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Functional roles of amino acids have increasingly become the focus of research. This paper summarizes amino acids that
influence cardiovascular system via the brain of conscious rats. This paper firstly describes why amino acids are selected and
outlines how the brain regulates blood pressure and regional blood flow. This section includes a concise history of amino acid
neurotransmitters in cardiovascular research and summarizes brain areas where chemical stimulations produce blood pressure
changes mainly in anesthetized animals. This is followed by comments about findings regarding several newly examined amino
acids with intracisternal stimulation in conscious rats that produce changes in blood pressure. The same pressor or depressor
response to central amino acid stimulations can be produced by distinct mechanisms at central and peripheral levels, which will be
briefly explained. Thereafter, cardiovascular actions of some of amino acids at the mechanism level will be discussed based upon
findings of pharmacological and regional blood flow measurements. Several examined amino acids in addition to the established
neurotransmitter amino acids appear to differentially activate brain structures to produce changes in blood pressure and regional
blood flows. They may have physiological roles in the healthy brain, but pathological roles in the brain with cerebral vascular
diseases such as stroke where the blood-brain barrier is broken.

1. Introduction

When the rat spontaneously performs an action such as
grooming [1] or walking [2], changes in regional blood flows
for head and legs are produced. The brain appropriately
regulates blood supply to organs needed for planning of
each behavior. For matching cardiovascular demand to each
behavior, various kinds of potential neurotransmitters and
neuromodulators should work in neuronal networks of the
brain relating to the cardiovascular system and behavioral
planning. A list of neurotransmitters includes the amino
acids glutamate and GABA (gamma-amino-butyric acid)
which are well established as endogenously produced exci-
tatory and inhibitory agonists, respectively [3], and appear
to play a pivotal role in the central nervous system relating
to cardiovascular regulation [4–7]. However, it has been
expanding to range the kind and the number of mediators
between brain cells from classic neurotransmitter biogenic
amines to gaseous neurotransmitters [8] and to gliotrans-
mitters [9]. With respect to amino acids, the concentration

of most amino acids in the cerebrospinal fluid is lower than
those in the blood [10]. The blood-brain barrier effectively
protects the brain from influence of fluctuating concentra-
tions of plasma amino acids [11]. Why are the concentrations
of amino acids kept lower in the cerebrospinal fluid? Amino
acids other than the established neurotransmitter amino
acids may have some functional roles in the brain as is the
case with the established ones. The brain contains many
nuclei regulating blood pressure and regional blood flow
via several pathways [4, 12]. I have hypothesized that some
amino acids influence the cardiovascular system through
the brain. I have, therefore, begun examining the responses
of the cardiovascular system to brain stimulations with
amino acids [13, 14]. The anesthesia works at brain level
to cause immobility and unconsciousness in animals mainly
via GABAa receptors [15], resulting in modified states of
the neural networks different from the un-anesthetized state
[16]. Therefore, the un-anesthetized freely moving rat has
been used in the examinations of brain stimulation with
an intracisternal injection of amino acid solution. I will
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mention findings on several amino acids that modulate the
cardiovascular system in this paper, after concisely describing
the basic knowledge of central cardiovascular regulation.
See references for details: hemodynamics [17, 18], central
cardiovascular regulation [12, 19–21], or recent knowledge
on amino acids including various functions [22]. In the
following sections, I will summarize findings on several
amino acids in addition to the established amino acid
neurotransmitters (GABA, glycine, and glutamate) that show
functional roles in modifying the cardiovascular system.
Understanding the mechanisms of how the brain operates is
still a great challenge. I would like to suggest that amino acids
other than the established amino acid neurotransmitters
and/or neuromodulators may have an important role in how
the brain functions.

2. Why Are Amino Acids the Focus?

My first concern was roles of the blood-brain barrier. One of
the roles is to help to maintain lower concentrations of amino
acids in the cerebrospinal fluid than in the plasma [10].
Concentrations of L-proline and L-cystine (dimer of L-
cysteine) in the cerebrospinal fluid are extremely low [10].
Why has the brain developed to maintain lower values of
such amino acids in the cerebrospinal fluid? The brain tissue
surrounding the route of the cerebrospinal fluid may be
affected by higher concentrations of L-proline or L-cysteine.
Central response to an amino acid might give a clue to
decipher the neural wiring relating to proper blood flow shift
in animal behaviors. This is the reason I have focused on the
role of amino acids in the brain for cardiovascular regulation.

Our whole body uses only 20 amino acids to synthesize
proteins and peptides, among more than 300 natural amino
acids known at present [22]. One of those proteinogenic
amino acids, L-glutamate, has been recognized as an endoge-
nous neurotransmitter for excitatory amino acid receptors at
synapses of the central nervous system for several decades
[23–25]. Other established historical inhibitory amino acid
agonists are GABA, and glycine, which is also one of
20 brick amino acids for proteins [25, 26]. Interestingly,
evolutionary process utilizes the ubiquitous nutrient amino
acids glutamate and glycine in the brain and spinal cord
to signal and communicate between neurons with elaborate
mechanisms. Extremely high tissue contents of L-glutamate,
GABA, and glycine in the central nervous system [10, 27]
would suggest a highly evolved control system that uses these
amino acids for the basic common wiring plan to maintain
homeostasis throughout the body. Research on the effects
of amino acids in the central nervous system began in 1952
with a report from Hayashi on the central convulsive action
of glutamate [28, 29]. A possible role of neurotransmitters
for amino acids was discussed according to neurotransmitter
criteria in 1974 by Curtis and Johnston [30]. They mentioned
possible neurotransmitter roles of other amino acids in
addition to the later established neurotransmitter amino
acids.

With respect to cardiovascular control, GABA, glycine,
and glutamate have been known to have an effect on blood

pressure since 1954 [31–35]. Takahashi’s group first reported
a depressor effect of intravenously injected GABA in 1955
[31] and later identified acting sites of GABA as the central
origin using various approaches such as ganglionic blocking,
intracisternal injection, and direct stimulation with topical
application of GABA solution on the dorsal medulla of the
anesthetized animal [32]. Intracisternal injection of glycine,
GABA, taurine, and L-α-alanine into ether-anesthetized rats
produced a central depressor action [33]. As for a pressor
response, intravenous injection of glutamate was reported
to raise blood pressure of the dog by Itoga in 1954 [34]
and of rabbits later by Takahashi’s group [31]. Itoga had
already suggested the vasomotor centre of the medulla as the
active site for the pressor response to intravenously injected
glutamate [34]. Intracisternal injection of glutamate was later
examined and found to produce a strong pressor response
in dogs [35]. In studies of central cardiovascular regulation,
concern of most researchers appears to have focused on
excitant amino acids mainly as tools of chemical stimulation
for electrical stimulation to evoke excitation of only neurons
but not axons related to blood pressure regulation. For exam-
ple, homocysteic acid [29] has been repeatedly selected to
stimulate neurons as a stimulant tool for targeting excitatory
receptors [36–38]. Several groups nevertheless have contin-
ued to investigate the role of chemical mediators in central
cardiovascular regulation [5–7]. In future, information on
which neurons related to cardiovascular regulation have
which neurotransmitters identified with classical criteria:
storage, release, and inactivation, might become available
[8].

3. Outline of How the Brain Regulates Blood
Pressure and Regional Blood Flow

Blood pressure (specified for arterial blood pressure here) is
determined by cardiac output and total peripheral resistance
(Figure 1). The heart works spontaneously and propels the
blood into the aorta depending on blood volume returned
from the vena cava. The brain modifies the cardiac work
with cardiac parasympathetic and sympathetic neurons,
adrenaline released from the adrenal gland via sympathetic
activation, and an increase in venous return with increased
sympathetic activity to the capacitance venous vessels.
Another variable of peripheral blood flow resistances consists
of a lot of acting sites, arterioles all over the body, which
are located just before the vascular (capillary) bed of each
organ (Figure 2). The brain can modify the size of arterioles
with vascular sympathetic neurons and release of several
vasoactive factors into the blood stream as mentioned below
in detail. For proper delivery of the blood into the demanding
organ, regulation of the arterioles could be essential. Vaso-
motor sympathetic neurons are tonic at rest but regulated
by increasing or decreasing activities (Figure 3), resulting in
optimal blood flow shift among different vascular beds for
demanding organs, in theory.

3.1. Brain Has at Least Four Possible Peripheral Pathways for
Influencing Arterioles. Stimulation of central nervous system
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Figure 2: Vascular sympathetic nerves innervate mainly arterioles
located just before the vascular bed in each organ. The heart is
innervated by both parasympathetic and sympathetic neurons.

influences arterioles and/or blood pressure through at least
four ways (Figure 4) [39]: one is the vasomotor sympathetic
neurons in different vascular beds (Figures 2 and 4 circle 1),
second is renal sympathetic neurons (Figure 4 circle 2) that
release the enzyme renin from the renin-secreting granular
cells in the afferent arteriole to finally produce a potent
vasoactive peptide, angiotensin II, in the blood via the renin-
angiotensin system [40, 41], third is adrenal sympathetic
neurons (Figure 4 circle 3) that release adrenaline into
the blood [42], and finally the hypothalamus-pituitary
system that releases the vasoactive or antidiuretic peptide,
vasopressin, in the blood (Figure 4 circle 4) [19]. Central
excitatory stimulation of those pathways induces a simple
pressor response through vasoconstriction by noradrenaline,
angiotensin II, and vasopressin and/or increase in cardiac
output with adrenaline, but inhibitory stimulation produces
a depressor response where the corresponding tonic pathway
at rest is deactivated. Because total vascular tone is mainly
maintained by vasomotor sympathetic neurons in the animal
with normal blood pressure, responses of regional blood flow
resistances to inhibitory stimulation would affect vascular
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Sympathetic 
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Decreased activity Increased activity

Figure 3: Tonic activities of vascular sympathetic nerves at various
levels allow for regulation of flow rate. Basal tone at rest increased
by sympathetic nervous activation produces vasoconstriction and
a decrease in blood flow rate (an increase in resistance). When
basal tone is inactivated, vasodilatation, an increase in flow rate (a
decrease in resistance), is produced.

beds which are tonic at rest and responsible for maintaining
the normal blood pressure. In the same way, genetically
or experimentally produced hypertensive animals could be
examined with blockade of the above-mentioned four possi-
ble peripheral pathways to elucidate the cause of prolonged
hypertensive states.

3.2. Brain Nuclei Where Chemical Stimulations Produce
Changes in Blood Pressure. Chemical stimulation of the brain
has been used to produce changes in blood pressure, because
they are expected to stimulate only the cell body of the
neuron [44]. As stimulants, ionotropic excitatory amino acid
receptor agonists, L-glutamate, DL-homocysteic acid, and
kainic acid, have been chosen for most cases, but other
chemicals such as serotonin, acetylcholine, GABA, glycine,
angiotensin II, endothelin, and receptor agonists and antag-
onists have also been tested.

There are several well-examined neuronal groups which
change blood pressure at medulla level when chemically
stimulated (Figure 5); rostral ventrolateral medulla (RVLM)
[16, 45–49], caudal ventrolateral medulla (CVLM) [47, 50–
56], and nucleus tractus solitarii (NTS) [57–64]. Neural
pathways of a reflex which detects changes in blood pressure
and returns it to the original level via mainly sympathetic
neurons (called the baroreceptor reflex) include NTS, RVLM,
and CVLM. Baroreceptor afferent neurons of vagal and
glossopharyngeal nerves terminate second-order neurons
in the NTS [65–67] that send information to GABAergic
interneurons in the CVLM [68]. When baroreceptors in
the aortic arch and carotid sinus detect an increase in
blood pressure, excited GABAergic neurons in the CVLM
inhibit presympathetic neurons in the RVLM, leading to a
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Figure 4: Potential pathways between the central nervous system
(CNS) and the cardiovascular system. The CNS regulates the
cardiovascular system using various peripheral routs. Arterioles
can be regulated by sympathetic neurons and humoral factors
of angiotensin II (A II), vasopressin (VP), and adrenaline (Adr),
resulting in changes in total peripheral resistance. The heart is
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and Adr. Capacitance venous vessels are regulated by sympathetic
neurons and modify returning blood volume to the heart and
cardiac output as predicted by Starling’s law. Renal sympathetic
neurons can release the enzyme renin from the juxtaglomerular
apparatus into the blood via β1 adrenoceptors. The renin produces
A II via the renin-angiotensin system. The hypothalamus-pituitary
system in the forebrain releases VP into the stream. A II and VP
constrict arterioles markedly. Adrenal sympathetic neurons release
Adr into the blood. The central nervous system monitors arterial
blood pressure with visceral afferents terminated in the big arteries.
Ach: acetylcholine, Nor: noradrenaline. circles 1–4; see text.
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Figure 5: Potential brain nuclei of which neurons respond to
intracisternal injection of amino acid solution, in the sagittal view
of the rat brain. SON, the supraoptic nucleus of the hypothalamus;
NTS, the nucleus tractus solitarii; RVLM, rostral ventrolateral
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decrease in sympathetic activity and resulting in restoration
of original blood pressure [21]. RVLM is believed to contain
the most essential neuronal group to maintain the resting
and tonic vasomotor sympathetic activity, since lesion or
inhibition of RVLM produces severe hypotension equivalent
to a spinal transection [50, 69] and blockade of many
cardiovascular-related reflexes [12].

Other parts of the brain that produce changes in blood
pressure with chemical stimulation include caudal pressor
area (CPA) (Figure 5) [70], area postrema [71], rostral
ventromedial medulla [72–74], caudal raphe nuclei [75–79],
nucleus ambiguous [80], cerebellar sublobule IX (lateral and
medial uvula) [81–85], and the fastigial nucleus [4, 44,
86–89] at the medulla and cerebellum. The others are
A5 noradrenergic cell group [90–92], locus coeruleus (A6
group) [93, 94], parabrachial area [95–100] in the pons,
ventral tegmental area [101–103] and periaqueductal gray
matter [104–106] at the midbrain level, and lateral and
posterior hypothalamic regions [105, 107–110], amygdala
[111, 112], septal nuclei [113], and insular cortex [114, 115]
at the forebrain level. Vasopressin-containing neurons in
the supraoptic nucleus and paraventricular nucleus of the
hypothalamus are also responsible for the pressor response
to chemical stimulation via vasopressin release even in awake
rats [116, 117].

Neural networks made from the above-mentioned neu-
ronal groups and yet unknown ones could regulate blood
pressure and regional blood flow to the vascular bed,
corresponding to various needs of the body. Synapses in
the neuronal networks should have a lot of combinations of
endogenous agonists and receptors like those in autonomic
nerves [118], sympathetic preganglionic neurons [119], and
medullary presympathetic neurons [7]. A lot of work has
been devoted to finding the mechanisms for the appropriate
responses to complicated body needs with expanding lists of
neurotransmitters and their receptors related to cardiovas-
cular regulation [4, 6, 7, 12, 119]. However, the details of
in vivo body function at the synaptic level remain poorly
understood.

4. Potential Diffused Parts of the Brain with
Intracisternal Approach

Intracisternal injection of chemical solution has several
merits for surveying central effects of a lot of amino acids.
First, limited areas of the brain around the cisterna magna
could be stimulated (Figure 5). The cerebrospinal fluid flows
from the lateral ventricles to the cisterna magna through
the third ventricle, the aqueduct, and the fourth ventricle,
with weak positive pressure [10]. Potential diffused regions
with intracisternal injections in the freely moving rat are
the ventral medulla surface, excluding part of the dorsal
brainstem, and the surface areas around the flow route of
the cerebrospinal fluid [120]. The flow route includes the
RVLM, CVLM, and CPA located in the ventral surface of
the medulla and the NTS located in the dorsal surface of the
medulla. The NTS neurons receive afferent information from
the body [121] and contribute to keep blood pressure stable
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via mainly the CVLM then to the RVLM in the baroreceptor
reflex [12, 21]. The CPA neurons appear to be included for
maintenance of blood pressure but via the RVLM and/or
CVLM [21]. Therefore, the RVLM and CVLM would have
the greatest influence over changes in blood pressure with
intracisternal stimulation of amino acids, as the final stations
of the possible network. I have established the intracisternal
injection method using polyethylene tubing that produces a
minimal lesion of the brain, differently from a stainless steel
tube. It was originally developed to take cerebrospinal fluid
from freely moving rats [122, 123]. For injection of amino
acid solution, the tip was inversely oriented from a caudal
side to a rostral side. With respect to acting sites, my recent
studies with c-Fos expression [124] and another study using
a radioisotope [125] suggest the supraoptic vasopressin-
containing nuclei situated in the ventral surface area of the
brain in addition to RVLM and CVLM.

5. Amino Acids with a Pressor Action

In the first experiment [13], while blood pressure and heart
rate were observed, the following amino acid solutions
were intracisternally injected in the freely moving rat: L-
glutamic acid (59 nmol in 10 μL artificial cerebrospinal fluid,
5.9 mM), taurine (5 μmol), L-proline (10 μmol), L-α-alanine
(10 μmol), GABA (10 μmol), L-aspartic acid (0.3 μmol),
L-valine (7.6 μmol), L-serine (10 μmol), L-methionine
(1 μmol), L-isoleucine (3 μmol), L-leucine (1 μmol), L-
tyrosine (25 nmol), L-histidine (5 μmol), L-lysine (10 μmol),
L-arginine (10 μmol), L-tryptophan (56 nmol), L-asparagine
(1.4 μmol), L-glutamine (2 μmol), glycine (10 μmol), L-
phenylalanine (0.18 μmol), and L-cysteine (10 μmol). Each
dose depended on the solubility but was below 10 μmol in
10 μL. In the later detailed experiments, L-glutamic acid
monosodium salt (0.2 M) was used for improvement of
solubility [126], the concentration of L-cysteine was lowered
to 0.2 M from 1 M due to its strong spasm causing effect
[126], and the pH of basic L-arginine solution was adjusted
to 7.4 [127]. To examine the stereoselectivity of the pressor
response to L-arginine and L-proline, D-arginine [128] and
D-proline [129] were injected in other experiments.

Intracisternal injections of the following amino acids
produced pressor responses in the freely moving rat: L-
proline, L-arginine, D-arginine, L-cysteine, L-glutamate, L-
aspartic acid, and L-asparagine [13, 126–129]. The pressor
responses were dose dependent, became maximal between
1 min and 10 min after injections, and returned to normal
within 60 min at longest for all except D-arginine. An
increase in heart rate was marked between 1 and 5 min
after injection of L-cysteine, and a bradycardiac response was
obtained 5 min after injection of L-proline [13].

An examination of stereoselectivity for the L-arginine
response revealed unexpectedly a pressor response to D-
arginine injected into the cisterna magna [128]. Because of
a possible role of the enzymatic substrate L-arginine for
nitric oxide [130], no response to D-arginine stimulation
was predicted. Other possibilities as substrates are for
kyotorphin (L-tyrosyl-L-arginine) [131] and agmatine [132].

The pressor responses common to both L-arginine and D-
arginine apparently denied the possibility as a substrate
of L-arginine for the converted different active principles,
because of strict stereospecificity of the enzymes. However, as
mentioned below, each mechanism for the pressor response
was distinct. Active principles of L-arginine and D-arginine
for their cardiovascular responses remain puzzling.

A weak depressor response to D-proline was obtained
[129]. Therefore, it is suggested that the neurotransmitter
candidate L-proline [133] itself acts on some receptors in the
neuronal network relating to cardiovascular regulation.

6. Amino Acids with a Depressor Action

Intracisternal injection of the following amino acids pro-
duced depressor responses in the freely moving rat: L-
serine, L-sarcosine (N-methyl-glycine), L-α-alanine, L-β-
alanine, taurine, GABA, and glycine [14, 43, 134, 135]. The
concentration was 1 M for all except taurine which was
0.5 M.

The depressor and bradycardiac responses were at max
between 5 min and 30 min after injections, and blood
pressure returned to the original level 60 min or later. The
depressor response to L-serine was occasionally accompanied
with transient pressor period between 5 and 10 min [14,
134], differently from other depressor amino acids. The
mechanism of L-serine to induce two-phase changes in blood
pressure could be different from others. Of these depressor
amino acids, L-serine, L-α-alanine, and L-β-alanine have
been introduced as electrophysiologically depressant amino
acids related structurally to GABA, glycine, and taurine by
Curtis and Johnston [30]. Then, L-β-alanine is suggested to
be a neurotransmitter at present [136].

7. Regional Blood Flow Changes with Several
Amino Acids of the Pressor Action

Regional blood flow measurement in three arteries (Figure 6)
was performed for L-proline, L-arginine, and D-arginine. In-
formation on changes in regional blood flow will give a clue
to decipher how an amino acid modifies regional peripheral
resistance and changes blood pressure.

Before seeing the hemodynamic data, explanation of flow
measurement and relationship among regional blood flow,
regional blood flow resistance, and blood pressure would
be needed. An electromagnetic flow probe set around the
artery monitors the flow volume rate (not velocity) in the
freely moving rat [137] (Figure 6). The blood flow rate
(volume/min/100 g weight) measured in an artery just before
the vascular bed of an organ reflects the net changes in sizes
of arterioles within the organ. Namely, stronger arteriolar
dilatation produces more arterial blood flow, but stronger
vasoconstriction produces less flow. At rest, the size of
arteriole is mainly determined by the basal tone of vascular
sympathetic neurons (Figure 3). When the vascular sympa-
thetic discharge is increased, the resultant vasoconstriction
reduces flow to the corresponding artery. When arterioles in
a particular vascular bed are not under the control of
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Figure 6: Regional blood flow measured in three arteries after
intracisternal injection of L-proline, L-arginine, or D-arginine. SM,
superior mesenteric artery; R, renal artery; HQ, hindquarter or the
terminal aorta. Each experiment observed the flow in one of three
arteries with arterial blood pressure and heart rate in the freely
moving rat.

sympathetic neurons, higher blood pressure produces blood
flow increase. Namely, when tube (artery) size is constant
and head (blood) pressure is different, higher head pressure
produces greater flow (Figure 7). Therefore, to take the
influence of blood pressure changes into account, blood
flow resistance or conductance is used to evaluate the net
effect of the vascular bed. The studies have expressed blood
flow resistance or vascular resistance that is blood pressure
divided by flow. Changes in blood pressure always influence
blood flow, but changes in blood flow can make changes
in blood pressure when they influence the total peripheral
flow resistance that is the net change in all the vascular beds.
When liquid in a tank flows out from the exits, constricted
tubes together produce high back pressure, but dilated tubes
together produce low back pressure, and a combination of
constricted and dilated tubes results in no change in back
pressure (Figure 8). The final example shows what happened
when the rat walked spontaneously. The flow was shifted
from carotid artery to hindquarters (aortic terminal for legs)
without changes in blood pressure that was also supported
with an increase in cardiac output [2]. However, grooming
behavior increased blood pressure slightly (by 10 mmHg)
with blood shift in the opposite direction [1]. Here, we see
changes in regional blood flow resistance when amino acids
produce the pressor response.

Intracisternal injection of L-proline (1 M) produced a
threefold increase in blood flow resistance in the superior
mesenteric artery, double in renal artery, and no significant
change in hindquarters [129]. With respect to each original
blood flow with the pressor change (25%), superior mesen-
teric flow was decreased but there was no significant change
in either renal flow or hindquarters flow [129]. If the pressor
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“Blood pressure determines flow rate”

Figure 7: Higher head pressure produces greater flow when the
tube keeps the same diameter without any influence.
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Figure 8: The pressure is increased in constricted tubes but lowered
in dilated tubes and unchanged for a combination of constriction
and dilatation.

change is not considered, it appeared that vasoconstriction
only in the superior vascular bed contributed to the pressor
response. However, the resistance data indicate that L-
proline stimulation of the brain produced strong superior
mesenteric and minor renal vasoconstriction, resulting in the
pressor response.

In the case of L-arginine (0.5 M), vasoconstriction in
the superior mesenteric (80%) and renal arteries (60%)
was almost equivalent, but hindquarters resistance was
unchanged for 25% increase in blood pressure, suggesting an
equivalent contribution of the splanchnic vasoconstriction to
the pressor response [127].

The original aim of D-arginine injected into the cisterna
magna was to examine the stereospecific effect of L-arginine,
as mentioned above. However, the results indicated that pres-
sor response to D-arginine was the same as L-arginine, but
distinct changes in regional blood flows were observed. There
were almost equivalent increases in superior mesenteric
(60%) and renal resistances (45%) but a decrease in hind-
quarters resistance (35%) and an increase in total peripheral
blood flow or cardiac output by calculation (23%), for the
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Figure 9: Simultaneous recordings of parameters of circulation of conscious rats in cisternal injection of GABA. HR, heart rate; BP, arterial
blood pressure; HQF, hindquarter blood flow; SMF, superior mesenteric blood flow; RF, renal blood flow. Ten micromoles of GABA was
injected at 0 in the time scale. From Figure 1 of [43]. (Reprinted with permission from the Physiological Society of Japan).

pressor response (25%) to D-arginine (1 M) [128]. The data
suggested the major contribution of cardiac output with the
minor one of total peripheral vascular resistance to the
pressor response of D-arginine, differently from L-arginine.
Each amino acid appeared to stimulate different brain nuclei
relating to the cardiovascular regulation, resulting in the
common pressor response.

8. Regional Blood Flow Changes with Several
Amino Acids of the Depressor Action

Regional blood flow measurement in three arteries (Figure 6)
was performed for GABA, L-β-alanine, and glycine, because
of the similarity of the molecular structure [43, 135]. Three
amino acids in common decreased hindquarters resistance
alone without significant changes in superior mesenteric
resistance or renal resistance [135].

Figure 9 shows an example of blood flow recordings in
three arteries with depressor and bradycardiac responses
to intracisternal injection of GABA [43]. The flow changes
could be confusing, because hindquarters flow showed no
change, but both superior and renal flow decreased almost
in parallel to lowering blood pressure. It might be interesting

to see autoregulation of renal artery to keep flow constant
to some extent during initiating lowering blood pressure,
compared with the exact parallel changes of superior mesen-
teric flow and blood pressure (Figure 9). It is the case that,
when the vascular bed has no influence, flow is decreased
depending on blood pressure lowering (Figure 7). GABA in
the brain could inhibit the tonic resistance in the hindquar-
ters vascular bed alone to reduce blood pressure, along with a
bradycardia (probably cardiac output reduction). It appears
that hindquarters resistance is regulated by glycine receptors
and L-β-alanine-sensitive receptors in addition to GABA
receptors.

Further detailed evaluation of vascular resistance re-
sponses to intracisternal GABA stimulation suggested that
resting tone in the carotid in addition to hindquarters vas-
cular beds but not the superior mesenteric, celiac, and
renal vascular beds influenced by exogenously applied GABA
possibly through GABA receptors not occupied with endoge-
nous GABA [138, 139]. The grooming and walking behaviors
produced blood shift between carotid artery and hindquar-
ters [1, 2]. Receptors for GABA and other depressor amino
acids may be involved in a program of neuronal networks for
producing the proper blood flow shift during a behavior.
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9. Peripheral Pathways Activated by Several
Amino Acids with the Pressor Action

The pressor response to central amino acids could be
produced by increases in total peripheral resistance and/or
cardiac output. Vessels and heart are influenced by humoral
substances and neural activation via the brain (Figure 4).
When the pressor response is observed, we can differentiate
possible pathways pharmacologically. Autonomic ganglionic
blockade, receptor antagonists, and enzyme inhibitors have
been effectively used for the pressor response to an intracis-
ternally injected amino acid.

Regional hemodynamic behaviors responding to venous
infusions of vasoactive agonists (vasopressin, angiotensin II,
noradrenaline, and adrenaline), which are possibly released
into the blood, are also useful to estimate central pathways
activated by an amino acid (Figure 4) [39]. Exogenously
infused vasopressin dose-dependently increased resistances
of all the vascular beds investigated except the celiac vascular
bed. Celiac resistance was unchanged while the other four
resistances were increased by increasing doses of vasopressin,
and it is abruptly increased only at the highest dose when
blood pressure increased by 50%. Angiotensin II and nora-
drenaline infusions produced in common various levels of
vasoconstriction in four arteries other than the hindquarters.
Both vasoactive substances resulted in unchanged hindquar-
ters resistance, and the order of actions among the other four
arteries was distinctly different. For 20% increase in blood
pressure, the most potent vasoconstriction was obtained in
renal and celiac arteries with noradrenaline infusion and in
renal artery with angiotensin II. Adrenaline infusion pro-
duced quite different hemodynamic changes. As expected
from β-receptor stimulation for vasodilatation, hindquarter
resistance was decreased in a wide range of adrenaline
doses, but without increase in blood pressure in low doses.
Surprisingly, a celiac resistance increase compensated for the
lowered hindquarters resistance, maintaining blood pressure.
Higher doses of adrenaline produced vasoconstriction of
other renal and carotid arteries, especially of superior
mesenteric artery.

With pharmacological data and regional vascular
responses to circulating vasoactive substances, the distinct
central pathways responding to each pressor amino acid
are estimated. Ganglionic blockade effectively inhibited the
pressor response to L-arginine [127] and D-arginine [128],
suggesting that both amino acids could stimulate central
pathways relating to autonomic neurons. Vasodilatation in
hindquarters produced by D-arginine was attenuated by a
β-receptor inhibitor [128]. Taking hemodynamic data into
account, it is suggested that L-arginine would activate central
neurons relating to vascular sympathetic neurons in the
superior and renal vascular beds. Because adrenaline could
be released with the intracisternal injection, D-arginine
appears to stimulate nuclei relating to adrenal sympathetic
neurons.

With respect to L-cysteine [126], L-glutamate [126], and
L-proline [129], ganglionic blockade augmented the pressor
response. Additional intravenous injection of vasopressin
V1 receptor antagonist, however, completely abolished the

augmented pressor response to those amino acids. The data
suggest involvement of vasopressin release with amino acids.
Previous intravenous injection of vasopressin V1 receptor
antagonist alone, without ganglionic blockade, significantly
attenuated the pressor response to L-proline and L-glutamate
but not to L-cysteine. Namely, intracisternally injected
three amino acids are suggested to stimulate nuclei relating
to vasopressin containing neurons as well as autonomic
neurons. Pharmacological data suggest major involvement of
vasopressin release and minor roles of autonomic neurons
in the pressor response to applications of L-proline and
L-glutamate but major involvement of autonomic nervous
activation and minor role of vasopressin release in response
to L-cysteine.

Intracisternal injection of L-proline likely released
vasopressin but unchanged hindquarter resistance [129],
although exogenously infused vasopressin produced strong
vasoconstriction of hindquarters in a dose-dependent man-
ner [39]. One explanation is that the dilatation additionally
produced by adrenaline possibly released with L-proline
stimulation counters the vasoconstrictor action of vaso-
pressin, resulting in no change in resistance.

The findings indicate that each pressor amino acid listed
here activates differential central nuclei relating to peripheral
pathways of vascular sympathetic neurons, adrenal sympa-
thetic neurons, and vasopressin release via hypothalamus-
pituitary route. The amino acids other than D-arginine
are nonessential amino acids that can be endogenously
synthesized by enzymes for corresponding amino acids in
all cells. L-Glutamate is the excitatory neurotransmitter, L-
proline is a neurotransmitter candidate [140], L-cysteine
could be a neuromodulator [141], and L-arginine, a possible
precursor for nitric oxide, kyotorphin, and/or agmatine as
above mentioned, is neuroactive.

These non-essential amino acids can be detective in
all cells including neurons for protein synthesis. Therefore,
it is not easy to identify which neurons contain which
neurotransmitter amino acids. Of them, L-glutamate content
in the brain tissue is known to be quite high, but it is
a multiplayer for metabolism too. A specific transporter,
vesicular glutamate transporter 2, for vesicular packing of
L-glutamate in the neuronal terminal has been used to be
a good marker of glutamatergic neurons to discriminate
the transmitter function of glutamate from metabolite pool
[142]. However, even vesicular glutamate transporter 2 coex-
ists with neurotransmitters other than L-glutamate in several
neurons [143], becoming a complex situation to clearly
delineate a fixed marker of glutamatergic neurons. The
localization of neurons containing specific neurotransmitter
amino acids appears to need more efforts to be identified.

10. Receptors at Central Level in
the Pressor Response

What receptors at central level are involved in the pressor
response to L-glutamate, L-proline, and L-arginine injected
into the cisterna magna of the freely moving rat? The pressor
response to L-proline was blocked by coinjection of a broad
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spectrum antagonist of ionotropic amino acid receptors
kynurenic acid, but the response to L-glutamate and L-
arginine remained the same [144]. At least, the central recep-
tor involved in the pressor response to L-proline injected into
the cisterna magna could be ionotropic excitatory amino acid
receptors.

11. Possible Pathological Roles of
Amino Acids in the Stroke

So far, I have mentioned the differential effects of several
amino acids directly applied to the brain on the cardio-
vascular system. The amino acid concentrations in the
cerebrospinal fluid will return to and remain low with the
help of the active role of the blood-brain barrier in the health
[11]. However, there are several reasons the blood-brain
barrier can be disrupted including clinical situations such as
cerebrovascular diseases of ischemic stroke and intracerebral
hemorrhage [145]. Recent studies have revealed that the con-
nection of the barrier can be broken by a molecular cascade
activated after ischemia, resulting in vasogenic edema and
cell death [145]. With respect to amino acids, pathological
amounts of L-glutamate are known to be released into
extracellular space in brain ischemia and probably involved
in toxic and lethal actions on neurons [146]. The acute
cerebrovascular diseases frequently present with mild to
moderate spontaneous elevations in blood pressure or acute
hypertension [147]. Unlike chronic hypertension as a cause
for the diseases, this accompanied hypertension is believed
to be a natural process to maintain the blood flow for
survived regions. The chemical disturbance produced by
the ischemia might stimulate the nuclei responsible for
vascular sympathetic activation to result in acute hyper-
tension [148]. After opening of the blood-brain barrier,
some amino acids leaked into extracellular space may be
involved in additional chemical disturbance to stimulate
neurons responsible for blood pressure regulation. Amino
acids like L-cysteine derived after brain ischemia [149] might
be additional substances causing cell death in addition to
acute hypertension.

12. Conclusions

With respect to amino acids for which concentrations in
the cerebrospinal fluid are lower than in the plasma, several
amino acids among exogenously applied ones showed car-
diovascular effects via central mechanisms, as my expectation
or hypothesis that amino acids might have some physiologi-
cal roles in the brain. The clue to initiate the current “amino
acids investigation” was the timely blood flow shift in the rat
while grooming or walking, and the examinations resulted in
a list of additional neurotransmitter and/or neuromodulator
candidates relating to the central cardiovascular regulation
in freely moving rats. Several examined amino acids with
pressor or depressor action differentially influenced regional
blood flow and central pathways. There is still much work
to be done to decipher how the brain controls blood flow
shift for demanding organs. In order to develop hypotheses

for future studies, more regional blood flow data together
with nervous activity might be useful at the in vivo level.
Determination of active sites in the brain responsible for
the cardiovascular response to stimulation with each amino
acid would be the most desirable for design of further
experiments.

The current paper mainly discussed effects with pro-
teinogenic amino acids on cardiovascular regulation. Mam-
malian cells can produce plentiful nonproteinogenic amino
acids such as L-homocysteine by the related enzymes via
several metabolic pathways. A survey of such amino acids
for central cardiovascular regulation may provide additional
possibilities to find new members for a list of mediators
between brain cells or other substances responsible for
producing chemical disturbance in brain diseases with
disruption of the blood-brain barrier.
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