the contextual
inputs or internal predictions to the tuft dendrites, e.g., it can con-
vert a single somatic output spike into a 10 ms burst containing
2–4 spikes. The discovery of this associative mechanism illumi-
nates one “crowning mystery” of cortex, that is, layer I (Hubel,
1982).

Observations of BAC firing impose constraints on models of
how pyramidal neurons accomplish predictive coding. During
BAC signaling, the predictable information is amplified. However,
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under rules of predictive coding, feedback acts to suppress activ-
ity in the preceding area of cortex. The common detail between
predictive coding and BAC signalling is apparent in the laminar
organization of predictive coding: deep layer 5 pyramidal neurons
are the “prediction units,” the same as is described in mecha-
nisms of BAC signaling. However, BAC signaling suggests that
predictable inputs are amplified within a single neuron, whereas
predictive coding may engage computations within columnar cir-
cuitry for an overall effect to silence predictable inputs to an area.
Therefore, although predictive coding and BAC overlap insofar as
deep pyramidal neurons signal predictions, it remains to be seen
how these amplified predictions within a layer 5 neuron contribute
within a column (or area) to suppress prediction error in layer 2/3
(the “prediction error units” in predictive coding) before residual
errors are sent up the hierarchy. Preparations which can measure
dendritic signaling will contribute to resolving this question, and
more generally are an exciting prospect for future explorations
of V1 neurons which receive only feedback inputs, i.e., during
occlusion or expectation (prior to stimulation).

MEMORY
Given the fine-grained and retinotopic nature of V1, it is a can-
didate region for the maintenance of high-resolution information
during working memory or reactivation during episodic mem-
ory. Spatially specific working memory representations in V1 have
been demonstrated by the successful decoding of grating stimuli
during a retention period in the cortical location of their original
representation (Pratte and Tong, 2014). The information main-
tained in working memory that is represented in V1 reflects the
relevance of items, and this can be causally interrupted using
transcranial magnetic stimulation (TMS) (Zokaei et al., 2014). In
a memory-color paradigm, successful cross-classification of V1
activity patterns between colored hues and gray scale objects asso-
ciated with those hues, was interpreted as the result of the feedback
of prior knowledge to V1 (Bannert and Bartels, 2013). The capac-
ity of visual memory for object details is great (Brady et al., 2008);
these details may be stored as early as V1 and reactivated by feed-
back, contingent on behavioral demands. The reactivation of V1
may be related to top–down influences from the hippocampus for
successful memory consolidation during sleep. Firing sequences
evoked during awake experience are replayed in both V1 and the
hippocampus during sleep phases in the mouse (Ji and Wilson,
2007). Furthermore, human hippocampus activity covaries with
early visual activity, which predicts the information that sub-
jects retrieve from memory (Bosch et al., 2014). The hippocampus
exerts top–down effects on early vision during scene extrapolation
(Chadwick et al., 2013), prompting new theories of hippocampal
memory whereby it constructs the “world beyond the immedi-
ate sensorium” (Maguire and Mullally, 2013). The recruitment
of V1 by the hippocampus to construct the world would appear
functional, given that V1 depicts the visual environment with the
highest resolution.

REWARD
V1 was not classically thought to play an essential role in reward
processing. However, a number of studies indicate that reward
modulates the representation of features in V1. V1 neurons in

the rat have been shown to signal value (Shuler and Bear, 2006),
and more recent calcium-imaging data from mouse V1 reveals
that the association between stimulus and reward alters response
amplitude in stimulus-specific assemblies (Goltstein et al., 2013).
Neurons in macaque V1 that signal value also exhibit strong
attentional effects (Stǎnişor et al., 2013) and future studies will
clarify the role of feedback in this overlap. Cholinergic input to
V1 from the basal forebrain of the rat modulates specifically the
learning of reward timing, but not the expression of previously
learned cue-reward intervals (Chubykin et al., 2013). In human
early visual cortex, value is encoded across populations of neurons,
in which response profiles are sharpened (Serences and Saproo,
2010). Anticipatory activity in V1 may in some instances be driven
by dopaminergic input directly from the ventral tegmental area
(Phillipson et al., 1987; Tan, 2009) or indirectly from the prefrontal
cortex (Noudoost and Moore, 2011). Anticipatory haemodynamic
signals in V1 are found even without feedforward stimulation
(Sirotin and Das, 2009). Such baseline shifts point to the “dark
matter” of the brain, that is, much can be learned from the
substantial energy consumption of neurons even during resting
states (Shoham et al., 2006; Raichle, 2011). In an elegant design to
exclude the effects of anticipation (as well as attention and expec-
tation), it was shown that the effects of dopaminergic reward
on V1 can decrease its activity (Arsenault et al., 2013). Further
experiments will elucidate if this decrease equates to a sharpened
representation of rewarding stimuli, and more generally, the role
of cholinergic, dopaminergic, and feedback mechanisms in reward
effects in V1.

VISION FOR ACTION AND VISUAL PERCEPTION
Feedback to V1 has a role in how we perceive and interact with
the visual world. For example, reciprocal feedback from pari-
etal portions of the dorsal stream to early visual areas is likely
involved in visuospatial processing, although the function of these
networks remains to be fully elucidated. The dorsal stream is acti-
vated during reaching and grasping, and Ban et al. (2013) offer
the thought-provoking idea that early visual cortex interacts with
other sensory modalities (e.g. tactile or motor), as an implicit rep-
resentation of an occluded object in visual cortex could facilitate
the touching or grasping of the occluded portion of the object.
In addition, top–down input, likely from auditory cortex or asso-
ciation areas, leads to categorical activation in early visual cortex
(Vetter et al., 2014) during natural sound processing in blindfolded
subjects. Such activity in visual cortex could be biased by higher
areas to the feature content or localisation of content in a visual
scene, or, with motor guidance, aid in visually orienting to the
source of auditory signals. Motor inputs related to locomotion are
sufficient to drive V1 activity; Keller et al. (2012) observed motor-
related activity in mouse V1, without any visual input. V1 neurons
responded when the mouse was running on a ball during com-
plete darkness, and this activity was comparable to that evoked
by visual stimulation with gratings. Further studies will clarify the
involvement of cortical feedback in visuo-motor processing and
the sensory guidance of movement, and the recruitment of V1 in
these processes.

The ventral visual stream is concerned with detailed form rep-
resentation, and the importance of feedback in the ventral stream

www.frontiersin.org November 2014 | Volume 5 | Article 1223 | 3

http://www.frontiersin.org/
http://www.frontiersin.org/Perception_Science/archive


Petro et al. Role of feedback to V1

or “recurrent occipitotemporal network” (Kravitz et al., 2013) is
linked to the retinotopic organization of V1. For example, objects
presented in the periphery trigger feedback to foveal V1 where
object detail is processed (Williams et al., 2008), and interrupt-
ing this feedback using TMS at a relatively late time interval
impairs peripheral object perception (Chambers et al., 2013). In
contrast, feedback related to scene processing is back-projected to
the periphery of V1 (Smith and Muckli, 2010). A causal role of
recurrent processing in the ventral stream suggests that late acti-
vation in V1 contributes to scene categorization (Koivisto et al.,
2011). During face processing, feedback (putatively from tem-
poral cortex) task-dependently biases retinotopic sub-regions of
V1 responding to certain features (Petro et al., 2013). Perceptual
expectation can enhance the representation of stimuli in V1 whilst
at the same time suppressing V1 (Kok et al., 2012), in line with
predictive coding theories of dampening predicted inputs. Within
both dorsal and ventral streams, recurrent feedback loops might
be critical for conscious processing (Lamme and Roelfsema, 2000;
Dehaene and Changeux, 2011).

Effects of feedback to V1 on visual perception have also been
studied more invasively, contributing to the mechanistic under-
standing of feedback. Enhanced visual discrimination is seen in
awake behaving mice after optogenetically activating choliner-
gic neurons projecting to V1 from the basal forebrain (Pinto
et al., 2013), with a probable role in attentional function. Dur-
ing scene processing, population codes in mouse V1 become
increasingly sparse compared to viewing control scenes lacking
statistical regularities (Froudarakis et al., 2014). This encoding
by a smaller set of neurons only when the scenes were not
phase-scrambled fits with theories of back-projected predictions
suppressing feedforward processing, or could be related to micro-
circuits within V1. The study of Berkes et al. (2011) mentioned
previously hints that the cortex utilizes a strategy of decreased
processing for experienced or expected signals. In ferret V1, it
was found that across development spontaneous activity begins
to reflect the activity evoked by natural scenes, and therefore
prior expectations. This increasing similarity between evoked and
spontaneous activity reveals that the cortex updates its internal
model with experience, with predictive coding theories suggest-
ing that these internal models are used to generate predictions
of sensory input, which can supress activity at early cortical lev-
els. Intra-areal, inhibitory interneurons can also modulate visual
perception. By optogenetically targeting parvalbumin-positive
interneurons in V1, Lee et al. (2012) revealed that these neurons
are involved in sharpening feature selectivity and in perceptual
orientation discrimination. Parvalbumin neurons are targeted by
feedback, and top–down connections putatively control inhibitory
activity as dictated by behavioral demands (possibly by inhibit-
ing predictable inputs). In neuropathophsyiology, N-methyl-
D-aspartate (NMDA) receptor hypofunction on parvalbumin
neurons interferes with gamma oscillations, which is linked to
schizophrenia and depression (Gonzalez-Burgos and Lewis, 2012;
Phillips and Silverstein, 2013). Attenuated visual illusion effects
observed in schizophrenia might relate to an interruption of
top–down predictions (see Notredame et al., 2014). These pre-
dictions are maintained in healthy populations who experience
the illusions.

Of the aforementioned studies, the data on visual perception
are conceivably related to predictions from higher cortical visual
areas. This predictive processing may be temporally discernible
from that of attention, and have sources in independent regions
from those that allocate attention. In contrast, it is less intuitive to
associate feedback with prediction during vision for action, with-
out knowing more about the cortico-cortical connections crossing
domains from motor to visual. However, prediction is assumed
to be a general function of the cortex and motor actions are
often highly repetitive and structured (and therefore predictable).
Anatomical connections reveal that it is essential to include the
contribution of subcortical pathways and the cerebellum in pre-
dictive feedback during sensorimotor processing. For example,
the cerebellum is involved in generating predictions of the sen-
sory consequences of actions (Kawato and Wolpert, 1998), which
may also be represented in V1. The cerebellum is also involved in
predictions of perception (Roth et al., 2013), suggesting that, like
cortex, the cerebellum’s role in prediction is unspecific to any one
processing domain. It remains unknown how V1 and the cerebel-
lum interact during perception, and what role feedback has in this
processing.

A NEW LANDSCAPE OF V1
For several years, neuroscience has yielded abundant data on the
intricate workings of V1. Yet, this unique cortical area remains, in
many ways, a mystery. The gain of modern experimentation is that,
with advancing imaging and recording techniques, we can under-
stand the (cellular) mechanics of V1. The reward for venturing
“under the hood,” will be to learn if theoretical concepts of cortical
feedback can be realized in corresponding biological substrates.
Hence, decades after the revolutionary work of Hubel and Wiesel
(1959), there are continued efforts to understand V1. For exam-
ple, it was found that in the macaque, the majority of feedback to
V1 arises from V2, where axons arborize in supragranular layers I
and II, and infragranular layer V (Rockland and Virga, 1989), and
more recently it has been shown that these axons fed back from
V2 to V1 differ in their bouton morphology (axons forming bou-
ton clusters or studded continuously with boutons in layer I, or
forming en passant boutons in layers III and V) and postsynaptic
density size (Anderson and Martin, 2009). Rodent models of V1
lend themselves to innovative invasive approaches, allowing coun-
tercurrent visual processing streams to be studied on the cellular
level. For example, using subcellular Channelrhodopsin-2-assisted
circuit mapping and patch clamp recordings, Yang et al. (2013)
showed that depolarizing feedback input is balanced between
parvalbumin interneurons and pyramidal neurons in layer II/III
of mouse V1. This balance is in contrast to feedforward path-
ways (which provide substantially more depolarizing input to
layer II/III parvalbumin neurons than to excitatory pyramidal
cells) and therefore has implications for pathway-specific excita-
tion/inhibition. In mouse layer V, feedback input to tuft dendrites
leads to NMDA spikes which (by supporting calcium spikes, which
are “tremendously explosive”) are thought to be critical for the
integration of top–down inputs in cortex (Larkum et al., 2009;
Larkum, 2013). Furthermore, it becomes increasingly clear that
we must “reach beyond the classical receptive field” (Angelucci
and Bullier, 2003) because feedback inputs bestow the full range
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of center and surround receptive field properties to V1 neurons
(in combination with feedforward and lateral inputs; Angelucci
and Bressloff, 2006). For example, in the macaque, surround sup-
pression in V1 is reduced when feedback is eliminated (Nassi et al.,
2013), feedback augments V1 responses to collinear contours in
the owl monkey (Shmuel et al., 2005), and during pattern motion
processing, feedback modulates subthreshold influences beyond
the classical receptive field, facilitating global constructs from local
features represented in V1 (Schmidt et al., 2011). Moreover, the
spatiotemporal receptive fields in layer II/III of macaque V1 may
be best characterized by their intracortical inputs and not by their
visual inputs (Yeh et al., 2009).

Markov et al. (2014) suggest that actually we have only a rudi-
mentary understanding of connectional rules of feedback and
feedforward projections. Indeed, there are thought to be two
systems of feedback and feedforward projections: supragranu-
lar and infragranular (Markov and Kennedy, 2013), and future
investigations will enlighten how these pathways constrain mod-
els of cortical information processing in more detail (e.g., Bastos
et al., 2012). Studies of neuronal synchrony suggest gamma-band
phase coherence is restricted to supragranular and beta-band to
infragranular layers (see Buffalo et al., 2011; Xing et al., 2012).
Top–down input in the beta or alpha band to deep layers modu-
lates gamma activity (associated with bottom–up processing) in
more superficial layers (see Spaak et al., 2012; Bastos et al., 2014,
bioRxiv). In monkey V1, distinct multiunit profiles in layers cor-
responding to feedforward and feedback processing can be seen
during the perception of figure-ground segregation (Self et al.,
2013). Laminar analysis of V1 in humans, using fMRI with mul-
tivoxel pattern analysis (MVPA), shows that contextual feedback
arrives to the superficial layers of cortex (Muckli, OHBM con-
ference abstract, 2014). MVPA scrutinizes information in the
multivariate pattern of activity across an array of voxels, to dis-
criminate between stimuli or states that are potentially neglected
by conventional analysis involving spatial averaging (Kriegeskorte
and Bandettini, 2008). The spectrally symmetric encoding mod-
els (Gourtzelidis et al., 2005; Thirion et al., 2006; Dumoulin and
Wandell, 2008; Jerde et al., 2008; Kay et al., 2008; Mitchell et al.,
2008; Naselaris et al., 2009; Schönwiesner and Zatorre, 2009) can
explicitly quantify the information contained in individual voxels
(Naselaris et al., 2011), thus providing insights about the preferred
features coded by a given voxel. Aiding in our understanding
of visual cortex, these techniques have thus far been optimized
within the feedforward framework. With a clearer understanding
of their advantages and limitations, these approaches combined
with layer-resolution fMRI have the potential to unveil a wealth
of information about the functional role of feedback activity in
V1 (Muckli, OHBM conference abstract, 2014; Morgan et al.,
OHBM conference abstract, 2014). Layer-resolution fMRI can also
be combined with pharmacological intervention to assess lam-
inar differences during tasks that are dependent on top–down
processing. For example, texture discrimination, which relies
on recurrent processing, is impaired subsequent to ketamine
administration (Meuwese et al., 2013). Ketamine blocks NMDA
receptors which are implicated in feedback processing due to
their higher concentration in supragranular layers (Rosier et al.,
1993), their modulatory function (Collingridge and Bliss, 1987)

and their contribution to figure-ground segregation (Self et al.,
2012).

CONCLUSION
V1 is one of the best studied cortical areas in terms of its robust
stimulus-response relationship. This fine-grained, feedforward
propagation of the visual world is V1’s principle function. How-
ever, increasing evidence reveals a more complex and comprehen-
sive account of V1: through intrinsic and feedback connections,
V1 neurons are also capable of complex visual (scene analysis)
and non-visual (cognitive) responses. One function of feedback
may be to flexibly “set the system” according to present behav-
ioral requirements, i.e., distribute top–down influences even to
the earliest sensory areas. We have highlighted some higher-order
processes that can be read-out from V1. During active vision, feed-
back may transmit Bayesian inferences of forthcoming inputs to
V1, to facilitate perception. Feedback may also sharpen the rep-
resentation of rewarding stimuli in V1. During sleep, V1 might
be involved in the higher-order replay of experienced events, for
memory consolidation. With growing capabilities to study the
brain at molecular, cellular, systems, behavioral and cognitive lev-
els, one hopes that future developments will clarify the role of V1
neurons as adaptive responders, and elucidate how internal brain
states regulate sensory processing in V1.
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Stǎnişor, L., van der Togt, C., Pennartz, C. M., and Roelfsema, P. R. (2013). A unified
selection signal for attention and reward in primary visual cortex. Proc. Natl.
Acad. Sci. U.S.A. 110, 9136–9141. doi: 10.1073/pnas.1300117110

Sugita, Y. (1999). Grouping of image fragments in primary visual cortex. Nature
401, 269–272. doi: 10.1038/45785

www.frontiersin.org November 2014 | Volume 5 | Article 1223 | 7

http://www.frontiersin.org/
http://www.frontiersin.org/Perception_Science/archive


Petro et al. Role of feedback to V1

Tan, C. O. (2009). Anticipatory changes in regional cerebral hemodynamics: a new
role for dopamine? J. Neurophysiol. 101, 2738–2740. doi: 10.1152/jn.00141.2009

Thirion, B., Duchesnay, E., Hubbard, E., Dubois, J., Poline, J. B., Lebi-
han, D., et al. (2006). Inverse retinotopy: inferring the visual content of
images from brain activation patterns. Neuroimage 33, 1104–1116. doi:
10.1016/j.neuroimage.2006.06.062

Vetter, P., Grosbras, M. H., and Muckli, L. (2013). TMS Over V5 disrupts motion
prediction. Cereb. Cortex doi: 10.1093/cercor/bht297 [Epub ahead of print].

Vetter, P., Smith, F. W., and Muckli, L. (2014). Decoding sound and imagery content
in early visual cortex. Curr. Biol. 24, 1256–1262. doi: 10.1016/j.cub.2014.04.020

Weigelt, S., Singer, W., and Muckli, L. (2007). Separate cortical stages in amodal com-
pletion revealed by functional magnetic resonance adaptation. BMC Neurosci.
8:70. doi: 10.1186/1471-2202-8-70

Williams, M. A., Baker, C. I., Op de Beeck, H. P., Shim, W. M., Dang, S., Triantafyllou,
C., et al. (2008). Feedback of visual object information to foveal retinotopic
cortex. Nat. Neurosci. 11, 1439–1445. doi: 10.1038/nn.2218

Xing, D., Yeh, C. I., Burns, S., and Shapley, R. M. (2012). Laminar analysis of visually
evoked activity in the primary visual cortex. Proc. Natl. Acad. Sci. U.S.A. 109,
13871–13876. doi: 10.1073/pnas.1201478109

Yang, W., Carrasquillo, Y., Hooks, B. M., Nerbonne, J. M., and Burkhalter, A.
(2013). Distinct balance of excitation and inhibition in an interareal feedforward
and feedback circuit of mouse visual cortex. J. Neurosci. 33, 17373–17384. doi:
10.1523/JNEUROSCI.2515-13.2013

Yeh, C. I., Xing, D., Williams, P. E., and Shapley, R. M. (2009). Stimulus ensemble and
cortical layer determine V1 spatial receptive fields. Proc. Natl. Acad. Sci. U.S.A.
106, 14652–14657. doi: 10.1073/pnas.0907406106

Zhu, H., Zhang, J., Zhan, W., Qiu, C., Wu, R., Meng, Y., et al.
(2014). Altered spontaneous neuronal activity of visual cortex and medial
anterior cingulate cortex in treatment-naïve posttraumatic stress disor-
der. Compr. Psychiatry 55, 1688–1695. doi: 10.1016/j.comppsych.2014.
06.009

Zokaei, N., Manohar, S., Husain, M., and Feredoes, E. (2014). Causal evidence for a
privileged working memory state in early visual cortex. J. Neurosci. 34, 158–162.
doi: 10.1523/JNEUROSCI.2899-13.2014

Conflict of Interest Statement: The authors declare that the research was conducted
in the absence of any commercial or financial relationships that could be construed
as a potential conflict of interest.

Received: 30 June 2014; accepted: 09 October 2014; published online: 06 November
2014.
Citation: Petro LS, Vizioli L and Muckli L (2014) Contributions of cortical feed-
back to sensory processing in primary visual cortex. Front. Psychol. 5:1223. doi:
10.3389/fpsyg.2014.01223
This article was submitted to Perception Science, a section of the journal Frontiers in
Psychology.
Copyright © 2014 Petro, Vizioli and Muckli. This is an open-access article distributed
under the terms of the Creative Commons Attribution License (CC BY). The use, dis-
tribution or reproduction in other forums is permitted, provided the original author(s)
or licensor are credited and that the original publication in this journal is cited, in
accordance with accepted academic practice. No use, distribution or reproduction is
permitted which does not comply with these terms.

Frontiers in Psychology | Perception Science November 2014 | Volume 5 | Article 1223 | 8

http://dx.doi.org/10.3389/fpsyg.2014.01223
http://dx.doi.org/10.3389/fpsyg.2014.01223
http://creativecommons.org/licenses/by/4.0/
http://www.frontiersin.org/Perception_Science/
http://www.frontiersin.org/Perception_Science/archive

	Contributions of cortical feedback to sensory processing in primary visual cortex
	Is V1 (sometimes) at the top of the hierarchy?
	Non-geniculate input to V1 – internal processing
	Prediction
	Memory
	Reward
	Vision for action and visual perception

	A new landscape of V1
	Conclusion
	Acknowledgments
	References


