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Somatic mutations in the epidermal growth factor receptor (EGFR) gene are pre-

sent in approximately 20% (in Caucasians) to 40% (in East Asians) of adenocarci-

nomas of the lung. Targeted therapy for these lung cancers has been established

based on evidence regarding mainly common mutations; that is, exon 19 dele-

tions (Del19) and L858R. EGFR-tyrosine kinase inhibitors (TKI), gefitinib, erlotinib

or afatinib showed high objective response rates (ORR) of approximately 60%.

Several studies suggested that Del19 might be more sensitive to EGFR-TKI than

L858R. On the other hand, it has been difficult to establish evidence for other

less common mutations, accounting for 12% of all EGFR mutations, because there

are many variants and many studies have excluded patients with these uncom-

mon mutations. However, recent studies revealed that these rare genotypes

could be targetable if appropriate TKI are selected. For example, G719X (X

denotes A, S, C and so on), Del18, E709K, insertions in exon 19 (Ins19), S768I or

L861Q showed moderate sensitivities to gefitinib or erlotinb with ORR of 30%–

50%. However, afatinib appeared to be especially effective for these tumors.

Although Ins20s (except for insFQEA) have been regarded as resistant mutations,

osimertinib may be effective for rare subtypes of them and nazartinib (EGF816) is

promising for the majority of them. For the further development of targeted

therapy in all EGFR mutations, it is important to precisely detect targetable muta-

tions, to select the most appropriate TKI for each mutation, and to continue

investigating in vitro studies and collecting clinical data on even rare mutations.

S omatic mutations in the kinase domain of the epidermal
growth factor receptor (EGFR) gene are detected in

approximately 40% and 17% of lung adenocarcinoma in
Asians(1) and in Caucasians,(2) respectively. When these
biomarkers were first developed, early studies simplified the
complexity of tumor genotype by dichotomizing them as
mutant or wild type. Fortunately, common mutations (i.e.
exon 19 deletions [Del19] and L858R mutation in exon 21)
are associated with sensitivity to EGFR tyrosine kinase
inhibitors (TKI).(3,4) Targeted therapies for these lung
cancers were established based on 7 phase III randomized tri-
als.(5–11)

EGFR mutations other than Del19 and L858R are variably
termed either minor (less common) or uncommon mutations.
The need for appropriate management of patients with these
uncommon mutations is increasing because the incidence of
uncommon EGFR mutations is comparable to rare targetable
driver genes such as ROS1 and RET.(12–15) We recently
reported that second generation EGFR-TKI, afatinib or nera-
tinib, are especially effective for EGFR exon 18 mutations

compared with other EGFR-TKI, indicating the significance of
mutation-specific EGFR-TKI selection.(16)

In this review, we comprehensively collected data on the
frequency, in vitro sensitivity and treatment response of lung
cancers harboring common and uncommon EGFR mutations to
provide insight for the future direction of rational therapeutic
strategy .

EGFR Pathway and Mutations in the EGFR

EGFR is one of the ERBB family receptor tyrosine kinases
that consists of four members: EGFR (also known as ERBB1/
HER1), ERBB2/HER2/NEU, ERBB3/HER3 and ERBB4/
HER4. Specific ligands bind to the extracellular domain of
EGFR, which leads to the formation of homodimers and het-
erodimers. Dimerization stimulates intrinsic tyrosine kinase
activity of the receptors and triggers the autophosphorylation
of specific tyrosine residues. Signal transducers initiate multi-
ple downstream pathways such as MAPK, PI3K-AKT and
STAT 3 and 5, which regulate proliferation and apoptosis.(17)
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The EGFR gene, located on chromosome 7p12, consists of
28 exons and 27 introns. In 2004, somatic mutations in the
kinase domain were discovered in patients with lung cancer

whose tumor responded to gefitinib.(3,4) EGFR mutations shift
the equilibrium of protein structures from an inactive state into
an active state, resulting in the increased and sustained phos-
phorylation of EGFR and other HER family proteins without
ligand stimulation.(18)

Types of EGFR Mutations According to the COSMIC
Database

The catalogue of somatic mutations in cancer (COSMIC) is the
largest open access database.(19) As of May 2016, approximately
16 000 EGFR mutations are registered. According to this data-
base, as many as 594 types of EGFR mutations are reported.
Among them, 93% are present in the first four exons (18–21) of
the gene encoding tyrosine kinase domain. Although COSMIC
is extremely useful for comprehensive overview of EGFR muta-
tions, including rare mutations, the results should be interpreted
cautiously because the database consists of various data. For
example, there was a discrepancy in the frequency of Del19 and
L858R in conventional published data.(20) Del19 accounts for
approximately half of L858R (Table 1).

Table 1. Comparison of frequencies of each EGFR mutation between

our survey and COSMIC database

Category Present survey COSMIC (n = 16138)

Del19 44.8 27.4

L858R 39.8 52.7

Ins20 5.8 2.0

G719X 3.1 2.8

S768I 1.1 0.9

L861Q 0.9 1.8

Ins19 0.6 0.2

E709X 0.3 0.5

Del18 0.3 0.1

Others 3.3 5.0

T790M Excluded 6.6

Total (%) 100 100

EGFR, epidermal growth factor receptor.

Fig 1. Structure of the epidermal growth factor receptor (EGFR) protein and frequency of EGFR mutations in lung cancer by a compilation of
recent large studies. Each codon of representative mutations was mapped on the protein sequence of the EGFR kinase domain. Codons in
exon 18, 19, 20 and 21 are shown in blue, yellow, red and green, respectively. Spiral structures represent alpha-helixes. Thick arrows indicate
beta-sheet. Figures were drawn using the PyMOL Molecular Graphics System (Version 1.7.4 Schrodinger, LLC) based on the crystal structure infor-
mation from PDB ID 4R3P.
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Frequency of EGFR Mutations by Compilation of Recent
Large Studies

Three factors appear to complicate estimations of the true fre-
quencies of each EGFR mutation in clinics: methods for
detecting mutations, the presence of complex mutations and
publication biases.
Sanger sequencing has been performed to detect mutations

throughout the exons sequenced (usually exons 18–21),
although the sensitivity is relatively low (requiring approxi-
mately 10% of the mutation allele).(21) Next-generation
sequencing can also achieve broad mutation detection. Impor-
tantly, rare mutations may include artifactual mutations that
are generated during the pre-analytic period.(22) In contrast,
mutation-specific diagnostic kits have been developed for rapid
and easy testing in clinical settings. Therascreen (Qiagen,
Manchester, UK) and cobas (Roche, Basel, Switzerland) are
approved by health authorities as in vitro diagnostic kits.
These assays can detect the following specific mutations with
high sensitivities (requiring approximately 1% of the mutation
allele): G719A/S/C, Del19, S768I, exon 20 insertions (Ins20:
V769_D770insASV, D770_N771insG/SVD and H773_
V774insH), T790M, L858R and L861Q (Fig. 1). In other
words, there is no way for other mutations to be detected.
Although using these diagnostic kits is the standard method for
detecting EGFR mutations in clinical practice, it is necessary
to improve them to be able to detect rare but targetable
mutations.
Multiple EGFR mutations are sometimes detected in the

same tumor and these mutations have been referred to as co-
mutations, complex mutations or compound mutations.(23–26)

Numeration for these mutations is not defined: some studies

include them as a part of the representative mutation, such as
Del19 or L858R, and others count these mutations indepen-
dently (i.e. double-counting).
Oxnard and J€anne provide insightful comments on publica-

tion biases. Not all data on specific genotypes reaches the pub-
lished literature: common genotypes are often included in
prospective trials; less common or rare genotypes may be
described in observational series or case reports; and the com-
pleteness of the data in meta-analyses inherently depends upon
selection criteria as well as publication biases.(27)

Ideally, prospective large studies using the same method can
clarify the actual frequency. Considering these factors as possi-
ble, we collected large studies conducted by single institutions
or multi-institutional studies using the same protocol (Fig. 1).
Subsequently, we focused on rare but targetable subsets includ-
ing Ins19,(28) Del18(29) and E709X.(29) Pretreatment T790M
was excluded from our survey because the majority of them
exist as complex mutations and the frequency vary widely
from 3.9% to 64% based on the sensitivities of assays.(30) In
addition, the frequency of germline T790M remain unclear.(31–33)

First, Second and Third Generation EGFR -Tyrosine Kinase
Inhibitors

Gefitinib and erlotinib, first generation (1G) EGFR-TKI, rever-
sibly bind to the ATP-binding pocket of EGFR. Randomized
phase III trials have demonstrated the superiority of these TKI,
in terms of progression free survival (PFS), to conventional
chemotherapy in patients with lung cancers harboring EGFR
mutations.(5,6,11) However, these TKI inevitably acquire resis-
tance after an initial response. The secondary mutation T790M

Table 2. Summary of the in vitro sensitivities of Ba/F3 cells expressing each EGFR mutation to various TKI

IC50 values (nM) of <10, 10–99, 100–999 and ≥1000 are shown in blue, light blue, yellow and red, respectively. When the exact value was not
described in the literature, the approximate number was estimated from each figure. IC90 values are described in del709_T710insD, E709K,
G719A and wild type. EGFR, epidermal growth factor receptor; N/A, not availabe TKI, tyrosine kinase inhibitors.
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accounts for approximately 50%–60% of acquired resistance to
1G-TKI.(34,35)

Irreversible pan-HER (EGFR, HER2 and HER4) TKI, so-
called second generation (2G) TKI, were developed to over-
come the T790M mutation. Despite the promising preclinical
data, clinically available concentrations of the drug did not
reach the treatment range for T790M tumors because of rela-
tively severe adverse events compared with 1G-TKI due to the
inhibition of wild type EGFR. However, afatinib has been
approved as the first-line treatment for patients with EGFR-
mutant lung cancers based on phase III trials.(9,10) Dacomitinib
had a high objective response rate (ORR) of 76% in a phase II
trial and continues to undergo clinical evaluation.(36) Neratinib
is also one of the 2G-TKI. However, its development for lung
cancer was abandoned because it was not effective for com-
mon EGFR-mutant tumors, although it was effective for
G719X tumors.(37)

The pyrimidine-based third generation (3G) TKI have been
developed targeting T790M as well as common mutations
without inhibiting wild-type EGFR.(38,39) Osimertinib has been
approved for T790M tumors based on the high ORR of
approximately 60% for tumors with T790M mutations as a
resistance mechanism of 1G-TKI.(38) C797S secondary muta-
tion was detected in T790M-positive tumors that acquired
resistance to osimertinib.(40) Furthermore, C797S mutation
appeared to be sensitive to 1G-TKI, and even C797S+T790M
in trans can be treated with a combination of 1G and
3G-TKI.(41) In contrast, the development of rociletinib was
abandoned because the initially reported ORR of 59% was
reduced to 45%: initial data were not unconfirmed partial
responses although partial responses must be maintained on a
second scan obtained at least 4 weeks later.(42) Recently, olmu-
tinib (BI1482694/HM61713) was approved for T790M-positive
tumors in South Korea and received FDA breakthrough ther-
apy designation.(43) Other 3G-TKI, nazartinib (EGF816) and
ASP8273, are undergoing clinical evaluation.(44)

Treatment Strategy by Mutation-specific Tyrosine Kinase
Inhibitors Selection

When we discuss treatment strategies for heterogeneous EGFR
populations, biases should be considered, especially for the
data on less common or rare mutations. To compensate for the
weak evidence for such mutations, we also collected data on
in vitro sensitivities using Ba/F3 cells (Table 2) as well as
clinical response to TKI (Table 3). Notably, the murine pro-B
cell line Ba/F3 depends on interleukin-3 (IL-3) for its survival
and growth. Accordingly, the growth of Ba/F3 cells transfected
with specific EGFR mutation in the absence of IL-3 indicates
oncogenic ability, which can exclude artifactual mutations. Of
course, the methodological differences and clinically available
concentrations should be considered in the interpretation of
in vitro sensitivities.

Common mutations Del19 and L858R. Del19 and L858R
account for 44.8% (2573/5741) and 39.8% (2283/5741) of
EGFR mutations, respectively.(29,45–48) Evidence of these com-
mon mutations has been developed in prospective trials: gefi-
tinib, erlotinib and afatinib showed ORR of approximately
60% and PFS of 9–13 months.(5–11) To clarify the appropriate
TKI selection, efficacies of several EGFR-TKI have been
directly compared in prospective trials. In previously treated
patients, PFS was not significantly different between patients
treated with gefitinib and those with erlotinib in WJOG5108L
study:(49) The LUX-lung 7 trial showed the superiority of

afatinib compared to gefitinib as the first-line treatment in
terms of PFS with a hazard ratio (HR) of 0.73 (95% CI 0.57–
0.95).(50) Currently, ARCHER1050 (dacomitinib versus gefi-
tinib), FLAURA (osimertinib versus gefitinib or erlotinib) and
TIGER1 (rociletinib versus erlotinib) trials are ongoing.
Conventionally, Del19 and L858R have been classified into

one sensitive group. However, a meta-analysis including seven
randomized trials, which compared EGFR-TKI to platinum
doublet chemotherapy, was conducted to compare the HR of
PFS between the Del19 group and the L858R group. The study
revealed that the HR of PFS for tumors with Del19 was 50%
greater (HR 0.24, 95% CI 0.20–0.29) than for tumors with
L858R (HR 0.48, 95% CI 0.39–0.58).(51) LUX-lung 3 and 6
studies showed a survival benefit of afatinib in patients with
Del19-tumors but not for those with L858R-tumors.(52) These
data suggested that even these common mutations have differ-
ent chemosensitivities. We recommend afatinib for first-line
treatment in patients with Del19 tumors. Mature data on the
overall survival in LUX-lung 7 trial should be considered to
discuss the first line treatment for L858R tumors. Interest-
ingly, Chen et al. reported that pretreatment T790M was
more frequent in L858R-tumors than in Del19-tumors,
although the differences were observed only in studies using
methods with a detection limit <5%.(30) However, when back-
ground mutations in tumors with acquired resistance by
T790M were examined, Del 19 was more common than
L858R. The number of patients with Del19 + T790M tumors
who enrolled in phase I/II trials for osimertinib(38) and rocile-
tinib(39) was approximately twice as large as the number of
patients with L858R+T790M.
Del19 includes at least 30 variants.(53) Deletion starting at

E746 (the majority of them are delE746_A750), E747 and
others are present in 73% (272/373), 25% (92/373) and 2% (9/
373), respectively.(53–55) Rare variant delE746_S752insV may
be less sensitive to gefitinib according to the in vitro data
(Table 2).(56–58) The clinical data are controversial: the largest
study by Chung et al. reported that ORR to 1G-TKI in Del
starting at E746 were lower than those in Del starting at L747
(68.2% and 79.6%, respectively),(53) whereas other groups
showed the opposite tendency.(54,55) Notably, ORR in 7
patients with Del starting at 748, 751 or 752 was only
43%.(53)

Ins 20. Insertional mutations in exon 20 (Ins 20) account for
5.8% (134/2307) of all EGFR mutations and, based on our sur-
vey, consist of 44 types of mutations (Fig. 1).(59–62) Inserted
residues seem to be a part of the wild-type sequence; thus, these
mutations may be referred to as duplications. As mentioned
above, only four types are detectable using approved diagnostic
kits, accounting for only 49% (66/134). In addition, Yasuda
et al. reported an additional 31 types of mutations.(18,63)

In a compilation of data on the treatment response to
1G-TKI, ORR was only 17% (10/59) (Table 3).(61–65) Even
2G-TKI achieve ORR of only 10%.(18,66) However, osimertinib
may be effective for the rare subtype D770_N771insNPG.(67)

Jia et al. (2016) reveal that one of the 3G-TKI, nazartinib
(EGF816), has promising activity in overcoming the major
subtypes V769_D770insASV and D770_N771insSVD.(68) Of
note, A763_Y764insFQEA was sensitive to 1G-TKI with ORR
of 86%. Thus, this mutation, accounting for 7% of Ins20,
should not be overlooked in clinical practice.(63,67)

G719X, Del18 (delE709_T710insD) and E709X. These genotypes
are present in 3.1% (100/3186), 0.3% (9/3186) and 0.3%
(9/3186), respectively (Fig. 1).(29,61,69) Although G719X
includes many variants, 97% of them are G719A/S/C which
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can be detected by diagnostic kits. Approximately one-third of
G719X mutations are present as complex mutations and they
tend to be in combination with S768I or L861Q (Fig. 1). Most

E709X present as complex mutations and the paired mutations
tend to be G719X or L858R. Accordingly, patients with
E709X tumors are, fortunately, found to have at least the

Table 3. Summary of the data on clinical responses to first generation EGFR-TKI in 396 patients with lung cancer harboring less common

mutations

Category Mutation CR PR SD PD ORR

Del18 (n = 4) delE709_T710insD 1 1 2 25

E709X (n = 15) E709A/H/K+complex 8 5 2 53

E709K+G719A/C/S/L858R 5 1 1 71

E709A+G719A/C/S/L858R 3 4 43

E709H+T710del 1 0

G719X (n = 202) G719X/A/S/C 48 49 51 32

G719X 36 38 33 34

G719A 8 6 10 33

G719S 3 3 7 23

G719C 1 2 1 25

G719X/A/S/C+complex 1 33 18 6 59

G719X+S768I/L861Q 13 6 68

G719A+E709A/K/S720F/T725M/L747S/S768I/L833V+V834C/L858R/L861Q/R 1 10 5 3 58

G719S+Q701L+I706T/E709A/K/S768I/L858R/L861Q 9 6 3 50

G719C+E709K/K714N 1 1 50

Ins19 (n = 10) Ins19 4 6 40

I744_K745insKIPVAI 4 4 50

K745_E746insIPVAIK 2 0

Ins20 (n = 59) Ins20 10 14 35 17

D770_N771insSVD 1 3 9 8

V769_D770insASV 1 3 6 10

A763_Y764insFQEA 6 1 86

H773_V774insH 2 3 0

Y764_V765insHH 1 0

M766_A767insASV/insWPA 1 1 0

A767_S768insSVR 1 0

V769_D770delinsGI 1 0

D770_N771insGL/insGT/delinsGY 1 5 0

N771_P772insN/delinsG/delinsSY/delinsKPP 1 1 2 25

P772_H773insDNP/insYNP/dupPH/P772_V774dupPHV/P772_C775dupPHVC 1 4 20

H773_V774insAH/insNPH 1 3 0

S768I (n = 30) S768I 5 2 5 42

S768I+G719X/G724S/V769L/V774M 9 8 1 53

L861Q (n = 76) L861Q 25 24 15 39

L861Q+G719X 11 1 92

CR, complete response; EGFR, epidermal growth factor receptor; ORR, objective response rate; PD, progressive disease; PR, partial response; SD,
stable disease; TKI, tyrosine kinase inhibitors.

Table 4. Our current view on treatment strategy for patients with lung cancer harboring each epidermal growth factor receptor mutation
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representative G719X or L858R using diagnostic kits. How-
ever, Del18 can be missed.
G719A, E709K and Del18 appeared to have high sensitiv-

ity to afatinib or neratinib compared to 1G or 3G-TKI in
our in vitro study.(29) ORR to 1G-TKI in patients with
G719X-tumors as a single mutation and Del18 were only
32% and 25%, respectively (Table 3).(29,61,69–73) Relatively
high ORR of 53% (for E709X) and 59% (for G719X) were
observed in patients with complex mutations. Combined
analysis of LUX-lung 2, 3 and 6 trials demonstrated that
ORR for G719X tumors treated with afatinib was 78% (14/
18).(66) In addition, two out of four patients with tumors
harboring E709X+G719X or L858R, as well as our patient
with Del18-tumor, achieved partial responses to afatinib after
the treatment with 1G-TKI.(29,74)

S768I and L861Q. S768I and L861Q account for 1.1% (39/
3712) and 0.9% (34/3712), respectively (Fig. 1).(46–48) These
mutations can be coupled with G719X but the actual frequency
of the complex mutation remains uncertain.
ORR to 1G-TKI in S768I and L861Q tumors were only 42

and 39%, respectively (Table 3).(26,29,61,69–73,75–80) Our in vitro
data showed that both mutations are sensitive to afatinib. In
addition, osimertinib may be effective for L861Q tumors.(81)

Combined analysis of LUX-lung 2, 3 and 6 trials reported that
ORR for S768I or L861Q tumors treated with afatinib was
100% (8/8) and 56% (9/16), respectively. However, only 1
patient had S768I as a single mutation, and the remaining 7
patients had S768I+G719X or L858R. On the other hand, half of
the patients had L861Q as a single mutation. Therefore, further
clinical data should be collected to confirm these sensitivities.

Ins 19. Ins19 is a subset accounting for 0.6%
(26/4519).(28,48,82,83) I744_K745insKIPVAI is the common
type of insertion. There are a few variants of insertion starting

at K745. He et al. suggested that these genotypes are sensitive
to 1G-TKI and afatinib.(28) Although only limited data are
available, ORR to 1G-TKI is 40%.(28,82–84) One patient with
K745_E746insIPVAIK tumor achieved partial response to afa-
tinib.(28)

Conclusions

EGFR mutations in lung cancer are extremely complicated and
each mutation appears to have unique characteristics. Conven-
tionally, EGFR mutations have been classified as sensitive, less
sensitive and resistant mutations based on their responses to
1G-TKI. However, recent reports including 2G and 3G-TKI
revealed that mutation-specific TKI selection could maximize
the benefit for patients with NSCLC harboring less sensitive
mutations (Table 4). For further development of targeted thera-
pies with EGFR-TKI, it is important to precisely detect tar-
getable mutations, to select the most appropriate TKI for each
mutation and to continue investigating in vitro studies and col-
lecting clinical data for even rare mutations.
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