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LETTER TO EDITOR

Primary nonfunction following liver transplantation:
Learning of graft metabolites and building a predictive
model
Dear Editor,
Primary nonfunction (PNF) is defined as the need for

emergent re-transplant when a graft never presented any
evidence of initial function following liver transplanta-
tion (LT) after excluding other causes such as acute cel-
lular rejection or hepatic artery thrombosis.1 The cause
of PNF is believed to be associated with graft quality, but
themechanism is largely unknown.1–3 With the increasing
demand for extended criteria donors due to organ short-
age, the precise assessment of graft quality, prediction,
and early prevention of PNF become a major challenge.2,4
This letter was written to present the first pilot-scale study,
which determined the grafts’ metabolic profiling of devel-
oping PNF and constructed an integrated graft metabolites

TABLE 1 The potential risk factors of primary nonfunction

Univariate Multivariatea

OR (95%, CI) p-value OR (95%, CI) p-value
Quantitative data
Donor TB 1.019 (0.997, 1.041) 0.087
Donor AST 1.003 (1.000, 1.007) 0.045
Donor ALT 1.002 (1.000, 1.004) 0.065
Graft weight 1.001 (1.000, 1.003) 0.086
CIT 1.260 (1.100, 1.444) 0.001
GWIT 1.059 (1.025, 1.095) 0.001
Anhepatic time 1.037 (1.018, 1.056) 0.002
MELD score 1.052 (1.006, 1.100) 0.027

Categorical datab

Donor TB > 2 ng/ml 4.443 (1.394, 14.16) 0.012 7.488 (1.834, 30.57) 0.005
Donor AST > 120 U/L 4.065 (1.245, 13.27) 0.020
Donor ALT > 40 U/L 3.460 (1.023, 11.70) 0.046
Graft weight > 1.5 kg 3.755 (1.271, 11.09) 0.017 4.448 (1.216, 16.28) 0.024
CIT > 10 h 7.054 (2.321, 21.44) 0.001 10.67 (2.547, 44.66) 0.001
GWIT > 60 min 5.267 (1.716, 16.17) 0.004 6.858 (1.885, 24.95) 0.003
Anhepatic time > 80 min 4.738 (1.552, 14.46) 0.006
MELD score > 25 5.047 (1.386, 18.38) 0.014

Abbreviations: ALT, alanine aminotransferase; AST, aspartate aminotransferase; CI, confidence interval; CIT, cold ischemia time; GWIT, graft warm ischemia
time; MELD, model for end-stage liver diseases; OR, odds ratio; TB, total bilirubin.
aOnly categorical data showing significance in univariate analysis were entered into multivariate analysis.
bCut-off values were selected according to the ROC curve considered both sensitivity and specificity.
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and clinical parameters-based PNF (GMCP-PNF) predic-
tive model.
We included 399 adult patients who underwent primary

LT from donation after citizens’ death between January
2015 and December 2017 in our center (Figure S1). This
study complies with the guidelines of the China Ethical
Committee and the declaration of Helsinki. Organs from
executed prisoners were not used. Informed consents were
obtained. Patient characteristics are listed in Table S1. PNF
occurred in 14 (3.5%) patients. We analyzed clinical param-
eters (donor, recipient, and surgical procedure) and found
significant risk factors for developing PNFusing univariate
logistic analysis (Table 1). In multivariate analysis, donor
total bilirubin (TB) > 2 ng/ml, graft weight > 1.5 kg, cold
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F IGURE 1 Graft metabolomic features of primary nonfunction (PNF) and early allograft dysfunction (EAD) using UPLC-MS. (A)
Partial least-squares discriminant analysis (PLS-DA) score plots in both ESI+ and ESI- models, (B) heatmap showing the clustering result for
top 25 metabolites between the three groups with variable importance in projection (VIP) > 1, (C) metabolic pathways undergoing significant
changes during PNF, (D) metabolic pathways undergoing significant changes during EAD, (E) the overlapped pathways, (F) the
representative metabolites, which were enriched in the common pathways
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ischemia time (CIT) > 10 h, and graft warm ischemia time
(GWIT)> 60min were discovered as independent risk fac-
tors of PNF (Table 1). No recipient parameters were found
to be independent risk factors of PNF.
Compared to PNF, early allograft dysfunction (EAD)5 is

a less severe form of poor graft function immediately after
LT, which occurs more often and is associated with lower
mortality.4 In this study, 35.0% (128/366) of patients devel-
oped EAD and had significantly reduced survival as com-
pared to those without EAD (Figure S2). In multivariate
analysis, the clinical risk factors for developing EAD and
PNF remained the same as well as different (Table S2).
Previous studies have shown the value of metabolomics

in the evaluation of EAD.6,7 To identify the specific molec-
ular features of PNF and EAD, we performed untargeted
metabolomics on fresh liver graft tissues before implanta-
tion. The samples were classified into three groups accord-
ing to the outcomes as PNF group (n = 14), the EAD
group (n = 24), and the control group (n = 43). Samples in
EAD and control groups were randomly selected based on
power calculation (>0.8).8 Graft characteristics are shown
in Table S3. Partial least-squares discriminant analysis
(PLS-DA) showed a distinct separation between the PNF
and control group on score plots, while the EAD group
was positioned between them (Figure 1A). Compared with
the control group, the PNF and EAD groups showed 57
and 74 significantly differentially expressed metabolic fea-
tures (p < 0.05). The top 25 metabolites are shown in
Figure 1B. The PNF-associated metabolites were enriched
in beta-oxidation of very-long-chain fatty acids, alpha-
linolenic acid, and linoleic acid metabolism, etc. (Fig-
ure 1C). The EAD-associated metabolites were enriched
in beta-oxidation of very-long-chain fatty acids, thiamine
metabolism, pyruvate metabolism, etc. (Figure 1D). We
overlapped the enriched pathways and observed that both
PNF- and EAD-associated metabolites were enriched in
24 common pathways, including fatty acid, alanine, aspar-
tate, thiamine, and riboflavin metabolism, urea cycle,
and ammonia recycling (Figure 1E). The representative
metabolites, which were enriched in the common path-
ways, are shown in Figure 1F.
To further determine the difference between PNF and

EAD, we directly compared the PNF and EAD groups and
found significant segregation as shown by PLS-DA score
plots (Figure 2A). There were 59 significantly differen-
tially expressedmetabolic features between the two groups
(p < 0.05; Figure 2B). Out of the 59 metabolic features,
21 and six were overlapped with those significantly dif-
ferentially expressed between the PNF and control groups
and between the EAD and control groups, respectively. In
contrast, more than half (32/59) were new features dis-
criminating between the PNF and EAD group, indicat-
ing potential distinct in the disease etiology. The metabo-

F IGURE 2 The comparison of graft metabolic features
between primary nonfunction (PNF) and early allograft dysfunction
(EAD). (A) partial least-squares discriminant analysis (PLS-DA)
score plots of the two groups, (B) the volcano plot showing the
differential expressed metabolic features in both ESI+ and ESI-

models, (C) the metabolite set enrichment analysis of PNF groups
compared with EAD groups
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F IGURE 3 The construction of integrated models for predicting primary nonfunction (PNF). (A) flowchart for model construction, (B)
the eight key metabolites based on feature selection and represented the PNF-specific metabolic profiling, (C) the correlation between eight
metabolites and graft clinical parameters, (D) feature extract with principal component analysis (PCA) based on feature-selected metabolites,
(E) the logistic regression model based on graft clinical parameters and extracted metabolomic features could accurately identify PNF. M1: an
integrated model, model based on graft clinical parameters and extracted metabolomic feature with the area under curves (AUC) of 0.988, the
accuracy of 0.951, specificity of 0.940, and sensitivity of 1.000. M2: metabolites model, model based on an extracted metabolomic feature only,
with AUC of 0.930, the accuracy of 0.852, specificity of 0.836, and sensitivity of 0.929. M3: clinical model, model based on graft clinical
parameters only. (F) The model was further validated by leave-one-out cross-validation, a resampling technology. M1: the integrated graft
metabolites and clinical parameters-based PNF (GMCP-PNF), AUC of 0.965, the accuracy of 0.877, specificity of 0.851, and sensitivity of 1.000.
M2: the virtual super-biomarker, AUC of 0.912, the accuracy of 0.840, specificity of 0.821, and sensitivity of 0.929. *p-value < 0.05
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lites were enriched in tryptophan metabolism, pyrimidine
metabolism, etc. (Figure 2C).
To finally distinguish organs with a high risk of devel-

oping PNF from the others, we compared the PNF group
(n = 14) to the non-PNF group (n = 67) in their metabolic
profiles. The flowchart of the methodology is shown in
Figure 3A. First, we performed the least absolute shrink-
age and selection operator (Lasso)9 to select the key PNF-
specific metabolic features. We used cross-validation, fea-
ture selection, and regularization to prevent overfitting.
We obtained PNF-specific metabolic profiling with eight
key metabolites, including achillicin, 3-hydroxypropanal
(HPA), LysoPC(22:2(13Z,16Z)), 3-oxododecanoic acid glyc-
erides, dopexamine, and 7-methyl-3-oxo-6-octenoyl-CoA
(Figure 3B). The eight metabolites were not significantly
correlated with graft clinical parameters, indicating their
independence (Figure 3C). Second, we performed princi-
pal component analysis and extracted the eight metabo-
lites as a virtual super-biomarker (Figure 3D), which dis-
played an area under curve (AUC) of 0.930 in predicting
PNF. At last, we combined the virtual super-biomarker
with the clinical parameters using logistic regression to
construct a GMCP-PNF predictive model, which showed
excellent diagnostic ability (Figure 3E). Themodel was fur-
ther tested with the leave-one-out cross-validation (Fig-
ure 3F).10 Notably, out of three cases predicted as PNF in
the EAD group by the model, two suffered early death due
to graft failure. Therefore, understanding the metabolic
profiling could help clarify the disease pathophysiology
and distinguish the more severe type of EAD suffering
early death from the other EAD.
In summary, it was a pioneering study to investigate the

grafts’ metabolic profiling of PNF and make a distinction
of that with EAD. There was not only similarity but also
diversity in the metabolic features between grafts devel-
oping PNF and EAD. Furthermore, this study established
an integrated GMCP-PNF predictive model that presented
excellent diagnostic value. The work shed light on the
deep understanding and clinical use of graft metabolomics
profiling, which could be a powerful tool for evaluating
graft quality and predicting clinical outcomes if the time
for sample processing and analysis could be significantly
shortened.
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