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Single-cell sequencing maps gene expression to
mutational phylogenies in PDGF- and
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Abstract

Glioblastoma multiforme (GBM) is the most common and aggres-
sive type of primary brain tumor. Epidermal growth factor (EGF)
and platelet-derived growth factor (PDGF) receptors are frequently
amplified and/or possess gain-of-function mutations in GBM.
However, clinical trials of tyrosine-kinase inhibitors have shown
disappointing efficacy, in part due to intra-tumor heterogeneity.
To assess the effect of clonal heterogeneity on gene expression,
we derived an approach to map single-cell expression profiles
to sequentially acquired mutations identified from exome
sequencing. Using 288 single cells, we constructed high-resolution
phylogenies of EGF-driven and PDGF-driven GBMs, modeling tran-
scriptional kinetics during tumor evolution. Descending the phylo-
genetic tree of a PDGF-driven tumor corresponded to a progressive
induction of an oligodendrocyte progenitor-like cell type, express-
ing pro-angiogenic factors. In contrast, phylogenetic analysis of an
EGFR-amplified tumor showed an up-regulation of pro-invasive
genes. An in-frame deletion in a specific dimerization domain of
PDGF receptor correlates with an up-regulation of growth path-
ways in a proneural GBM and enhances proliferation when
ectopically expressed in glioma cell lines. In-frame deletions in this
domain are frequent in public GBM data.
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Introduction

Glioblastoma multiforme (GBM) is an extremely aggressive type of

brain tumor, characterized by a high degree of intra-tumor hetero-

geneity (Patel et al, 2014). Amplifications and gain-of-function

mutations in receptor-tyrosine kinases (RTKs) are common in GBM.

However, these mutations are typically regional and mosaic (Szerlip

et al, 2012), and combinatorial application of RTK inhibitors is

required to achieve a complete treatment in vitro (Stommel et al,

2007). Clinical trials of RTK inhibitors have shown only minimal

efficacy, and these limitations may be in part due to intra-tumor

heterogeneity (Prados et al, 2015). More broadly, developing treat-

ments that circumvent specific, regional genotypic differences is

challenging, since the number of biopsies per tumor is generally

limited, and bulk-sequencing methods reduce such regional varia-

tion to population averages.

There is strong evidence that treatment itself can drive clonal

evolution. Temozolomide chemotherapy is part of the current

standard of care for newly diagnosed GBM. But, for some glioma

patients, temozolomide treatment can also drive a hyper-mutated

phenotype, as has been demonstrated by phylogenetic analysis of

exome-sequencing (exome-seq) data (Johnson et al, 2014). Phylo-

genetic analyses of bulk exome-seq and methylation array data

in glioma cohorts have also been used to identify recurrent

events in tumor evolution (Johnson et al, 2014; Mazor et al,

2015). Recent advances in single-cell sequencing have enabled

fine mapping of EGFR variant heterogeneity (Francis et al, 2014),

as well as studies of the evolutionary history of individual

tumors at unprecedented resolution (Navin et al, 2011; Garvin

et al, 2014). Furthermore, large-scale copy-number variations

(CNVs) have been inferred from single-cell RNA sequencing

(RNA-seq) in GBM (Patel et al, 2014). In this study, we called

CNVs from bulk exome-seq and quantified them in single-cell
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RNA-seq from the same tumor sample. Based on this, we

produced a clonal ordering of individual cells that we used to

infer transcriptional kinetics during tumor evolution and to

perform inter-clone differential transcriptomics. We used this

approach to contrast EGF-driven and PDGF-driven GBMs and

identified pathways that show a dose–response to EGF- and

PDGF-receptor copy number.

Results

Primary GBMs contain heterogeneous mixtures of cell types with
recurrent transcriptional signatures

We collected fresh tissue from three cases of primary, untreated

GBM directly from the operating room (SF10282, SF10345, and

SF10360) and subjected these biopsies to both single-cell RNA-seq

and bulk exome-seq (Fig 1A). We also performed bulk exome-seq

on a separate blood sample from each patient. We characterized the

landscape of genomic, somatic mutations for each patient using a

robust exome-seq pipeline (Johnson et al, 2014), this analysis

included identifying single nucleotide variants (SNVs), small inser-

tions/deletions (indels), and copy-number variants (CNVs; Materi-

als and Methods).

All cases demonstrated an amplification of growth factor genes.

We found EGFR to be highly amplified in SF10345 (122 copies)

and PDGFRA to be amplified in SF10282 (12 copies). Deletion and

putative loss-of-function mutations in tumor suppressors were also

common events (Datasets EV1–EV6). For example, all cases had

non-synonymous point mutations in PTEN (with variant allele

frequencies (VAFs) from 41 to 89%). A copy of chromosome 10

was lost in SF10345 and SF10360. Furthermore, these two cases

harbored a deletion in chromosome 9, in a region encoding tumor

suppressor genes KLHL9 and CDKN2A/B. KLHL9 deletions are

correlated with the mesenchymal GBM subtype and poor progno-

sis (Chen et al, 2014). In our data, KLHL9 is not expressed in

either SF10345 or SF10360, and both samples classify as

mesenchymal/classical. SF10360 and SF10282 share other muta-

tions, such as a loss of 13q14 that contains the tumor suppressive

micro-RNA cluster miR-15a/16 (Aqeilan et al, 2010; Afonso-Grunz

& Müller, 2015). Between 5 and 35, small indels were detected per

sample, for example, TP53 (SF10282, frame-shift deletion), NF1

(SF10360, frame-shift deletion), and PLAGL1 (SF10345, frame-shift

deletion).

Prior to the analysis of single-cell RNA-seq libraries, low-

complexity and low-coverage libraries were filtered (Fig EV1A and

B), and stromal/non-malignant cells were identified (Materials and

Methods). This workflow left 61, 66, and 63 tumor cells from

SF10282, SF10345, and SF10360, respectively. Consistent with

previous reports (Patel et al, 2014), classification of single cells

according to the Verhaak subtypes (Verhaak et al, 2010) identified

heterogeneous mixtures of distinct subtypes within the same tumor

(Fig 1C). SF10345 and SF10360 are classical/mesenchymal and

predominantly EGFR driven. SF10282 is predominantly pro-neural,

up-regulates PDGF-pathway genes, and markers of oligodendrocyte

progenitor cells (OPCs) are broadly expressed. Yet SF10282

contains a subpopulation of cells with a neural stem cell

(NSC)-like expression profile (Fig 1C). These cells classify as

mesenchymal/classical in the Verhaak scheme. We sought to infer

the relative ordering of the NSC and OPC-like cells in the tumor’s

phylogeny and more generally to establish cellular phylogenies for

all samples.

Phylogenies of copy-number alterations map gene expression to
clonal structure

We chose to focus on large, somatic CNVs of 100 exons or more

(Materials and Methods). The median size of CNVs exceeding

this threshold was 18–21 mega base-pairs, comprising 300–400

genes. This size is much larger than the size of CNVs previously

observed to occur frequently in the germline (Sudmant et al,

2015), which had a median size of 36 kilo base-pairs. We found

that GBM to normal-brain control single-cell expression ratios

correlated with CNV status (Appendix Fig S1), motivating us to

quantify these CNVs in individual cells (Materials and Methods).

Briefly, for each CNV identified in the exome-seq, the 5% signifi-

cance level of the distribution of normal-brain read counts cover-

ing that locus was used as a threshold to assign CNV presence/

absence calls to individual cells (Fig 2A). This triage was unaf-

fected by the application of a wavelet-smoothing filter to the

single-cell data. Furthermore, exome-seq read histograms showed

excellent agreement with single-cell trend-lines (Fig 2B and C).

This indicated that our approach was robust to the stochastic

expression of individual genes. We validated the error rate of this

classifier using 10-fold cross-validation, as well as empirical test-

ing on a control dataset (Pollen et al, 2015; Appendix Fig S2,

Materials and Methods). Using Jaccard distance between CNV

genotypes to assess inter-cell similarity, we fit phylogenies to

each of the tumor samples using the Fitch–Margoliash method

(Materials and Methods). The amplifications of chromosomes 7

and 19p13.3, which were shared across cases in the exome-seq,

occurred early in all three of our single-cell phylogenies. In

SF10360, chromosome 7 gain was a founding event, occurring

together with a loss of chromosome 10 (Fig 3A). Intriguingly, a

loss of chromosome 13 arose independently in two distinct sub-

clones of SF10360. Since 13q14 harbors the miR-15a/16 micro-

RNA cluster, a known tumor suppressor in prostate cancer

(Bonci et al, 2008) and chronic lymphocytic leukemia (Pekarsky

& Croce, 2015), this loss may convey a survival advantage here

as well.

MiR-15a/16 mutant cells up-regulate downstream adhesion and
Aurora B kinase pathway genes, enriched in the leading edge and
infiltrating tumor

We compared gene expression in chromosome 13 wild-type cells

to cells harboring the deletion in SF10360 (Dataset EV7) and

scanned the promoters of differentially expressed genes (P < 0.05)

for conserved transcription factor recognition motifs (Materials

and Methods). 16% of genes up-regulated upon chromosome 13

deletion were validated direct targets of miR-15a/16; and an addi-

tional 78% were expressed from loci enriched for motifs of

transcription factors targeted by miR-15a/16 (Fig 3B; Chou et al,

2015). The most significant differentially expressed genes (adjusted

P < 0.1) showed distinct patterning across tumor anatomical struc-

tures, when cross-referenced with the Ivy Glioblastoma Atlas
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Figure 1. Experimental design and pipeline, pathology, and genomic and transcriptomic signatures for three primary GBMs.

A The sample acquisition and processing pipeline.
B Circos plot of somatic, genomic alterations detected in the bulk DNA of each patient using ADTEx. Copy-number alterations are highlighted in the outer circle by thick

black bars, and SNVs (MuTect) and small indels (Pindel) by the vertical lines in the inner circle. Regions with strong amplifications/losses are highlighted.
C Summaries of the patient’s sex, age, pathology report, sample’s stromal infiltration, and molecular classification.

ª 2016 The Authors Molecular Systems Biology 12: 889 | 2016

Sören Müller et al Single-cell sequencing of glioma Molecular Systems Biology

3



(glioblastoma.alleninstitute.org). Genes up-regulated in the wild-

type cells were enriched in the peri-vascular region, and genes

up-regulated upon chromosome 13 deletion were enriched in the

leading edge and infiltrating tumor (Figs 3C and EV2). Consistent

with an infiltrating phenotype, cell-adhesion molecules were over-

represented (q = 0.06; Materials and Methods). This included

junction-adhesion molecules, integrins, disintegrins, and cell-surface

receptors implicated in invasion (Fig 3D; Nath et al, 2000; Sloan,

2005; Tenan et al, 2010; Reyes et al, 2013; Sarkar et al, 2015;

Venkatesh et al, 2015). 76% of these cell-adhesion pathway genes

were enriched for NF-jB/REL recognition motifs (Fig 3B). Taken

together with the EGFR-driven/mesenchymal classification of the

case, we speculated that the loss of the miR-15a/16 cluster enhances

growth factor-stimulated cell invasion here, as has been described in

other cancers (Bonci et al, 2008). Among the direct targets of miR-

15a/16 that were up-regulated, Aurora B kinase, survivin, and genes

that complex with them were overrepresented (q = 0.03; Fig 3E).

Survivin is a well-studied inhibitor of apoptosis. Aurora B kinase

overexpression increases genomic instability (Ota et al, 2002),

resulting in multinuclearity and aneuploidy (Tatsuka et al, 1998).

Dose–response analysis correlates an in-frame deletion in
PDGFRA to a pro-growth signature in vivo

We found that the PDGF-receptor alpha encoding gene, PDGFRA,

was amplified in SF10282 (12 copies as estimated by exome-seq). We

also detected a small deletion in exon 7 that was broadly expressed

(Fig 4A). This mutant transcript, which we denote as PDGFRAD7, is

found in 98% of SF10282’s cells that express PDGFRA (69% of cells

overall). Since the deletion is in-frame, broadly expressed, and affects

an immunoglobulin-like fold involved in receptor dimerization, we

reasoned that PDGFRAD7 might enhance PDGF-receptor signaling.

We sorted cells by PDGFRAD7 expression and identified genes that

showed a strong rank correlation with PDGFRAD7 levels (Materials

and Methods). Positively correlated genes were enriched for the

PDGF-receptor signaling network and cell cycle, when compared to

the Pathway Commons and DAVID databases (Huang et al, 2009;

Cerami et al, 2011). Negatively correlating genes were enriched for

oxidative phosphorylation (Fig 4B). Genes correlating with increas-

ing PDGFRAD7 were scanned for overrepresented transcription factor

binding motifs. Genetic and physical interaction databases were

queried against significant transcription factors (Fig 4C), implicating

STAT1 and NF-jB as downstream effectors of PDGFRAD7. By

comparison, an analogous dose–response analysis of EGFR in

SF10345 identified an increasing gene set of cell cycle genes, as well

as genes related to chromatin modification and cell motion. Inference

of mediating transcription factors implicated STAT signaling, as in

SF10282. Additionally, SOX2 [a pluripotency factor highly expressed

in embryonic, neural and glioma stem cells (Suvà et al, 2014)] and

c-Jun [an anti-apoptotic factor involved in glioma-genesis (Yoon

et al, 2012)] targets correlated to EGFR dose (Fig 5).

PDGFRAD7 confers a growth advantage and stimulates wild-type
PDGFRA expression in vitro

We expressed PDGFRAD7, wild-type PDGFRA and a GFP control from

lentivirus, in two patient-derived cell lines that we had cultured as

monolayers (Fig 6A). One we derived from SF10360 (described

Chromosome 19 exon index

S
m

oo
th

ed
 tu

m
or

-c
el

l/
br

ai
n-

ce
ll 

ex
pr

es
si

on
 

ra
tio

 z
-s

co
re

-2

-1

0

1

2
Single-cell CNV

0e+00 2e+07 4e+07 6e+07

0.
0

1.
0

2.
0

Chromosome 19 exon location

Tu
m

or
/n

or
m

al
 b

lo
od

 
co

ve
ra

ge
 ra

tio

Exome-seq CNV calls

8
10

12
14

M
ea

n 
lo

g2
 C

P
M

Single-cell CNV triage
chr 19 : 2.81e+06 - 8.92e+6

Tumor
cells

Non-malignant
human brain

A

B

C

Figure 2. Presence/absence assignments in individual cells of CNVs
called from bulk exome-seq.

A Read-count distributions in a locus of copy-number gain on 19p13.3,
comparing cells in SF10360 to a human, normal-brain control. The 5th

percentile of the normal-cell distribution is indicated by a red line.
B Per-exon, normalized bulk exome-seq read-count computed by ADTEx,

compared between SF10360 and a blood control. Regions with a read-
count ratio > 1.3 are putative DNA copy-number gains (blue), and regions
with fold-changes < 0.7 are putative losses (red).

C A heatmap visualizing the z-score of ratios, of wavelet-smoothed read
counts, compared between single-cell RNA-seq expression in tumor cell
(rows) and the median expression in single-cell RNA-seq of normal-brain
tissue.

Molecular Systems Biology 12: 889 | 2016 ª 2016 The Authors

Molecular Systems Biology Single-cell sequencing of glioma Sören Müller et al

4



7+
10-

13-
14(q11-13)-
9(p21.1)-

19(p13.3)+
18q-

Leading
edge

Infiltrating
tumor

Hyperplastic
blood vessels

Microvas-
culature

U
p 

in
 c

hr
13

 w
t

U
p 

in
 c

hr
13

 lo
ss

Z-score

0 1-1

Chr13 wt CPM

C
hr

13
 lo

ss
 C

P
M

 1e4

1e2

1
1 1e2 1e4

DESeq adjP<0.1

TA
L1

G
A

B
P

A

E
LK

4

N
FK

B
1

FO
X

F2

R
E

L1

Chr13

miR-15a/16

16%

78%

6%

Genes up-regulated
upon chr13 loss (P<0.05)

Mir15/16 targets

Targets of mir15/16 
repressed TFs

A

C

B

D E

SDC3

CDH4
NRXN3

NLGN3

NRXN1

NRXN2

CDH2

CADM1

EZR

RDX
ICAM2

ITGAM

CDH1

ITGB2

ICAM1

ADAM9

AZGP1 ITGAV

L1CAM

SELL

SELE

SELPLG

ITGA4

ITGB1
NCAM1

GLG1

NRCAM

NFASC

SIGLEC1

TNR

CNTNAP2

CNTN2
CNTN1

VCAN

F11R

ITGB8

CSNK2A1

JAM3

ADAM23

PVRL1

PVRL3PVRL2

PVR

JAM2

CD226

Cell adhesion pathway q=0.06
- indirect miR-15/16 targets

AURKA

CDC20

TACC1

AURKB

BUB1

AURKC

EVI5

BIRC5

RASA1

PPP1CC

INCENP

PSMA3
DES

KIF23

MKI67
NSUN2

CDCA8

RACGAP1
CBX5

SOCS2

NCAPD2

SMC2

SMC4

NCAPG

IGF1R

NCAPH

CENPA

SEPT1

Aurora B kinase pathway q=0.03 
- direct mir15/16 targets

Gene in pathway

Gene up-regulated upon chr13 loss

Both

Protein-protein interaction

Figure 3.

ª 2016 The Authors Molecular Systems Biology 12: 889 | 2016

Sören Müller et al Single-cell sequencing of glioma Molecular Systems Biology

5



here), and the second was from a primary GBM: SF10281. These cell

lines do not strongly express PDGFRA endogenously, but we detected

robust expression of PDGFRA and PDGFRAD7 mRNA in the respec-

tive cultures where they were ectopically expressed (Fig 6B). To

specifically quantify the expression of wild-type PDGFRA, we

designed an RT-qPCR assay with a probe targeted to the deleted

region. Intriguingly, we found that endogenous, wild-type PDGFRA

was induced in both cell lines upon ectopic expression of PDGFRAD7

(Fig 6C). When we identified genes that were differentially, recur-

rently expressed in both PDGFRAD7 cultures compared to wild-type

PDGFRA and GFP, we found that these genes enriched for gene-

ontology molecular functions associated with PDGF binding and the

binding of other growth factors (Fig 6D). In particular, we saw an

up-regulation of the epiregulin encoding mRNA (EREG), an epider-

mal growth factor family member which ligates EGFR and most

members of the v-erb-b2 oncogene homolog (ERBB) family. We saw

an up-regulation of the notch-receptor ligand jagged 1 (JAG1) and

the master regulator of angiogenesis, VEGFA. Additionally, we saw

an induction of regulators of inflammation IL1B and IL6, as well as

COX-2 and colony-stimulating factor 3 (CSF3). VEGFA, COX-2, and

CSF3 all encode chemotactic factors for MDSC (Lechner et al, 2010;

Fujita et al, 2011; Cao et al, 2014; Fig 6E). Additionally, we

performed an MTT colorimetric assay and found that ectopic

PDGFRAD7 expression significantly enhanced cell growth in vitro,

compared to over-expression of wild-type PDGFRA or GFP control

(Fig 6F).

In-frame deletions in the PFGFRA dimerization domain are
frequent events in The Cancer Genome Atlas’s GBM data

We then processed exome-seq data from 389 GBM patients and

corresponding blood controls available from The Cancer Genome

Atlas (TCGA) and quantified the frequency of in-frame deletions in

PDGFRA (Materials and Methods). An in-frame deletion resulting in

the loss of exons 8 and 9 (PDGFRAD8,9) had been previously cloned

from a GBM biopsy (Kumabe et al, 1992). PDGFRAD8,9 affects the

same dimerization domain as PDGFRAD7 and has been shown to be

transforming (Clarke & Dirks, 2003). A more recent TCGA study

showed that PDGFRA mRNA lacking exons 8 and 9 was expressed

in 17.8% of GBMs; however, PDGFRAD8,9 prevalence was not inter-

rogated at the DNA level (Brennan et al, 2014). We compared the

distributions of reads mapping exons 8 and 9 in PDGFRA between

tumor samples and the blood controls in TCGA data. The tumor

distribution is clearly bimodal (Fig 7A), and this second mode

corresponds to a set of samples depleted of reads mapping exons 8

and 9. By thresholding at the 10% level of the blood distribution as

a control, we estimate PDGFRAD8,9 occurs in 16% of cases in our

dataset (n = 389), after Benjamini–Hochberg correction for multiple

hypothesis testing. This is remarkably close to the 17.8% of cases

where PDGFRAD8,9-consistent mRNA was observed in the TCGA

study (n = 206). Additionally, we found a second family of deletions

in exon 7, occurring in 1.8% of cases we analyzed (including

SF10282). The frequency of PDGFRA amplification was 13.6%, but

we did not find a strong correlation between PDGFRAD8,9 and

PDGFRA amplification. On the other hand, all of the small deletions

occurred in PDGFRA amplified cases (Fig 7B). Both PDGFRAD7,

PDGFRAD8,9, and the other small in-frame deletions target

immunoglobulin I-set sub-domains of the extracellular domain of

PDGFRA (Fig 7C). These domains are involved in receptor dimer-

ization (Chen et al, 2012).

Accumulating mutations correlates with the acquisition of an
OPC signature in a proneural GBM and an invasion signature in a
classical/mesenchymal case

We performed differential gene expression analysis between

SF10282 and SF10345, and as expected, EGFR was up-regulated in

SF10345 (Dataset EV8). Additionally, there was an overrepresenta-

tion of cell-adhesion molecules and genes mediating motility in

SF10345’s differentially expressed genes (Fig 8A). For example,

CD44, encoding an adhesion molecule that mediates stem cell

homing (Pietras et al, 2014), was over 14-fold enriched in SF10345

(Fig 8B). Intriguingly, transcripts coding for chemotactic factors for

myeloid-derived suppressor cells (MDSC) were differentially

expressed in SF10345. C3 convertase is a core component of the

complement cascade, mediating inflammation, and the innate

immune response. Complement pathway cytokines attract MDSC

and induce their expression of reactive-oxygen species, contributing

to a tumor-supportive microenvironment (Markiewski et al, 2008).

Periostin (POSTN) is secreted by glioma stem cells, recruiting

tumor-associated macrophages that enhance tumor growth (Zhou

et al, 2015). Both C3 and POSTN were up-regulated in SF10345 by

several hundred fold (Fig 8B).

On the other hand, the neuron-differentiation pathway was

significant in genes up-regulated in SF10282 (Fig 8A). Upon inspec-

tion, however, these genes were factors predominantly expressed by

OPCs during development: PDGFRA, NKX2-2, SOX10, SEMA5A,

LINGO1, S100B, MAP2 (Shafit-Zagardo et al, 2000; Deloulme et al,

Figure 3. Analysis of gene sets differentially expressed between subclones of SF10360.

A A phylogeny of CNV cellular genotypes identified in SF10360. Each leaf corresponds to a genotype, defined by a set of CNV presence/absence calls shared between a
group of cells.

B Overrepresented transcription factor recognition motifs in genes up-regulated (DESeq, P < 0.05) upon chromosome 13 loss. 16% of up-regulated genes are direct,
validated miR-15a/16 targets. Another 78% of up-regulated genes are targets of transcription factors that are repressed by miR-15a/16.

C Heatmap of the most significantly, differentially expressed genes (DESeq, FDR < 0.1) upon chromosome 13 loss in the Ivy Glioblastoma Atlas. Each row is a gene, each
column is an RNA-seq from an anatomically defined tumor compartment, micro-dissected from an untreated GBM biopsy.

D Protein interaction network of genes differentially expressed upon chromosome 13 loss, which are targets of a miR-15a/16 regulated transcription factor, with an
overlay of protein interactions in the cell-adhesion pathway.

E Protein interaction network of genes differentially expressed upon chromosome 13 loss, which are direct, validated targets of miR-15a/16, with an overlay of protein
interactions in the Aurora B kinase.

Data information: Significance of network overlaps in (D, E) was computed via JEPETTO (q < 0.1).
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Figure 4. Dose–response analysis of a PDGFR mutant.

A Coverage of exome-seq (top left) and RNA-seq reads (bottom left) in exon 7 of the PDGFRA gene. The deletion targets the immunoglobulin-like domain IG5 of the
PDFG receptor (center). 49% of PDGFRA expressing cells express PDGFRAD7 homozygously, another 49% express it heterozygously (right).

B Enriched gene sets (WEBGESTALT, DAVID, adj. P-value < 0.05) correlated to PDGFRAD7. Distributions of in-pathway genes in individual cells, sorted from low PDGFRAD7

to high PDGFRAD7.
C An interaction network (generated via geneMANIA) of physical and genetic interactions of transcription factors, whose recognition motifs are overrepresented

(OPOSSUM, z-score ≥ 10, Fisher score ≥ 7) in correlated genes. Physical interactions are interactions between the protein products, identified from proteomics
experiments. Genetic interactions are changes in gene expression that occur when another gene is suppressed in a knockdown experiment.
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2004; Goldberg, 2004; Petryniak et al, 2007; Jepson et al, 2012).

Our initial inspection of SF10282 had revealed a NSC-like subpopu-

lation (Fig 1C), which occurred early in our phylogeny of SF10282.

Analysis of NSC and OPC gene expression in our phylogeny showed

constitutively high expression of PAX6, SOX2, and TNC, but a grad-

ual increase in the OPC genes OLIG2, ASCL1, NKX2-2, and SOX10

along pseudo-time. PI3K/AKT pathway genes and genes implicated

in angiogenesis also increased concomitantly (Fig 8C). By compar-

ison, SF10345 showed a progressive up-regulation of genes encod-

ing extracellular matrix and transmembrane proteins associated

with glioma motility and invasion, such as tenacin-C, neurocan, and

integrin (Cuddapah et al, 2014). AKT pathway genes AKT2 and

AKT3, which contribute to glioma invasiveness and malignancy

(Chautard et al, 2014), and class II myosins, required for glioma

invasion and neural stem cell migration (Beadle et al, 2008; Ostrem

et al, 2014), were also progressively up-regulated as one moves

along the backbone of the SF10345 phylogeny (Fig 8D).

Discussion

Despite standard of care treatment, GBM has an extremely high

recurrence rate, approximately 90% (Weller et al, 2013). There is

an urgent need for combinatorial strategies to address residual

disease (Prados et al, 2015). In particular, intra-tumor receptor

heterogeneity is a confounder for tyrosine-kinase inhibitor therapy
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Figure 5. Dose–response analysis of an EGFR-amplified case.
Enriched gene sets (WEBGESTALT, DAVID, adj. P-value < 0.05) correlated to EGFR. Distributions of in-pathway genes in individual cells, sorted from low EGFR to high EGFR (top
panel). An interaction network (generated via geneMANIA) of physical and genetic interactions of transcription factors, whose recognition motifs are overrepresented
(OPOSSUM, z-score ≥ 10, Fisher score ≥ 7) in correlated genes. Physical interactions are interactions between the protein product, identified from proteomics experiments.
Genetic interactions are changes in gene expression that occur when another gene is suppressed in a knockdown experiment.

▸Figure 6. In vitro analysis of PDGFRAD7.

A Schematic representation of the in vitro experiment.
B Reads mapped to exon 7 of PDGFRA in PDGFRAD7 over-expressing, wild-type PDGFRA over-expressing, and GFP control cultures.
C Quantitative PCR with a probe targeted to the region deleted in PDGFRAD7. Results (mean � SD) comparing wild-type PDGFRA expression between GFP control and

PDGFRAD7 expressing cells from SF10360. The asterisk indicates P < 0.05 (t-test).
D Top: Volcano plot of gene expression between PDGFRAD7 and PDGFRA wild-type expressing cells from SF10281 (left) and SF10360 (right). Differentially expressed genes

(adjusted P-value < 0.05, ANODEV test from DEGSeq2 package) are indicated in red. Bottom: Gene-ontology enrichment of genes differentially expressed between
PDGFRAD7 and PDGFRA wild type in both cell lines (right).

E Bar plots of mean gene expression (� SD) across duplicates in GFP, wild-type PDGFRA, and expressing cells from SF10281 (left) and SF10360 (right).
F WST-1 assay (n = 3) comparing proliferation (mean � SD) of SF10360c cells expressing GFP, PDGFRA WT or PDGFRA delta7. The asterisk indicates P < 0.05 (t-test).
G Genetic interactions and physical interactions (via Genemania) of transcription factors (via OPOSSOM) whose motifs are enriched in the promoters of genes

correlating with PDGFRAD7 in vivo. This is compared to the genetic interactions between upstream transcription factors of genes which are differentially expressed in
the PDGFRAD7 over-expression experiment.
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(De Witt Hamer, 2010). Recent advances in single-cell analysis have

enabled high-resolution estimates of clonal heterogeneity (Francis

et al, 2014; Patel et al, 2014; Meyer et al, 2015). In this study, we

combined whole exome and single-cell mRNA sequencing to map

transcriptional signatures to mutational phylogenies in EGF- and

PDGF-driven GBMs. These data implicate in-frame deletions in the

dimerization domain of PDGFRA as potential therapeutic targets.

And, they identify a cell-type hierarchy, which occurs in early brain

development, as being recapitulated during tumor evolution.

In the developing forebrain, OPCs arise from neuroepithelial

stem cells in sequential waves of oligodendrocyte production

(Kessaris et al, 2006; Menn et al, 2006). ASCL1 and OLIG2 are

interacting transcription factors required for oligodendrogenesis and

highly expressed in OPCs (Zhou & Anderson, 2002; Petryniak et al,

2007; Nakatani et al, 2013). OLIG2 drives SOX10 transcription in

OPCs (Kuspert et al, 2011), which in turn regulates myelin expres-

sion (Stolt et al, 2002), critical for oligodendrocyte function. Consis-

tent with aberrant activation of this developmental program in

GBM, SF10282 progressively up-regulated the above OPC-specific

genes in its model of tumor evolution. Early cells expressed PAX6,

SOX2, and other markers of neural stem cells but produced daugh-

ters with a more OPC-like profile (Fig 8C). PDGFRA expression is

characteristic of OPCs in non-malignant brain and was amplified

in SF10282.
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Figure 7. Analysis of TCGA data reveals a family of PDGFRA mutations affecting the dimerization domain.

A The fraction of reads assigned to exons 8 and 9 from all exome-seq reads mapping to PDGFRA, compared between blood control and GBM samples. The 10th

percentile of the blood control distribution is indicated by a red line.
B Venn diagram of GBM cases harboring an amplification, a deletion of exons 8 and 9, or a small deletion affecting the dimerization domain of PDGFRA.
C Visualization of deletions detected in PDGFRA from TCGA data. Domains are indicated by color (top), exons and protein residues by number (middle), and deleted
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▸Figure 8. Differences in gene expression between an EGF- and a PDGF-driven GBM.

A A scatterplot of log2 mean expression between SF10345 and SF10282. Adjusted P-values of biological process GO terms, enriched in differentially expressed genes
(SCDE), with an adjusted P-value < 0.05 (on a �log10 scale).

B Single-cell gene expression estimates (colored lines), their SF10345/SF10282 log2 fold-changes, and their joint posteriors for select genes. A 95% confidence interval
is represented by dotted lines.

C, D Phylogenetic trees for SF10282 and SF10345. Each leaf corresponds to a unique set of cells with the same CNV genotype. Bar plots show mean (� SD) expression of
select genes across sets of cells that progressively gain CNVs.
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However, 68% of tumor cells in SF10282 express an in-frame

deletion mutant, PDGFRAD7. We found that PDGFRAD7 is part of a

family of in-frame deletions in PDGFRA’s dimerization domain that

occur in GBM. The most common of these mutations, PDGFRAD8,9,

occurs with 16% frequency in the TCGA DNA sequencing data we

analyzed (n = 389). Our finding is consistent with a recent TCGA

paper that found PDGFRA mRNA lacking exons 8 and 9 in 17.8% of

their samples (n = 206; Brennan et al, 2014). PDGFRAD8,9 expres-

sion has been shown to induce constitutive signaling of the PDGF

receptor and is sufficient for malignant transformation (Clarke &

Dirks, 2003). In-frame deletions in PDGFRA’s dimerization domain

have also been observed in pediatric high grade gliomas, and those

studies implicate constitutive receptor signaling too (Paugh et al,

2013). Our single-cell data show that increasing PDGFRAD7 dosage

correlates in vivo with an activation of genes downstream of the

PDGF-receptor, in particular, targets of rapid-acting transcription

factors (e.g. STAT, NF-jB). When ectopically over-expressed, in

patient-derived glioma cell lines, PDGFRAD7 enhances proliferation

compared to wild-type PDGFRA over-expression. PDGFRAD7 induces

wild-type PDGFRA expression in vitro, along with tyrosine-kinase

receptor ligands and pro-angiogenesis genes.

The deletions we observed aggregate in the I-set domains of

PDGFRA’s immunoglobulin-like folds. These highly conserved

domains are involved with receptor dimerization and in principle

can interact with a variety of different domain types; however, these

domains are typically glycosylated, which protects against promis-

cuous receptor interaction in the absence of ligand (Barclay, 2003).

All of the deletions we have observed are either on or near predicted

glycosylation sites (Fig EV3).

Single-cell RNA-seq has enabled composition assessments and

lineage reconstruction in the highly dynamic, highly heterogeneous

context of the developing brain (Darmanis et al, 2015; Pollen et al,

2015; Diaz et al, 2016; Liu et al, 2016). Single-cell RNA-seq of tumor

biopsies provide a similar snapshot of tumor evolution. By using a

proven approach such as bulk exome-seq to identify mutations,

single-cell RNA-seq libraries can then be triaged to assign a tran-

scriptional signature to a mutational profile or phylogeny. By cross-

referencing public atlases such as the Ivy Glioblastoma Atlas, we

further related this information to tumor anatomical structure.

When we cross-referenced the Ivy Glioblastoma Atlas with the chro-

mosome 13 deletion subclone of SF10360, we identified a spatial

segregation of differentially expressed genes, aggregating in the

perivascular niche and the leading edge, respectively. Cells harbor-

ing the chromosome 13 deletion were also characterized by an up-

regulation of pro-invasion, adhesion genes. However, whether the

deletion event preceded or succeeded any physical separation of

these two clones could not be inferred from these data. Targeted

resections that record relative biopsy position can resolve spatial

evolution more accurately (Sottoriva et al, 2013).

Materials and Methods

Sample acquisition and processing

Fresh tumor tissue was acquired from patients undergoing resection

for glioblastoma. De-identified samples were obtained from the

Neurosurgery Tissue Bank at the University of California San

Francisco (UCSF). Sample use was approved by the Committee on

Human Research at UCSF. The experiments conformed to the princi-

ples set out in the WMA Declaration of Helsinki and the Department

of Health and Human Services Belmont Report. All patients

provided informed written consent. Tissues were minced in collec-

tion media (Leibovitz’s L-15 medium, 4 mg/ml glucose, 100 lg/ml

penicillin, 100 lg/ml streptomycin) with a scalpel. Samples were

further dissociated in a mixture of papain (Worthington Biochem.

Corp) and 2,000 units/ml of DNase I freshly diluted in EBSS and

incubated at 37°C for 30 min. The suspension was centrifuged for

5 min at 300 g and re-suspended in PBS. Suspensions were tritu-

rated by pipetting up and down 10 times and passed through a

70-lm strainer cap (BD Falcon), followed by centrifugation for

5 min at 300 g. Pellets were re-suspended in PBS and passed

through a 40-lm strainer cap (BD Falcon), followed by centrifuga-

tion for 5 min at 300 g. Dissociated, single cells were then

re-suspended in GNS (Neurocult NS-A (Stem Cell Tech.), 2 mM

L-glutamine, 100 U/ml penicillin, 100 lg/ml streptomycin, N2/B27

supplement (Invitrogen), sodium pyruvate).

Single-cell capture and cDNA generation was performed using

the Fluidigm C1 Single-Cell Integrated Fluidic Circuit (IFC) and

SMARTer Ultra Low RNA Kit. cDNA was quantified using Agilent

High Sensitivity DNA Kits and diluted to 0.15–0.30 ng/ll. Dual

indexing and amplification were performed using the Nextera XT

DNA Library Prep Kit (Illumina) according to the Fluidigm C1 proto-

col. 96 single-cell RNA-seq libraries were generated from each

tumor sample and were pooled for 96-plex sequencing. Amplified

and pooled cDNA was purified and size selected twice using 0.9×

volume of Agencourt AMPure XP beads (Beckman Coulter). Final

cDNA libraries were quantified using High Sensitivity DNA Kits

(Agilent) and sequenced on a HiSeq 2500 (Illumina), using the

paired-end 100 base pair (bp) protocol.

Exome-sequencing and genomic mutation identification

Exome capture was done using NimbleGen SeqCap EZ Human

Exome Kit v3.0 (Roche) exome capture kits on a tumor sample and

a blood control sample from each patient. Sequencing was carried

out with an Illumina-HiSeq 2500 machine acquiring 100-bp paired-

end reads. Reads were aligned to the human genome (hg19) using

BWA (Li & Durbin, 2009), whereas only uniquely matched paired

reads were retained. PicardTools (http://broadinstitute.github.io/pi-

card/) and the GATK toolkit (McKenna et al, 2010) were used for

quality score re-calibration, duplicate-removal, and re-alignment

around indels. The resulting BAM files were sorted by genomic

coordinates. Subsequently, the percent contamination was assessed

with ContEst (SF10345: 0.1%, SF10360: 0.1%, SF10282: 0.2%).

OxoG metrics were calculated with PicardTools’ CollectOxoGMetrics

(Dataset EV9). After these control steps, single nucleotide variants

(SNVs), short indels (< 50 bps), and large CNVs comprising more

than three exons were detected. Somatic SNVs were inferred with

MuTect (https://www.broadinstitute.org/cancer/cga/mutect) for

each tumor/control pair and annotated with. SNVs with < 10% vari-

ant frequency in the tumor, with more than five variant reads in the

patient-matched normal, or > 10% variant frequency in the patient-

matched normal were excluded from further analysis. Small indels

were detected with Pindel (Ye et al, 2009) and those with fewer

than six supporting reads in the tumor, any supporting reads or
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< 14 total reads in the patient-matched normal, and replacements

for which the deletion and non-template inserted sequence were of

the same length were excluded. All indels and SNVs were annotated

for their mutational context and effect using the Annovar software

package (Wang et al, 2010). Only protein-coding or splice-site muta-

tions were retained for further analysis. ADTEx (Amarasinghe et al,

2014) was used for detection of large somatic CNVs. Only CNVs

comprising more than 100 exons were retained for downstream

analysis. Proximal (< 1 Mbp) somatic CNVs were merged in the

output file to maximize CNV regions.

Single-cell RNA-sequencing data preprocessing, quality control,
and GBM subtype classification

Reads were trimmed for quality and Nextera adapters removed with

TrimGalore! (http://www.bioinformatics.babraham.ac.uk/projects/

trim_galore/), and paired-end reads were mapped to the human

genome (hg19) with tophat2 (Kim et al, 2013) using the –prefilter-

multihits option and a GENCODE V19 transcriptome-guided align-

ment. Quantification of GENCODE genes was carried out with

featureCounts (Liao et al, 2014). Only fragments corresponding to

uniquely mapped, correctly paired reads were kept. Expression

values were normalized to CPM in each cell. We filtered samples

whose background fraction is significantly high, via a threshold on

the (Benjamini–Hochberg corrected) q-value of a Lorenz statistic on

the samples’ cumulative densities, described previously (Diaz et al,

2016). In our tests, samples that have a small q-value have low

complexity, as measured by Gini-Simpson index, and they have low

coverage, as estimated by the Good–Turing statistic (Fig EV1).

To compare genotypes from the single-cell RNA-seq data across

patients and to the exome-seq data, we identified 17, 21, and 15

single nucleotide variants (SNVs) in the single-cell RNA-seq that are

patient specific in SF10282, SF10345, and SF10360, respectively.

These SNVs are likewise detected in, and only in, their respective

blood and tumor-derived exome-seq datasets. The median difference

in RNA-seq to tumor exome-seq variant allele frequency (VAF) is

0.056. By comparison, the median difference in tumor exome-seq to

blood exome-seq VAF is 0.044 (see Appendix Fig S3 and

Appendix Table S1).

Infiltrating stromal/non-malignant cells were identified as those

cells which contained none of the CNVs, none of the indels or point

mutations found in the exome-seq data, and clustered away from

tumor cells in a hierarchical clustering. These putative stromal cells

formed two clusters: one that is comprised of cells from all samples

that expresses markers of immune cells (particularly those of macro-

phages/microglia) and a second cluster comprised of cells from

SF10282 that express oligodendrocyte markers (Fig EV2C). We clas-

sified all of the remaining cells according to the Verhaak et al

(2010) and Sun et al (2014) molecular subtypes. To perform the

Verhaak classification in individual cells, we fit a linear regression

model using the four centroids in the original Verhaak clustering as

predictors and the gene expression profile of the tumor cell to be

classified as a response. We restricted expression profiles in individ-

ual cells to those genes used in the original Verhaak clustering and

represented expression by standardized, log-transformed CPMs. The

cell to be classified is assigned to the subtype whose corresponding

centroid has the largest regression coefficient in magnitude. Sun

et al determined their subtypes by identifying gene modules that

co-expressed with PDGFRA or EGFR in a large cohort of adult diffuse

gliomas. In each cell to be classified, we averaged gene expression

(measured by log-CPM) across both of these two gene modules. If

either module’s average was more than twofold higher than the

other, then we assigned the cell to the corresponding subtype.

Single-cell CNV presence/absence calls

Based on the premise that copy-number changes are reflected in

RNA-seq read counts when averaged over large, adjacent genomic

regions (Patel et al, 2014), we examined loci that were called for

somatic CNV in our ADTEx pipeline. For each CNV candidate region

(CNVCR), we sum the library-size normalized read counts across

genes in that region, for each cell in our tumor sample. We do the

same for each cell in a non-malignant, human brain control

(Darmanis et al, 2015). We use the distribution across cells in the

control for each CNVCR, to assess the sum in a given tumor cell.

We use the 5% significance level of the control distribution as our

threshold for making a CNV call (Fig 2A), and control for multiple

hypothesis testing using Benjamini–Hochberg correction. This

results in a genotype assignment to each cell, determined by which

CNVs called in the exome-seq data are present in that cell. To esti-

mate the false discovery rate (FDR) of this classification procedure,

we performed 10-fold cross-validation using the normal-brain

control cells. For each patient, we randomly selected tranches of

10% as test and 90% as training data. We estimated the FDR as

(# positive CNV calls)/(# total CNV calls), for each of the 10 folds.

We found the FDR to be < 0.01 for all tests (Appendix Fig S2A). As

a second estimator of the FDR, we classified the presence of CNVs

on a dataset comprised of non-malignant, fetal-brain cells (Pollen

et al, 2015), and estimated the FDR as above. We found these FDR

estimates to all be < 0.06 (Appendix Fig S2B).

Phylogenetic trees

We measure pairwise distance between individual cells using

Jaccard distance between CNV genotypes. This measures the

number of shared CNV calls, as a fraction of the number of

unique calls in either cell. To obtain a phylogenetic tree of tumor

cells based on this distance metric, we use the Fitch–Margoliash

method (Fitch & Margoliash, 1967) as implemented in the phylip

R package (Revell & Chamberlain, 2014), adding a “normal” geno-

type with no CNVs as an out-group to root the tree. We identified

5–6 cells per sample that did not harbor the CNV with the highest

frequency (chromosome 7 gain in SF10345, chromosome 4q12

gain in SF10282 and chromosome 10 loss in SF10360). Since these

mutations are nearly ubiquitous, they represent founding muta-

tions for the dominant clones sampled in our cells. This is consis-

tent with the fact that they affect cancer driver genes EGFR,

PDGFRA, and PTEN, respectively. These rare cells lacking founding

mutations may be technical outliers, or members of a lineage

under-sampled in the biopsy.

PDGFR in vitro overexpression

Primary dissociated tumors were plated for cell culture in DMEM-

F12 with 10% FBS. Expression vectors driving wild-type PDGFR,

PDGFRD7, or GFP (pLV[Exp]-EGFP/Bsd-EF1A) were generated and
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packaged into third generation lentivirus particles (VectorBuilder,

Cyagen Biosciences). Triplicate cell cultures were infected with

lentiviruses at equal titers at a MOI of ~1.0 and with 0.5 lg/ml poly-

brene. Two days following infection, cells were selected with

33.3 lg/ml blasticidine for 3 days. For RNA collection, cells were

grown for one additional day with no drug selection and then

harvested. For proliferation assays, cells were grown continually in

the presence of 33.3 lg/ml blasticidine. Vector expression was con-

firmed using fluorescence microscopy and RNA-seq.

Bulk RNA-seq sample processing

RNA was harvested using TRIzol reagent, followed by Direct-zol

MiniPrep RNA purification kits (Zymo Research) with the on-

column DNase digestion step. RNA integrity was confirmed using

the Agilent 2200 RNA ScreenTape (Agilent Technologies). RNA-seq

libraries were generated using TruSeq Stranded mRNA kit according

to manufacturer’s protocol (Illumina). cDNA was validated using

the Agilent 2200 DNA 1000 ScreenTape, Qubit 2.0 Fluorometer (Life

Technologies), and ddPCR (Bio-Rad). Cluster generation and

sequencing was performed on a HiSeq 4000, using the single-end 50

read protocol.

Reads were mapped to the human genome (hg19) with tophat2

(Kim et al, 2013). Quantification of GENCODE V19 genes was

carried out with featureCounts (Liao et al, 2014) using only

uniquely mapped reads. Differential expression analyses were

performed via DESeq2, using the likelihood ratio test applied against

the wild-type PDGFR, PDGFRD7, and GFP triplicate samples as a

three-level factor.

Dose–response analysis

In SF10282, cells were sorted by PDGFRAD7 expression, in SF10345

cells were sorted by EGFR expression. Genes which had a Spear-

man’s rank correlation in the top 5% with PDGFRAD7 were consid-

ered for further analysis. Pathway analysis was done using Pathway

Commons (Cerami et al, 2011) via WEBGESTALT (Wang et al,

2013), and DAVID (Huang et al, 2009), transcription factor motif

enrichment analysis was done via OPOSSOM (Sui Ho et al, 2007).

Network interactions were computed via GeneMANIA (Montojo

et al, 2010).

In vitro proliferation and wild-type PDGFRA quantification assays

For the WST-1 proliferation assay, 1 × 104 cells were cultured in a

96-well plate for 24 h in 100 ll of complete media. Then, 10 ll of
WST-1 reagent (Roche) was added to each well. Cells were incubated

at 37°C, 5% CO2 for 4 h, and placed on a shaker for 1 min. The

plates were then read on a microplate reader with a wavelength of

420 nm and a reference at 620 nm. For the TaqMan gene expression

assay, cDNA was synthesized from 50 ng of glioma cell line-derived

RNA with qScriptTM XLT cDNA SuperMix (Quanta Biosciences,

Gaithersburg, MD). 2 ll of converted cDNA was then used in the

qRT–PCR reaction with PerfeCta� FastMix� II (Quanta Biosciences),

according to the manufacturer’s protocol. A custom TaqMan assay

specific to wild-type, but not mutant, PDGFRA was designed by Life

Technologies. The fluorescent probe was targeted to the region

deleted in PDGFRAD7, but present in wild-type PDGFRA. Real-time

PCR and data analysis were performed using the StepOnePlus Real-

Time PCR system (Life Technologies, Carlsbad, CA). GAPDH (Assay

ID: Hs02758991_g1) expression was used as the housekeeping gene

and relative expression was determined using the 2DDCT method.

Differential expression and time-series analysis

To identify genes differentially expressed between SF10345 and

SF10282 and assess inter-cellular heterogeneity, we used the scde R

package (Kharchenko et al, 2014). We used DESeq to compare

chromosome 13 loss to wild-type cells in SF10360 and treated each

cell as a replicate. Genes that were expressed in more than 80% of

cells at < 1 CPM were filtered prior to each analysis. Transcription

factor motif enrichment analysis was done via OPOSSOM (Sui Ho

et al, 2007). JEPETTO (Winterhalter et al, 2014), run via Cytoscape

(Shannon et al, 2003), was used to compute pathways having

significant overlap with genes up-regulated upon chromosome 13

loss, and their protein interactions. For the time-series analysis, we

chose paths in our phylogenetic trees corresponding to the most

frequent mutation at each level. Our goal was to identify an ordering

of the dominant clones in the sample. But, in principle, expression

along an arbitrary path can be measured. We grouped cells with iden-

tical copy-number profiles into three intermediate points along each

branch: early, mid, and late. We subjected monotonically increasing

genes to gene-ontology analysis via DAVID (Huang et al, 2009).

TCGA data analysis

Alignments for all GBM exome-seq with available paired blood

controls from TCGA (http://cancergenome.nih.gov/) were

retrieved from CGHub (https://cghub.ucsc.edu/) in BAM format.

Reads in FASTQ format were extracted with bedtools from these

alignments (Quinlan & Hall, 2010). We detected the quality encod-

ing with a custom perl script and clipped adapters/low quality

based with Trimmomatic (Bolger et al, 2014). Next, we mapped

reads to the human genome (hg19) with HISAT2 (Kim et al,

2015). Small Indels were detected with pindel (Ye et al, 2009) for

each tumor/control pair. If multiple sequencing libraries existed

for one patient, the most recently published library was used. For

the detection of loss of exons 8/9, we calculated the fraction of

reads mapping to these exons from all reads aligned to the

PDGFRA in each GBM and each blood sample. We used the distri-

bution of all blood controls to assign significance values to each

GBM sample. P-values were corrected for multiple testing with

Benjamini–Hochberg (Benjamini & Hochberg, 1995) and an

adjusted P-value of < 0.25 was considered significant, which is in

agreement with the significance threshold for CNVs used by the

TCGA consortium (Brennan et al, 2014).

Data availability and algorithm parameters

The RNA-seq and exome-seq data from this publication have been

deposited at the European Genome-phenome Archive (EGA, http://

www.ebi.ac.uk/ega/) which is hosted at the EBI, under accession

number EGAS00001001900. Parameters of all algorithms are avail-

able in the Appendix Supplementary Methods.

Expanded View for this article is available online.
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