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Abstract

The most informative probability distribution functions (PDFs) describing the Ramachandran phi-psi dihedral angle pair, a
fundamental descriptor of backbone conformation of protein molecules, are derived from high-resolution X-ray crystal
structures using an information-theoretic approach. The Information Maximization Device (IMD) is established, based on
fundamental information-theoretic concepts, and then applied specifically to derive highly resolved phi-psi maps for all 20
single amino acid and all 8000 triplet sequences at an optimal resolution determined by the volume of current data. The
paper shows that utilizing the latent information contained in all viable high-resolution crystal structures found in the
Protein Data Bank (PDB), totaling more than 77,000 chains, permits the derivation of a large number of optimized sequence-
dependent PDFs. This work demonstrates the effectiveness of the IMD and the superiority of the resulting PDFs by extensive
fold recognition experiments and rigorous comparisons with previously published triplet PDFs. Because it automatically
optimizes PDFs, IMD results in improved performance of knowledge-based potentials, which rely on such PDFs.
Furthermore, it provides an easy computational recipe for empirically deriving other kinds of sequence-dependent
structural PDFs with greater detail and precision. The high-resolution phi-psi maps derived in this work are available for
download.
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Introduction

Accurate descriptions of the natural propensities of backbone

conformation of proteins serve to improve the analysis and

prediction of protein structures. The structure of the protein

backbone is frequently characterized by a series of dihedral angle

pairs, the phi-psi angles, defined by the rotation around two bonds:

one bond between the alpha carbon and the amine marks the phi

angle, while the other bond between the alpha carbon and the

carbonyl marks the psi angle. The Ramachandran phi-psi space

[1], defined by these two torsions, has provided an indispensable

summative description of backbone conformation. The ubiquitous

Ramachandran plots, which recently celebrated their 50th

anniversary [2], have become an insightful and widely accepted

illustration of key properties of protein secondary structure as well

as a powerful tool for molecular structure analysis [3].

Analyzing databases of experimentally derived molecular

structures of proteins has long served as a powerful way to

explore allowed and disallowed regions of the phi-psi space [4,5].

Mapping this space empirically is straightforward in principle:

plots are assembled as a distribution of observed frequencies,

culled from a statistical survey of high-resolution structures.

Frequency plots from a considerably large database of structures,

representing the range of known conformations, serve as estimates

of structural propensities or probabilities. With sufficient data,

amino-acid specific plots can be assembled easily. Such probability

density or distribution functions (PDFs) demonstrate sequence

dependence of backbone conformation in folded protein environ-

ments, and may suggest key local effects in protein folding [6].

High-resolution phi-psi maps have been useful in important

applications including structure validation [7–9] and structure

refinement [10,11], and have provided insight into the nuances of

sequence-dependent protein structure [12–14]. Naturally, these

PDFs have been integrated into so-called ‘‘knowledge-based’’

potential functions (KBPs) used for protein structure prediction

[15–18]. Over time, these PDFs have been refined as the

repository of structural data, the Protein Data Bank (PDB), grew

and as the proportion of high-resolution X-ray structures

increased. In the past decade, the explosion in the number of

viable structures and the concomitant increase in the number of

known protein folds have prompted fresh insights into the

sequence dependence of backbone conformation [3,19].

It should come as no surprise that empirical PDFs (and their

associated knowledge-based potentials) are acutely dependent on

the data set from which they are derived. Two prescriptions have

normally guided the organization of such data sets. First, data sets

aim to be comprehensive. They seek to include all the known folds

as well as the rich variety of amino acid sequences. Maximizing

both the number of structures and the coverage across sequence

and fold spaces should result in more accurate probability

estimates, yielding as much detail as current data can provide.
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Second, data sets aim to be non-redundant. Because some protein

folds and even some individual proteins are overrepresented in the

PDB, a selection must be made to include only a fair number of

each fold and sequence in order to avoid bias. The underlying

rationale for these two prescriptions is to recover some measure of

the intrinsic structural propensities. These considerations have

given rise to automatically-generated, comprehensive, non-redun-

dant sets such as PDB-SELECT [20] and PISCES [21], which are

updated periodically to keep up with the expansion of the universe

of solved protein structures. These data sets have been used to

derive many knowledge-based potential functions, from local

backbone torsions to long-range side-chain contacts. While

common practices regarding the construction of data sets have

advanced the field significantly, I demonstrate later in this paper

that additional refinements in the method of constructing data sets

can yield significantly improved performance.

After the assembly of a coherent structural data set, the next

important consideration is how exactly PDFs will be computed.

Compromises have to be made in the descriptors employed when

assembling any type of sequence-dependent structural PDF

because data are limited. The number of unique amino acid

fragments explodes exponentially as longer polypeptide sequences

are considered; therefore, any study of the sequence dependence of

backbone conformation is restricted to the shortest length scales.

Moreover, the resolution of the resulting empirical phi-psi maps is

bound to be limited since the data are subdivided among however

many short sequences there are, reducing the number of

occurrences per subdivision. Some approaches to deriving KBPs

employ sparse data corrections to address this problem. Among

them, the Sippl information quantum [22], an arbitrary constant,

is the most widely used. This paper argues for a more systematic

derivation of descriptors.

Persistent questions about how data sets are to be assembled,

along with the actual process of estimating probabilities from such

data sets, therefore form the impetus for the current work. To

date, not much has been done to closely examine the effect of

decisions made regarding these issues, even though the processes

of data selection and probability estimation are as ubiquitous as

KBPs themselves. In this work, I outline a theoretical framework

to investigate the relevant probabilities directly and develop a tool,

the Information Maximization Device (IMD), that can be applied

to a range of computational problems. This tool has allowed me to

exploit empirical data in deriving the most accurate high-

resolution phi-psi angle pair PDFs for all 20 amino acids and all

8000 full-sequence triplets to date.

Aside from the ability to derive information-rich PDFs, another

primary benefit of using an information-theoretic approach rests

on the connection we established [23,24] between increased

mutual information estimates given by the PDFs and improved

performance of KBPs in protein structure prediction, using

threading as a model. Due to this fundamental relation, estimating

the information content of any derived set of PDFs becomes a

more meaningful endeavor. Since information can indicate the

efficiency by which empirical data is being used, variations in the

way data sets are organized can be tested and compared. In such

cases, maximizing information becomes an appropriate objective

function, in that it facilitates the selection of the most effective

structural PDFs.

There have been a number of efforts to formulate backbone

dihedral angle PDFs from statistical surveys of structural data

throughout the years. The most basic structural maps chart the

natural propensities for each of the 20 amino acids [9,12,25].

More recently, maps incorporating nearest neighbor residues have

been elucidated as well—for dipeptides [26] and also for

tripeptides, both with reduced [23,27] and the full 20-letter

alphabets (by Betancourt [16]). The challenge in establishing

numerous near-neighbor PDFs is the sparseness of available data

per sequence. The work described here deals directly with this

challenge, and suggests an approach that yields tripeptide PDFs of

greater accuracy. In exploring guidelines for formulating the data

sets that yield information-rich PDFs, I demonstrate that the most

informative PDFs are those that are derived from all high-

resolution crystal data. As a display of their utility, I show here

these PDFs perform significantly better than Betancourt’s tripep-

tide PDFs in fold recognition.

Our previous work [23] used a similar but less refined strategy

to explore the local sequence dependence of the phi-psi dihedral

angles. This paper continues that work and makes significant

progress: specifically, here I advance (1) a better articulation of the

probability estimation method, which is here fully integrated into

the Information Maximization Device, (2) a theoretical rationale

for distinguishing between the data sets involved in probability

estimation and evaluating their effectiveness, (3) a recipe for using

all high-resolution X-ray structures currently in the PDB, which

greatly expands the ability to estimate PDFs, (4) a way to more

efficiently discretize structural space, which permits the highest

possible resolution. Together these outcomes yield (5) a full

elucidation of the high-resolution phi-psi maps of the 20 amino

acids and the central residues of all 8000 triplet amino acid

sequences. The PDFs for these phi-psi maps are available for

download.

Materials and Methods

The relationship between amino acid sequence and its native

molecular structure can be explored in a variety of ways, from

approaches based on biophysical notions to bioinformatics

methodologies relying on probabilistic models. Our previous work

[23,24,27] employed information theory to help resolve the

protein sequence-structure relationship. Information theory is a

natural framework with which to analyze this relationship, due to a

number of reasons that I shall elucidate throughout this paper.

Foremost among these is Anfinsen’s dogma [28], the fundamental

concept of folding, which declares that the information needed to

fold a (globular) protein into its three-dimensional conformation

lies completely in its sequence of amino acids. Besides posing an

elegant biophysical puzzle, this dogma raises an obvious question

for information theory. Mathematically, the operative probability

distribution function p(C|S), where C is conformation and S is

sequence, naturally represents the relationship between sequence

and structure, and lends itself to the basic equations of information

theory as well as of Boltzmann energetics.

This section is organized as follows. Section A summarizes the

relationship between knowledge-based potentials (KBPs) and

mutual information, and in particular the ability to optimize the

performance of KBPs by maximizing mutual information. Section

B distinguishes between two kinds of sequence-dependent struc-

tural probabilities that are at play in KBPs—the true underlying

probability and our best estimate for it, derived using empirical

(finite) data. An information-theoretic connection between these

two probability distributions sets the stage for a simple computa-

tional procedure to derive the best estimate for the true underlying

probability, the Information Maximization Device (IMD), as

discussed in Section C. Section D discusses particular require-

ments for operating the IMD, and Section E describes the data sets

and specific procedures used in this work in the application of the

IMD to derive the best-performing local-sequence-dependent phi-

psi maps.

Information-Optimized Protein Phi-Psi Propensities
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A. Fundamental connection: Mutual Information and
Potentials of Mean Force

The connection between information-theoretic quantities and

statistical/knowledge-based potentials (KBPs) is established by

invoking the concept of mutual information, I(C,S), which

measures the information overlap between conformation C and

sequence S [23]. Specifically, the discrete form of the information

equation is as follows:

I(C,S)~
X
c,s

p(c,s) ln
p(c,s)

p(c)p(s)
~{

1

kT
SDE(CjS)T ð1Þ

where k is the Boltzmann constant, T is the absolute temperature,

lower cases (c and s) represent specific instances, and p represents

probabilities as they exist in nature. The summations run through

the set of all sequences and conformations that exist in the universe

of native folds. The energy function DE arises from the Boltzmann

formalism, a fixture of many knowledge-based potentials [29],

whose expected value we showed previously to be equivalent to

mutual information [23]. Such an equivalence provides the basis

for considering energetic quantities purely on an information-

theoretic framework; that is, using mean-force energies such Eq.(1)

in structure prediction is effective precisely because they are also

information-theoretic quantities, whose significant advantage lies

in being free from stringent physics-based considerations. Using

information-theoretic terms as an objective function instead of

energies grants the freedom to manipulate parameters and

functionalities without need for physical justification [23].

One challenge in computing the quantities in the equation

above is how to adequately estimate probabilities from frequency

counts in a finite structural database, given that the resolution of

the structural descriptor is also variable. For instance, the phi-psi

space may be discretized into any resolution desired, but the

pressure of sparse data at high resolutions may render such

probabilities ultimately uninformative. A rational way of deciding

these issues is to apply an information maximization principle to

Eq.(1). Specifically, because manipulating structural and sequence

parameters that define C and S, as well as the functionality of p,

will affect the value of mutual information, the most optimal

parameterization and functionality are those that maximize

mutual information. A search through sequence and structural

descriptors for local backbone and long-range contact interactions

has revealed physically consistent patterns that have proven

especially robust in comparison to other approaches [23,24]. The

same principle will be applied in this work to search for an efficient

method to derive probabilities empirically, and in the process

identify the best way to utilize as much latent information as exists

in the set of high-resolution structures in the Protein Data Bank

(PDB).

The underlying power of the principle of information maximi-

zation rests on the observation that knowledge-based potentials

built from highly informative PDFs perform best in structure

prediction tests [23,24]. Therefore, parameters and procedures

that have been formulated by maximizing information should

assist in improving the performance of potentials. The prescription

is simple: any variable or procedure involved in the estimation of

PDFs used for KBPs can be optimized by maximizing information.

The variables that can be optimized include sequence descriptors

(e.g., number of amino acids considered, reduction of amino acid

alphabet) and structure descriptors (e.g., resolution). In this work, I

apply this optimization principle to two fundamental, underlying

aspects of KBPs: (1) the method of estimating discrete probabilities

and (2) the assembly of data sets used to estimate these

probabilities. In addition, I formulate a straightforward computa-

tional device to implement such an optimization.

B. The basis of information maximization: reducing the
difference between empirically estimated probabilities
and true underlying probabilities

This section establishes the basis for accurately estimating

underlying sequence-dependent structural probabilities using

experimental structure data, for use in the formulation of

knowledge-based potentials (KBPs). The key is to explore the

relationship between unknown true underlying probabilities and

empirically estimated probabilities by using fundamental informa-

tion-theoretic measures. Probabilities are converted into KBPs via

the Boltzmann principle (routinely simplified by dropping the

partition function term), which links equilibrium probabilities of

backbone conformational states with energy DE [29]:

DEE(cDs)~{kT ln
p(cDs)

p(c)
ð2Þ

where s and c are particular cases of sequence and conformation

respectively. The two PDFs, p(c|s) and p(c), are the components of

the KBP that reflect structural propensities in natural proteins:

p(c|s) is the sequence-dependent probability, while p(c) is the

sequence-independent structural probability, also called the

reference state, which can be derived directly from p(c|s). The

subscript ‘‘E’’ on DE emphasizes the fact that it is not necessarily

an energy in the classical sense, but an empirical quantity

dependent on how p is defined.

A crucial distinction between two probability distributions has

to be made at the outset: there exists a true underlying probability

distribution pT(c|s) which operates in nature but is unknown, and

there is pE(c|s), an estimate for the true distribution, derived from

empirical data. The difference between the estimate pE(c|s), and

the true pT(c|s) can be measured by the distance between these two

PDFs, as expressed by the information-theoretic quantity Kull-

back-Leibler divergence [30]:

D(pT pE)k ~
X

s

p(s)
X

c

pT (cjs) ln
pT (cjs)

pE(cjs)
ð3aÞ

which can be expanded thus:

D(pT pE)k ~
X

s

p(s)
X

c

pT (cjs) ln
pT (cjs)

pR(c)
{

X
s

p(s)
X

c

pT (cjs) ln
pE(cjs)

pR(c)

ð3bÞ

The Gibbs’ inequality, a fundamental property of divergence,

states that D$0 [30], transforming this equation into the

following:

X
s

p(s)
X

c

pT (cjs) ln
pT (cjs)

pR(c)
§

X
s

p(s)
X

c

pT (cjs) ln
pE(cjs)

pR(c)
ð4aÞ

The left-hand side of the inequality is the true mutual

information between the sequence S and the structure C domains,

or I(C,S), as described in the Eq.(1). This level of mutual

information is achieved only when the true underlying probabil-

Information-Optimized Protein Phi-Psi Propensities
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ities pT(c|s) are known completely. The right-hand side can be

viewed as an estimate of the mutual information, indicated by

IE(C,S). This quantity is what is computed using pE(c|s), estimated

empirically from currently known data. The inequality can be

simplified thus:

I(C,S) § IE(C,S) ð4bÞ

This formulation results in the following chain of consequences.

First, any estimate for mutual information computed from finite

data will be less than the true mutual information. Equality is only

possible when pT(c|s) = pE(c|s), the point at which the empirical

probabilities perfectly estimate the true underlying probabilities.

The inequality above suggests that the divergence or ‘‘distance’’

between the estimate pE(c|s) and the underlying true pT(c|s) can

be measured by the difference between IE(C,S) and I(C,S). Thus,

within the realm of finite data, as the pE(c|s) estimate for pT(c|s)

improves, the mutual information estimate IE(C,S) approaches the

true mutual information I(C,S). Therefore, better probability

estimation—by the efficient use of available data and by

employing more effective ways of transforming observed frequen-

cies into probabilities—should assist in increasing the value of the

mutual information estimate.

It follows that the resulting pE(c|s) that yields the maximum

mutual information estimate, max{IE(C,S)}, is the best estimate

for pT(c|s). This implies that an information maximization

strategy should naturally produce the best PDFs that the data

allow. It should not be surprising that the increased accuracy in

estimating pE(c|s) due to information maximization also benefits

the quality of the KBP, as gauged by its performance in fold

recognition [23,24]. These interrelated ideas form the basis for a

rational, information-based approach to problems concerning

limited structural data and database assembly.

C. The Information Maximization Device: computing and
maximizing mutual information

The mutual information estimate IE(C,S) derived in the section

above explicitly includes pT(c|s), the unknown quantity that we are

trying to estimate via the information maximization principle.

Basic ideas about expectation suggest how to compute mutual

information in practical applications. The double summation

applied across all native sequences s and all native structures c on

the right hand side of Eq.(4a) can be recast as an expectation of the

log-odds score across the universe of native sequences and

structures:

IE(C,S)~
X

s

p(s)
X

c

pT (cjs) ln
pE(cjs)

pR(c)

~
X
c,s

pT (c,s) ln
pE(cjs)

pR(c)
~Sln

pE(cDs)

pR(c) T
ð5aÞ

which can be estimated as:

IE(C,S)~
1

nT

X
fc,sgT

ln
pE(cDs)

pR(c)
ð5bÞ

using a data set {c,s}T that is sufficiently large and representative

of the diversity of sequences and conformations in the universe.

Recasting the mutual information estimate this way permits its

evaluation while bypassing pT(c|s), which is unknown.

The equation above reveals a simple recipe: pE(c|s) and pR(c)

are the components of the potential function, and the log of their

ratio is related to the ‘‘energy’’ of the particular (c,s) combination

as well as its contribution to the overall IE(C,S). The summation is

applied to a range of native (c,s) pairs found in the data set {c,s}T

composed of nT protein chains, resulting in the mean energy and

also IE(C,S). Varying a multitude of conditions, including how

pE(c|s) is estimated from empirical data and also the resolutions of

both sequence and conformation, will change IE(C,S). A rigorous

search through these different conditions yields the best estimate
for pT(c|s): it is the pE(c|s) which carries the maximum mutual

information estimate:

pT (cjs)& arg max
fpE (cjs)g

IE(C,S)~ arg max
fpE (cjs)g

1

nT

X
fc,sgT

ln
pE(cDs)

pR(c)
ð6Þ

The expression above generalizes the Information Maximiza-

tion Device. For its proper computation, it needs two main

ingredients: (1) a comprehensive data set {c,s}T covering a

diversity of sequences and conformations, and; (2) a method to

generate empirical probability estimates pE(c|s) and pR(c) (the

components of the KBP).
The optimal probability estimate pE(c|s) can be generated using

any method, including brute force Monte Carlo-type approaches if

the number of states is small. To construct estimates for complex

probability distributions with many states, one can employ

methods to estimate probabilities from an empirical data set

{c,s}E, which is distinct from {c,s}T. In order for IMD to avoid

data over-fitting, the data set {c,s}E, which can be thought of as

the training set, must be non-overlapping with {c,s}T, which can

be thought of as the testing set. At the minimum, applying

jackknifing strategies should ensure that the two data sets do not

overlap. The goal is to ensure that when computing each term of

the summation in Eq.(6), which represents one particular sequence

and its native conformation, the data set {c,s}E used to estimate

pE(c|s) does not contain that sequence.

Figure 1 gives a graphic illustration of the IMD, including

requirements concerning data as well as the procedures of

probability estimation and structural discretization that are

required for iterative information-based optimization. The figure

also refers to the individual methods employed for the specific

purpose of formulating high-resolution phi-psi plots, and the

results pertaining to each aspect of the methodology.

D. Implications and General Procedures
The formulations above suggest a cogent way to derive the most

accurate PDFs from empirical data. The specific tasks for deriving

the best estimate for pT(c|s) are: (1) assembling two comprehensive

data sets {c,s}T and {c,s}E, the testing and training sets

respectively; (2) deriving pE(c|s) and pR(c) from {c,s}E; and then

(3) computing the mutual information estimate IE(C,S) using the

IMD, Eq.(6). Manipulating the composition of data sets, proba-

bility estimation methods, and associated parameters alters

IE(C,S); out of all possible scenarios, the pE(c|s) that maximizes

IE(C,S) is the best estimate for pT(c|s). The procedures to

accomplish these tasks are outlined below.

Assembling the testing set {c,s}T. In order to obtain the

best approximations for the true underlying propensities, the

testing set must be composed of a fair distribution of sequences and

conformations reflecting the diversity of the universe of protein

structures. More generally, the testing set {c,s}T must embody the

full range of sequences and conformations on which the KBP will

Information-Optimized Protein Phi-Psi Propensities
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be applied. For instance, KBPs specific to a subset of proteins (e.g.

intrinsically disordered proteins, membrane proteins, etc.) ought to

utilize a testing set that reflects this specificity.

Assembling the training set {c,s}E. The training set {c,s}E

used to estimate pE(c|s) and pR(c) is typically built from a diversity

of natively folded chains. In many KBP studies, {c,s}E is

assembled from subsets of {c,s}T, frequently employing a simple

jackknife method. This method involves removing one chain (c,s)i
from the set {c,s}T, and then using the remaining set (i.e., {c,s}T -

(c,s)i) to predict the structure or to compute parameters relevant to

that chain (c,s)i. This is repeated nT times, and an average quantity

(either prediction accuracy or some other parameter) is computed.

In this study, we are interested in computing the log-odds ratio

between pE(c|s) and pR(c) for chain (c,s)i (Eq.(6)) using the data set

{c,s}E = {c,s}T-(c,s)i and then taking the mean across all chains in

the testing set {c,s}T. The jackknife method prevents model over-

fitting in limited data conditions, while still presenting a statistically

robust way to estimate any parameter mean, including mutual

information.

However, using ({c,s}T - (c,s)i) is but one way to assemble the

data set {c,s}E. In principle pE(c|s) and pR(c) can be derived by

any mathematical or computational method; in fact, empirical

estimates from frequency data need not be the only approach. The

strength of the information-based approach lies in its ability to

evaluate the viability of any given pE(c|s) and pR(c) however they

were derived. The information maximization principle dictates

that among PDFs generated by different approaches, those that

generate the highest IE(C,S) are the best approximations for the

underlying PDFs, regardless of how they were formulated. As a

demonstration, this work describes an alternative way to assemble

{c,s}E by using all high resolution protein structures in the PDB,

an approach that demonstrably yields more accurate PDFs.

Estimating pE(c|s) and pR(c). A method for probability

estimation must take into account size limitations of the data set,

particularly when fine structural resolutions are used. The

structural partition has to be of the right resolution to protect

against data over-fitting, and the volume of data ought to dictate

the optimal granularity of all descriptors.

One solution is to buttress sparsely populated frequencies with

related well-defined frequency distributions. This involves using

well-populated PDFs as a first approximation to boost poorly

populated frequency distributions [16,22,23]. For instance, in

estimating the PDF for the central dihedral angle pair of a rare

triplet like Lys-Tyr-Gly from finite data, the raw frequencies for

the single residue Tyr, which has significantly more occurrences in

the data set, is used as the first approximation. A hybrid coefficient

(analogous to Sippl’s information quantum [22]) can be used to

blend the raw triplet frequency with that of the single residue

approximation. Such a coefficient, like any other adjustable

parameter, can be optimized for mutual information as well.

In the general case of formulating PDFs for the structure of the

central residue of a triplet sequence XYZ, pE(c|XYZ), the raw

count is buttressed by the structural PDF of the single amino acid

Y, or pE(c|Y). The structural PDF of amino acid Y, pE(c|Y), can

in turn be properly estimated by buttressing the raw counts for Y

with the structural PDF describing the universe of structures (i.e.,

sequence-independent structural distributions), or pE(c). At this

point, the universe of structures is arguably well-represented in the

database, so that the raw frequency count at reasonable resolutions

may be taken as an acceptable probability estimator. However, to

ensure consistency and to guard against sparse data bias due to

overpartitioning of the structural space, the PDF pE(c), is still

estimated by buttressing raw counts with the uniform prior

distribution, the state of maximum ignorance (i.e., all structural

states are equally likely to occur). To summarize, for each level of

sequence description, the equations describing the probability at a

discrete structural state c are:

pE(c)~
cU (1=b)zn(c)

cUznall
ð7aÞ

pE(cjY )~
cSpE(c)zn(cjY )

cSzn(Y )
ð7bÞ

p(cjXYZ)~
cT pE(cjY )zn(cjXYZ)

cTzn(XYZ)
ð7cÞ

where 1/b is the uniform density function (b is the number of

structural states in the phi-psi space), cU, cS, and cT are hybrid

coefficients, n(c) is the number of occurrences in the data set of

conformation c, n(c|s) refers to the number of occurrences in the

data set of sequence s in conformation c, and

nall~
X
allc

n(c) ð7dÞ

Figure 1. The Information Maximization Device (IMD). The
ingredients of the iterative optimization procedure are illustrated, and
relevant Methods and Results sections are indicated. The objective
function for the IMD optimization is the mutual information IE(C,S). The
quantity nT is the number of data points (or amino acid residues) in the
testing set, pE(c|s) is the PDF being estimated, and pR(c) is the reference
state, in this case the sequence-independent phi-psi dihedral angle pair
PDF. Two data sets are necessary for the procedure—the training set to
assemble PDF estimates and the testing set to subject these PDFs to
mutual information measurement. The training set can be treated as a
variable; in this work for instance, different data sets PDBSEL and
BLCLUST are evaluated for their effectiveness in probability estimation.
On the other hand, the testing set, carefully assembled to reflect the
system for which the PDFs are being estimated, is treated as a constant.
Here, the probability estimation procedure is also a variable to be
optimized, as well as other factors relevant to constructing PDFs,
including resolution and the specific partitioning of the structural space.
Searching through the variable space for the highest mutual
information yields the best set of PDFs.
doi:10.1371/journal.pone.0094334.g001
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n(Y )~
X
allc

n(cjY ) ð7eÞ

n(XYZ)~
X
allc

n(cjXYZ) ð7fÞ

where the summation runs through all structural states. The data

set {c,s}E is used to generate these raw counts. These equations

constitute a hierarchical procedure for estimating PDFs: the

uniform distribution is used to estimate the structural PDF of the

universe of structures p(c|U), which in turn is used to estimate the

structural PDF for a single amino acid p(c|Y), which in turn is

used to estimate the structural PDF for the central residue in a

triplet sequence p(c|XYZ). See Figure 2 for an illustration of this

hierarchic probability estimation procedure. It can be observed in

Eq.(7a)–(7c) that as nall, n(Y), and n(XYZ) approach infinity (the

point where virtually all natural protein sequences and structures

are known), the p estimates reduce to the raw frequencies, as they

ought to.

The probability equations contain three variables: cU, cS, and

cT. The optimal values for these variables, like any other

adjustable parameter, can be derived computationally by using

the IMD in Eq.(6). The principle followed is the same as for any

other factor: the c that maximizes mutual information is its

optimal value. A numerical solution is achieved by a simple

stepwise grid search for the maximum mutual information across a

range of c values.

E. Data Sets and Specific Procedures
Data Sets. Four structural data sets were organized. The first

set, called PDBSEL here, was taken from the PDB-SELECT list

[20], composed of chains with a maximum of 25% pairwise

sequence homology, downloaded from http://bioinfo.mni.th-mh.

de/pdbselect/ in January 2012. Only chains with a resolution of

2.0Å or lower were included in PDBSEL, resulting in a data set

composed of 3,205 chains, totaling 544,560 residues.

The second data set is a larger set of high-resolution structures.

Called BLCLUST, it was organized from the entire Protein Data

Bank (PDB) database, downloaded from http://www.rcsb.org/

pdb/static.do?p = download/ftp/resources.jsp in January 2012.

BLCLUST includes all chains in the PDB with resolution of 2.0Å

or lower, and is partitioned by using the BLASTClust algorithm to

make clusters of related sequences. Chains with at least 30%

sequence similarity with equal to or greater than 90% alignment

coverage are clustered together. BLCLUST contains a total of

77,838 protein chains, totaling 18,539,789 residues, grouped into

23,069 clusters.

The third data set is called BLC-NEW, composed of protein

chains downloaded from the same resource as BLCLUST in

November 2012. Chains already in BLCLUST were excluded.

From each of the remaining clusters a single representative chain

was identified and included in BLC-NEW. Thus, this data set is

composed of newly solved structures of protein chains whose

sequences are distinct from any found in BLCLUST, which was

used in deriving the high-resolution phi-psi plots and the

associated KBPs. Therefore, in this work, BLC-NEW serves as a

testing set for an unbiased comparison between the methods

described in this paper and other backbone torsion KBPs in

literature. BLC-NEW is composed of 740 protein chains totaling

169,920 residues.

The fourth data set is called CASP10, composed of a diverse set

of protein chains that were part of the 10th Critical Assessment of

Techniques for Protein Structure Prediction [31], a community-

wide effort to independently assess structure prediction methods.

The native structures of the 125 protein chains were gathered

(with average length of 167 residues), along with an average of 367

decoys per protein chain, composed of high-resolution models

submitted by various groups who participated in the assessment.

The CASP10 data set, downloaded from http://predictioncenter.

org/download_area/CASP10/, was used for extensive cross

validation tests (in threading).
Partition of phi-psi space and frequency counts. The

phi-psi space was discretized in three ways: by standard binning,

dynamic radius, and weighted dynamic radius (Figure 3). For

standard binning, the 360u6360u space was subdivided into

square bins of equal size depending on resolution, and frequency

counts were obtained by counting the individual occurrences

within each square bin, divided by the total number of data points.

For dynamic radius, the frequency count at any point in the

360u6360u space was obtained by counting all occurrences within

a specified radius r, divided by the total number of data points. For

weighted dynamic radius, the contribution of each occurrence

falling within a specified radius r to the frequency count at any

point in the 360u6360u space was weighted inversely to its

distance from the point, using the following cosine function:

w~
cos

pd

2r

� �
dƒr

0 dwr

8><
>: ð8Þ

where d is the distance from the point and r is the specified radius.

This has the obvious effect of preferentially weighting data that

occur very close to the point in question, resulting in smoother

density functions.

Figure 2. Illustration of the cascading probability estimation
procedure. Raw phi-psi distributions (top row) are combined with
prior probability distributions to form optimal PDFs (bottom row), with
the goal of estimating pE(c|KYG), the phi-psi PDF of the central Y
(tyrosine) residue flanked by K (lysine) and G (glycine). Initially, the
sequence-independent PDF pE(c) was estimated by combining the raw
distribution of the universe of structures with puniform, the uniform
distribution (i.e., state of maximum ignorance, 1/b, where b is the
number of conformational states). The PDF pE(c) was then used in
combination with raw data to estimate pE(c|Y), probability function for
amino acid Y, which in turn was used in combination with raw data to
estimate the triplet pE(c|KYG). The combinations are mediated by hybrid
coefficients c, as described in Eq.(7), which can be optimized
automatically via the Information Maximization Device (IMD).
doi:10.1371/journal.pone.0094334.g002
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Threading tests. Gapless threading was done to measure the

effectiveness of KBPs in fold recognition. A large set of diverse

sequences (short 10-mers as well as full-length chains from

CASP10) were assembled. Each sequence was aligned with its

correct (native) conformation as well as with a large set of decoy

conformations. Each alignment of a given sequence s with the

conformation c was scored with the triplet-sequence-dependent

phi-psi angle-pair KBP:

In(cjs)~{
1

kT(n{1)

Xn{1

i~1

DEE(ci Ds)~
1

n{1

Xn{1

i~1

ln
pE(ci Ds)

pR(ci)
ð9Þ

where n is the sequence length, s is the triplet sequence

surrounding the phi-psi angle pair ci in question, and In(c|s) is

the mean mutual information for the chain. The rank r of the

score from the native conformation was computed by counting

decoy scores larger than the native score. The mean percentile

rank ,r. was computed from repeated application of the

threading exercise on all the sequences in the given data set (10-

mers and CASP10).

Four sets of threading tests were done here. The purpose of the

first two sets was to evaluate the fitness of the different KBPs

arising from varying parameterization, probability estimation

method, and training data set explored in this work. One

threading test involved threading 5000 10-mer sequences and

50006500 decoy conformations randomly picked from PDBSEL.

The other threading test involved the CASP10 decoy set,

composed of 125 chains (with average length of 175 residues).

The purpose of the third and fourth threading sets was to compare

the performance of the best KBPs derived here to those triplet

energy functions derived by Betancourt [16]. The third threading

test involved randomly picking out 5000 10-mer sequences from

BLC-NEW and 50006500 decoy conformations from PDBSEL,

while the fourth threading test involved the same CASP10 decoy

set.

Results and Discussion

The iterative structure of the Information Maximization Device

(IMD), this work’s operative optimization scheme, is expressed in

Figure 1. The optimization requires two representative data sets—

the testing and the training data sets—as well as a procedure to

estimate probability empirically from (training) data, together with

a way to define structural resolution that maximizes information.

Results are discussed below.

A. Probability Estimation
Probability estimation from empirical data was achieved by a

hierarchic estimation method, as described in Section D of the

Materials and Methods section. In this work, the sequence-

independent PDFs (i.e., the structural distribution of the universe

of amino acids in folded proteins) was formed first, followed by 20

amino acid-specific PDFs, and then finally 8000 triplet PDFs. The

hybrid coefficient c modulates the effect of the distributions being

combined—small values favor the raw distributions while large

values favor the prior distribution; its optimum value is that which

produces PDFs that contain maximal information. A stepwise

search across a wide range of c accomplishes this simple

optimization.

The graphs in Figure 4 illustrate the variation in IE(C,S) across

different values of c. In these graphs, another variable being

Figure 3. Partitioning the phi-psi space. The raw phi-psi plots of triplet KYG are shown. A small section in the plot on the left is partitioned by
standard binning (at a resolution of 30 degree squares), while the same region of space on the right is partitioned by the dynamic radius approach,
both weighted and unweighted (at a resolution of 30 degree diameter). The boundaries of standard binning are static, while the boundaries of
dynamic radius depend on the location of the point being considered. For instance, in estimating the structural propensity around a point located in
(75u,2u), the frequency value is that of square B for standard binning and circle F in dynamic radius. A slightly different data point at (75u,22u) uses a
much different frequency value of square D, while it will be nearly the same as circle F for dynamic radius (shifted 4 degrees towards the bottom). This
example illustrates the significant frequency discontinuity between nearly similar locations when standard binning is used, compared to dynamic and
weighted dynamic radius approaches. As another example, consider the data point (30u,2u). Standard binning assigns a non-negative frequency in
square A due to the occurrences in the upper right corner of the bin. A much more accurate frequency estimate is made by circle E using dynamic
radius, which reflects more realistic propensities around that given data point.
doi:10.1371/journal.pone.0094334.g003
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explored is the resolution of the PDFs, discussed in a later section.

But it’s worth noting now that since resolution is critical in the

formulation of the PDFs, mutual information depends significantly

on resolution, as shown in these graphs. PDFs of higher resolution

require more raw data, so that the role of the prior distribution

becomes increasingly prominent. For each set of conditions, the

value of the hybrid coefficient follows a simple parabola, making it

straightforward to identify the maximum. The wide variation in

optimal c values demonstrates that using an arbitrarily set hybrid

coefficient without regard to data conditions, such as Sippl’s

information quantum [22], may not lead to the best PDFs or

knowledge-based potentials (KBPs). The need to optimize c
becomes especially acute at the extremes—when data are

abundant (i.e., at lower resolutions) or when data are scarce (at

high resolutions).

B. Effect of phi-psi Space Partition, Resolution, and
Database Size on Mutual Information Estimate

The effect of three factors on the quality of single sequence and

triplet sequence phi-psi plots was examined.

First, three different approaches to partitioning the phi-psi space

were applied—standard binning, dynamic radius, and weighted

dynamic radius (Figure 3). Standard binning is the most common

and also the simplest way to discretize structural space, but

artificially drawn boundaries can potentially create jagged and

unphysical distributions. In contrast, the dynamic radius approach

works to smooth out such sharp disjunctions: the frequency at any

point across the phi-psi space is computed by counting all

occurrences within the specified radius. Weighted dynamic radius

works the same way, except that each occurrence is weighted

inversely to its distance from the point in question using the cosine

function (Eq.(8)).

Second, within each partition, a range of resolutions was

explored: for standard binning, the side length of square bins

ranged from 2 degrees to 60 degrees; for dynamic radius, the

radius of the circle ranged from 1 degree to 20 degrees; and for

weighted dynamic radius, the radius ranged from 2.5 degrees to 60

degrees.

Third, two training data sets were used for {c,s}E to derive the

probability distributions, PDBSEL and BLCLUST, described in

detail in Section E of the Materials and Methods section. The

testing data set {c,s}T employed for the evaluation of IE(C,S) was

always PDBSEL. Comparing {c,s}T and {c,s}E, the composition

of PDBSEL overlaps completely with itself, and also significantly

overlaps with BLCLUST. Thus, in order to avoid bias (due to

complete memorization), a jackknife method was applied, as

described in Section D of the Materials and Methods section.

Briefly, in order to preserve the integrity of the Information

Maximization Device (Eq.(6) and Figure 1), each term in the

summation, signifying one chain in BLCLUST, is evaluated by

removing that chain from the training set {c,s}E, be it PDBSEL or

BLCLUST. Again, it is worth repeating that this work’s

information-theoretic analysis reveals that {c,s}E and {c,s}T need

not be identical or even related data sets. The only caveat is to

ensure that no overlap exists in the two data sets so that an

Figure 4. Optimization of hybrid coefficient c. We illustrate the
effect of the hybrid coefficient on mutual information using PDBSEL
data set and dynamic radius space partitioning approach. A range of
values of c, on the x-axis, were used to formulate probability estimates
using Eq.(7). The y-axis is the difference in mutual information from the

maximum value for every resolution, i.e. maximum mutual information
occurs at DI = 0. For each set of plots, different resolutions are shown
(identified by the number in the legends). Optimization of three hybrid
coefficients are shown: (A) cU for estimating sequence-independent
PDFs (Eq.(7a)); (B) cS for estimating single amino acid PDFs (Eq.(7b)); and
(C) cT for estimating triplet PDFs (Eq.(7c)). The parabolas make it
straightforward to identify optimal c values that yield maximum mutual
information.
doi:10.1371/journal.pone.0094334.g004
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unbiased measurement of mutual information of PDFs and

performance of KBPs can be made.

Because the data set BLCLUST, a comprehensive set of all

high-resolution chains in the PDB, contains many similar and

near-identical sequences and conformations, a computational

adjustment has to be made. The contribution of each chain in a

cluster of similar/near-identical sequences was weighted

accordingly:

n(c)~
X

all data

i(c)

mc

n(cjY )~
X

all data

i(cjY )

mc

ð10Þ

n(cjXYZ)~
X

all data

i(cjXYZ)

mc

where i = 1 if the data point has structure c and the specified

sequence (whether no sequence, amino acid Y, or triplet XYZ

respectively), or i = 0 otherwise; and mc is the number of chains in

the cluster in which the data point belongs. This ensures that

clusters with many chains do not dominate the resulting raw

distributions. The advantage of this approach, compared to

picking out only one representative per cluster, is that it considers

the variation within the cluster and incorporates whatever

information might be contained into more refined PDFs. For

instance, structure variation observed in chains of identical

sequences (e.g. identical subunits of multimeric proteins) will be

considered as a demonstration of structural propensity, not

discarded as ‘‘noise.’’ Finally, it should be mentioned that in the

jackknife procedure as applied to BLCLUST, all chains in the

homologous cluster are eliminated from each term in the

summation in Eq.(9).

Results of the optimization of the single amino acid and triplet

sequence PDFs under different states for these three factors—

partition of the phi-psi space, resolution, and database size—are

given in Table 1. Plotting IE(C,S) for triplet sequences across the

range of resolutions for three different partitions and two databases

in Figure 5 allows the following observations. First, an optimal

resolution for each set of factors exists—between a state of

excessively high resolution that cannot be supported by the size of

current data and a state of low resolution that washes away specific

Figure 6. Number of occurrences of each of the 20 amino acids
and 8000 trimers in two training data sets used, PDBSEL and
BLCLUST. These plots were made to investigate the nature of the
increase in sequence representation as one goes from PDBSEL to
BLCLUST. The variable nPDBSEL is the number of instances found in
PDBSEL, while the variable nBLCLUST is the number of equivalent data
points found in BLCLUST. (Equivalent data points is the count of all the
occurrences in BLCLUST weighted by mi, as described in Eq.(10).) (A)
There are 20 points in the plot representing 20 amino acids. (B) There
are 8000 point in the plot representing 8000 triplet sequences. Both
plots show a strong linear relationship, showing that the relative
proportions of 20 amino acids and 8000 triplet sequences are virtually
the same in PDBSEL as in BLCLUST, and the increase in equivalent data
points in BLCLUST is proportionally distributed across all amino acids
and triplet sequences.
doi:10.1371/journal.pone.0094334.g006

Figure 5. Mutual information values of PDFs derived by IMD
for different sets of conditions. The calculations involve two
training data sets (PDBSEL and BLCLUST), three partitioning approaches
(bin = standard binning; rad = dynamic radius; wt rad = weighted
dynamic radius), and a range of resolutions (from 2.5u to 30.0u). It is easy
to identify the conditions that yield the maximum mutual information
overall: it is the set of PDFs derived from BLCLUST using weighted
dynamic radius at a resolution of 15u (radius).
doi:10.1371/journal.pone.0094334.g005
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structural information in sequence. These optimal resolutions vary

depending on the combination of other factors—i.e., 15 degree

squares for standard binning, circles with radius of 10–12.5 for

dynamic radius, and circles with radius of 15–20 for weighted

dynamic radius. The ranges of IE(C,S) across the span of

resolutions examined are wide—from a low of 0.19 nats to a high

of 0.42 nats.

Second, the weighted dynamic radius partitioning is slightly

superior to dynamic radius partitioning, while both are substan-

tially superior to standard binning. The maximum IE(C,S) for

standard binning reaches only 0.32 nats for PDBSEL and

0.38 nats for BLCLUST, while the dynamic radius reaches 0.34

and 0.41 nats respectively, and weighted dynamic radius reaches

0.36 and 0.42 nats respectively.

Third, PDFs constructed from BLCLUST carry considerably

more mutual information than those from PDBSEL. The

maximum IE(C,S) extracted from BLCLUST is 0.42 nats, which

is 17% higher than the maximum IE(C,S) from PDBSEL, at

0.36 nats.

A dissection of the triplet IE(C,S) yields several observations.

Table 1 lists mutual information values resulting from both single

amino acid IE(C,Y) and triplet sequence IE(C,XYZ). The additive

nature of mutual information [30] suggests a way to isolate the

specific effect of the flanking residues on the phi-psi conformation

of the central residue, IE(C,X_Z), as follows:

IE(C,XYZ)~IE(C,Y )zIE(C,X Z) ð11Þ

The informatic benefit of including the flanking residues in

defining backbone conformation can be measured simply by the

increase in the amount of mutual information as one moves from

single amino acid to triplet sequence description. In all conditions

examined (Table 1), IE(C,Y) is always higher than IE(C,X_Z),

meaning that the effect of the central residue on its backbone

conformation is greater than the effect of its flanking residues.

Maximum values of both IE(C,Y) and IE(C,X_Z) for each set of

data in Table 1 are highlighted in bold. Values for IE(C,Y) range

from 0.273 to 0.301 nats, which is narrower than the that

exhibited by IE(C,X_Z), which ranges from 0.067 to 0.125 nats. It

appears that at the current volume of data, phi-psi PDFs for single

amino acids are less sensitive to the factors examined, implying

that differing approaches to formulating these PDFs would yield

roughly the same amount of mutual information. Triplet PDFs, on

the other hand, appear to be acutely dependent on the size of the

data set. This is consistent with the fact that triplet PDFs require a

larger amount of data. A better mapping of the effect of the

flanking residue IE(C,X_Z) is the primary advantage of this

information-based approach.

Looking at the effect of resolution on mutual information yields

a similar observation. Maximum values for IE(C,Y) occur at a

much higher resolution than the maximum values for IE(C,X_Z),

indicating that the volume of current data is sufficient to elucidate

low-probability regions of the phi-psi space in single amino acids

but not for triplets. It follows that as new structures are deposited

into the PDB, mutual information of triplet PDFs will increase

significantly along with resolution.

To explore the nature of the significant increase in mutual

information from PDBSEL to BLCLUST, the numbers of

observations for each data set were plotted for all 20 amino acids

(Figure 6A). The strongly linear plot (R2 = 0.99) shows that the

increase in the number of data points for each of the amino acids

Figure 7. The linear relationship between mutual information I(C,S) and performance in fold recognition of 10-mer segments as
measured by the mean percentile rank ,r.. This plot illustrates the utility of the IMD in increasing performance of KBPs that use optimal PDFs
in fold recognition (threading) on short 10-mer segments. (See Table 2 for a summary of the results for 10-mer threading.) Each of the circular points
in the plot represents a set of PDFs optimized in this work under a distinct set of factors (training data set used, resolution, space partition). The
diamond points are from an earlier work [23], included here to demonstrate that mutual information maximization can span different conditions and
factors to be optimized yet still show strict linear relationship with performance. The strong correlation (seen here and in Figure 8) demonstrates that
increasing mutual information estimates, by the direct manipulation of factors, is a viable strategy for creating more accurate PDFs and formulating
KBPs that show improved fold recognition.
doi:10.1371/journal.pone.0094334.g007
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due to an expanded data set scales with the original non-

redundant population, which indicates that the relative amino acid

distributions are roughly the same. Figure 6B, which plots the

populations for all 8000 triplets, shows the same linear pattern

(R2 = 0.97). These two graphs show that the relative distributions

of single amino acids and triplets are virtually the same in

PDBSEL and BLCLUST, and that using BLCLUST increases the

population of all single amino acids and triplets generally by more

than four times. The resulting improvement in mutual information

occurs not because PDBSEL is missing significant representation

for some amino acids or triplets, but because we achieve more data

representation in BLCLUST across the board.

C. Comprehensive threading results
To test their utility, the optimally generated PDFs were

incorporated into KBPs (via Eq.9), which were then applied to

comprehensive fold recognition tests via threading. Two threading

tests were implemented: a local threading procedure using short

sequences and a full chain threading using the diverse CASP10

decoy set. These two tests involved the alignment of sequences

onto structures from a large set of decoys, and then scoring the

alignments with the respective KBP. The score of the alignment of

the sequence onto its native conformation was then ranked among

the decoy scores. A mean percentile rank ,r. was computed

from repeated threading of all sequences in the respective data

sets.

Figure 7 (local threading) and Figure 8 (CASP10 decoy

threading), along with Table 2, show the results of comprehensive

threading for selected KBP conditions. The mean percentile rank

,r. for each KBP is plotted against the mutual information of the

PDF used to construct the KBP. A robust linear correlation can be

observed in both plots, consistent with previous findings [23,24]

and reinforces the principle that mutual information maximization

is an effective way to optimize KBPs. The two best performing

KBPs that were built from PDFs assembled from BLCLUST—the

weighted dynamic radius approach with resolution at 15 degrees

(radius), and the dynamic radius approach with resolution at 10

degrees (radius)—are also the two that carry the highest IE(C,S)

among all PDFs examined, proving that maximizing IE(C,S) is an

effective strategy for optimizing KBP performance in fold

recognition.

D. Nature of Optimized phi-psi Plots
The probability at any point in phi-psi space can be computed

in a straightforward way using the dynamic radius and weighted

dynamic radius approaches. Those displayed in Figure 9 are

typical plots that result from these approaches using BLCLUST

data.

Regions that give rise to regularity in secondary structure (a, b,

aL) are typically the most represented in these plots. The details in

fringes and the outlying regions—the low probability conforma-

tions—are what is lacking in resolution. These can be observed in

the plots in Figure 9, where 3D log plots have been used to

exaggerate the coarseness of low probability regions. (The z-axis,

representing propensity p, is in log scale.) Smooth contours in log

plots show well-represented and therefore well-defined regions,

while grainy contours mark regions that require more data.

The sequence-independent phi-psi plot is largely smooth and

well-defined. The amino acid-specific plots show more grainy

areas outside regions that form regular secondary structure. The

plot for Ala (Figure 9B), formed by 178,147 equivalent data points,

is noticeably smoother than the plot for Tyr (Figure 9C), formed

by only 77,718 equivalent data points. (Equivalent data points is

the count of all the occurrences in BLCLUST weighted by mi, as

described in Eq.10.) It should be noted that even with an

abundance of equivalent data points, Ala appears to still be in need

Figure 8. The linear relationship between mutual information I(C,S) and performance in fold recognition of CASP10 chains as
measured by the mean percentile rank ,r.. This plot illustrates the utility of the IMD in increasing performance of KBPs that use optimal PDFs
in fold recognition (threading) on 125 CASP10 chains. (See Table 2 for a summary of the results for CASP10 threading.) Each of the points in the plot
represents a set of PDFs optimized in this work under a distinct set of factors (training data set used, resolution, space partition). The strong
correlation (seen here and in Figure 7) demonstrates that increasing mutual information estimates, by the direct manipulation of factors, is a viable
strategy for creating more accurate PDFs and formulating KBPs that show improved fold recognition.
doi:10.1371/journal.pone.0094334.g008
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of resolution especially in low probability regions. Updating these

plots as the PDB continues to grow will provide a more accurate

picture of structural propensity across all regions of the phi-psi

space.

As expected, coarser plots are formed for the triplet sequences as

shown by representative examples in Figure 9. The triplet Ala-Ala-

Ala (Figure 9D) has 1909 equivalent data points, among the most

represented triplets in BLCLUST, and shows a clear propensity

for alpha helical conformations, with a probability value of 0.55 at

the highest point in the plot. As another example, the triplet Lys-

Tyr-Gly (Figure 9E) does not appear to show the same structural

propensities, and with only 407 equivalent data points, is especially

coarse. The peak of the plot also occurs at the alpha helical region

but at significantly lower probability (at 0.10).

Another significant advantage of using an expanded data set

such as BLCLUST over PDBSEL is the increased representation

in particularly rare triplets. In the PDBSEL data set, four triplets

do not occur at all: Trp-Met-Trp, Cys-Trp-His, Met-Trp-Cys, and

Trp-Trp-Trp. These occur in BLCLUST, and statistics show that

these four triplets are represented by 8.35, 8.85, 4.50, and 5.32

equivalent data points respectively. Meanwhile, all triplets in

BLCLUST are represented, with the rarest triplet in BLCLUST

being Cys-Met-Trp, with 2.01 equivalent data points.

A point must be made to qualify the PDFs derived in this work.

In an effort to use as much structural data as is available in the

PDB, this initial study uses the over-all crystallographic resolution

Figure 9. Optimal Ramachandran phi-psi plots. Some examples
of the phi-psi plots generated by the IMD approach: (A) the universe of
structures (sequence-independent distribution); (B) Alanine; (C) Tyro-
sine; (D) Alanine-Alanine-Alanine tripeptide; and (E) Lysine-Tyrosine-
Glycine tripeptide. Each of these distributions is illustrated in two ways:
with standard 2D plot and with a 3D log plot. The z-axis of the log plot
is the frequency f. (The frequency range of the topmost level on the z-

axis is 0.5–1.0, the penultimate level is 0.25–0.5, the third level is 0.125–
0.25, and so on.) Smooth contours in log plots show well-represented
and well-defined regions, while grainy contours mark regions that
require more data.
doi:10.1371/journal.pone.0094334.g009

Figure 10. Comparison of mutual information scores for whole
protein chains assigned by triplet BETAN and BLCLUST KBPs.
Two scores were computed for the native structures of all 740 proteins
chains in BLC-NEW using the score function In(c|s), as defined by Eq.(9).
One score is computed from optimal triplet PDFs derived from BLCLUST
(using weighted dynamic radius, at resolution 15.0u), and another score
is computed from BETAN PDFs. These two scores are plotted here. More
than 93% of the protein chains appear above the diagonal line, which
means their native conformations are scored higher by BLCLUST than
by BETAN score functions. The assignment of high scores to native
conformations is one desirable characteristic of a good score function.
doi:10.1371/journal.pone.0094334.g010

Information-Optimized Protein Phi-Psi Propensities

PLOS ONE | www.plosone.org 15 June 2014 | Volume 9 | Issue 6 | e94334



as the main criterion to select proteins for inclusion in the

PDBSEL and BLCLUST data sets. However, accuracy of the

atomic coordinates varies within the same structure (as indicated

by the B-factor), so that the resulting phi-psi maps are actually

aggregates of conformations of varying quality. Moreover, other

factors exist that can potentially alter the backbone structure

propensities expressed in the PDFs. These include intermolecular

crystal packing interactions that affect exposed regions and

variable loops of the protein molecule [32], missing atoms and

residues in the model, as well as the existence of small molecules

and ligands that are included in the crystal structure. The implicit

assumption taken by comprehensive structural surveys such as this

work is that specific deformations and deviations do not occur

systematically, and therefore average out in a mean-force analysis

[22]. However, a closer examination of the effects of these data

conditions should be undertaken to explore how well the phi-psi

maps produced here signify actual propensities of triplets (in the

context of the folded protein) as they operate in nature. Due to its

flexibility in exploring the effect of any structurally relevant

variable or factor, the Information Maximization Device may also

be employed in deriving optimal PDFs of coherent subsets of data

(partitioned with respect to the factors identified above). It is

critical that more stringent data collection criteria be balanced

with the potential diminishment of the extracted mutual informa-

tion, a situation where the application of IMD is well-suited. These

issues need to be explored in future work.

E. Comparing BLCLUST with BETAN in Fold Recognition
To test the utility of the PDFs proposed in this work, a direct

comparison was conducted between Betancourt’s local triplet

backbone KBP [16] (called BETAN here) and the KBP derived

from optimal PDFs built from using the comprehensive

BLCLUST data set. For a fair comparison, an entirely new

testing data set of high-resolution protein chains was assembled to

be independent of the data sets used to derive both BLCLUST

and BETAN potentials. This new data set consists of the most

recent entries in the PDB that do not share any significant

sequence similarities with chains belonging to either BLCLUST or

BETAN. This data set, composed of 740 chains totaling 169,920

residues, is referred to as BLC-NEW.

The mutual information score was computed for the native

conformation of each chain in BLC-NEW using KBPs derived

from both BLCLUST and BETAN using Eq.(9) (with n = length

of the protein chain). The results are plotted in Figure 10. Points

that lie above the diagonal line are chains that have been assigned

higher scores by BLCLUST compared to BETAN. Results show

that the native conformations of nearly all chains (93.65%) exhibit

higher mutual information scores in BLCLUST than in BETAN.

Recalling the direct relationship between mutual information of

PDFs and performance of their associated KBPs in fold

recognition, these strong numbers point to the clear superiority

of the PDFs derived in this work. In particular, the ability of a

score function to assign high scores to native conformations points

to the ability by the KBP function to detect nativeness.

Another way to examine the effectiveness of BLCLUST-derived

PDFs is to measure the amount of mutual information that is

caused specifically by the flanking residues of the triplet sequence.

Analogous to Eq.(11), one can think of the XYZ triplet mutual

information score as a combination of the contribution of the

central amino acid Y and the flanking residue X_Z to the

conformation c:

In(cjXYZ)~In(cjY )zIn(cjX Z) ð12aÞ

The components of the score function can be derived by a

simple expansion:
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This equation decomposes the contribution of the central

residue and the flanking residues of the triplet. The goal here is to

estimate the specific effect of including the flanking residues in the

local KBP.

The advancement brought by this work is to articulate the

nuanced influence of the flanking residues on the backbone

Figure 11. Comparison of mutual information scores for whole
protein chains brought about by the flanking residues as
assigned by triplet BETAN and BLCLUST KBPs. Eq.(12) is used to
compute In(c|X_Z), the portion of the triplet score that can be attributed
to the influence of flanking residues on the phi-psi conformation of the
central residue. One score is computed from optimal triplet PDFs
derived from BLCLUST (using weighted dynamic radius, at resolution
15.0u), and another score is computed from BETAN PDFs. These two
scores are plotted here. More than 92% of the protein chains appear
above the diagonal line, which means that BLCLUST PDFs are able to
capture helpful information from flanking residues better than BETAN,
so that the generally positive influence of flanking residues is better
incorporated into the PDFs derived from BLCLUST compared to BETAN.
doi:10.1371/journal.pone.0094334.g011
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Figure 12. Comparison of BLCLUST and BETAN performance in folding recognition with local decoy threading. Threading trials were
done to 5000 short segments randomly selected from the BLC-NEW data set, using two triplet sequence KBPs derived from BLCLUST and BETAN
PDFs. Threading results are expressed in percentile rank r, while the native scores In(c|s) were computed by Eq.(9). Each point in the plot represents
one of 5000 short segments, whose coordinates are the difference in r of the native conformation in threading (x-axis) and the difference in In(c|s) as
given by the two KBPs. A positive DIn(c|s) means that BLCLUST assigns a higher mutual information score than BETAN. A positive Dr means that native
conformations are assigned lower (better) ranks by using BLCLUST KBPs than by BETAN KBPs. The strong correlation between the assignment of
higher scores and the ability to detect native conformations is evidence of the superiority of BLCLUST PDFs over BETAN PDFs (See Table 3 for the
details of the results of this threading test.).
doi:10.1371/journal.pone.0094334.g012

Table 3. Threading results for KBPs using PDFs derived from BETAN and BLCLUST.

BETAN triplet BLCLUST triplet

10-mer threading test n 10-mera 5535 5535

n decoysb 5000 5000

,r.c 11.31 8.08

,I-nat.d 0.265 0.372

,I-dec.e 20.347 20.519

J f 0.612 0.891

CASP10 threading test n chainsg 125 125

n decoysh 367 367

,r.i 11.66 9.81

,I-nat.d 0.264 0.354

,I-dec.e 0.058 0.013

J f 0.206 0.341

aThe number of 10-mer segments picked randomly from the data set BLC-NEW and subjected to threading test.
bThe number of random decoys per chain.
cThe percentile rank of the native conformation score amidst 5000 decoy conformation scores.
dThe mean mutual information score (Eq.9) of the native conformation.
eThe mean mutual information score computed for decoy conformations.
fThe total divergence score, an information-theoretic quantity defined as ,I-nat. - ,I-dec., which measures the mean gap between native scores and incorrect scores
(see Ref. 23).).
gThe number of chains in the CASP10 set.
hThe average number of decoys per chain in the CASP10 set. The average chain length is 175 residues.
iThe percentile rank of the native conformation score amidst the decoy conformation scores in the CASP10 set.
doi:10.1371/journal.pone.0094334.t003
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Figure 13. Comparison of BLCLUST and BETAN performance in fold recognition with CASP10 decoy threading. The improvement in
percentile rank of the native conformation is shown for each of the 125 CASP10 chains in the data set. The horizontal axis marks each of the 125
protein chains, and the vertical axis is the difference in the percentile rank Dr of the native conformation as determined by KBPs using BLCLUST and
BETAN phi-psi maps. A positive Dr means that KBPs using BLCLUST phi-psi maps see an improvement in discrimination (as measured by the
percentile rank) compared to KBPs using BETAN phi-psi maps. Of the 125 chains, BLCLUST-based KBPs are able to assign equal or better rank to the
native conformation of 80% of the CASP10 chains than BETAN-based KBPs (See Table 3 for the details of the results of this threading test.).
doi:10.1371/journal.pone.0094334.g013

Figure 14. Comparison of BLCLUST and BETAN performance in fold recognition with CASP10 decoy threading. Threading trials were
done to 125 protein chains in the CASP10 data set, using two triplet sequence KBPs derived from BLCLUST and BETAN PDFs. Threading results are
expressed in percentile rank r, while the native scores In(c|s) were computed by Eq.(9). Each point in the plot represents one of 125 chains, whose
coordinates are the difference in r of the native conformation in threading (x-axis) and the difference in In(c|s) as given by the two KBPs. A positive
DIn(c|s) means that BLCLUST assigns a higher mutual information score than BETAN. A positive Dr means that native conformations are assigned
lower (better) ranks by using BLCLUST KBPs than by BETAN KBPs. The plot shows that most chains are assigned higher mutual information scores by
BLCLUST KBPs, resulting in better threading discrimination as measured by the improvement in percentile rank of the native conformation. The
strong correlation between the assignment of higher scores and the ability to detect native conformations is evidence of the superiority of BLCLUST
PDFs over BETAN PDFs (See Table 3 for the details of the results of this threading test.).
doi:10.1371/journal.pone.0094334.g014
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conformation of the central residue, given the limited amount of

structural data available. Exclusively measuring In(c|X_Z), the

average effect of flanking residues across the protein chain, gives

some indication of the success of the methodology. For each of the

740 protein chains in BLC-NEW, the value for In(c|X_Z) was

measured using both BLCLUST and BETAN PDFs. The result,

plotted in Figure 11, reveals that in BLCLUST PDFs the effect of

the flanking residues are better elucidated than in BETAN—i.e.,

92.3% of chains bear an improved In(c|X_Z) with BLCLUST.

Also, BLCLUST assigns negative In(c|X_Z) to only 6.8% of the

chains, compared to BETAN which assigns negative values to

33.8% of the chains. A negative value for In(c|X_Z) suggests that,

on average, the flanking residues do not assist in determining

backbone conformation of a protein chain, an observation that is

contrary to what is commonly assumed about local interactions in

proteins. The much higher proportion of chains assigned negative

In(c|X_Z) by BETAN indicates that its triplet PDFs are not well-

elucidated compared to BLCLUST triplet PDFs. Conclusively, the

effect of the flanking residues on the conformation of the central

residue backbone is more accurately defined by BLCLUST PDFs.

For further confirmation of the informatic superiority of the

BLCLUST PDFs, two comprehensive threading tests were

undertaken, the first involving local threading of 10-mer segments

and the second involving whole chain threading using the CASP10

decoy set. For the first set of threading tests, a total of 5000 10-

mers were picked randomly from BLC-NEW, and for each 10-mer

500 decoy conformations were assembled randomly from the

PDBSEL data set. For the second set of threading tests, a total of

125 protein chains (with average length of 175 residues) were

assembled from CASP10, along with an average of 367 high-

resolution decoys per chain. The KBPs derived from BLCLUST

and BETAN were used to score these sequence-conformation

alignments, and the native score was ranked against the mass of

decoy scores. For each native conformation, the difference in

mutual information given by BLCLUST and BETAN was noted

along with the resulting change in native score rank r in the

threading test.

The results for each 10-mer threading, summarized in Table 3

and plotted in Figure 12, confirms once again the solid correlation

between an increase in mutual information and an improvement

in performance as exemplified by a decrease in native score rank.

For 70.6% of 10-mers, BLCLUST assigned a higher mutual

information value than BETAN, resulting in a marked decrease in

r for about 76.4% of the 10-mers. Aggregately, the mean mutual

information increase is 0.11 nats while the mean decrease in

native score percentile rank ,r. is 3.23%. BLCLUST PDFs are

significantly superior in recognizing native folds than BETAN

PDFs.

The results for the whole-chain threading using CASP10 decoys

are shown in Table 3 and plotted in Figures 13 and 14. Using

triplet-sequence-dependent phi-psi maps derived in this work

(BLCLUST) was able to assign equal or lower rank to native

conformations of 80% of the 125 chains than the BETAN phi-psi

maps. This is shown graphically in Figure 13, where the difference

in percentile rank is shown for each of the 125 chains in CASP10.

The mean percentile rank for native CASP10 conformations is

9.81% for KBPs that use BLCLUST phi-psi maps, significantly

better than 11.66% when BETAN phi-psi maps are used instead

(see Table 3 for details). Figure 14, which plots the mutual

information score increase arising from the use of BLCLUST over

BETAN phi-psi maps against the improvement gained in

percentile rank of the native conformation, shows a similar pattern

to Figure 12. Again, it is demonstrated here that KBPs that use

BLCLUST phi-psi maps are able to increase the scores for native

conformations, thereby improving discrimination amidst a chal-

lenging set of decoys in a fold recognition exercise.

Figure 15. Dependence of mutual information score In(c|s) on crystallographic resolution. For each of the 740 protein chains in the BLC-
NEW data set, the score In(c|s), derived from BLCLUST KBPs, is computed using Eq.(9) and plotted against the crystallographic resolution (in
Ångstroms) of its experimental structure. A generalized correlation can be observed in this initial study. High-resolution structures are expected to
contain phi-psi angles in the normal regions of the Ramachandran space, which are highly populated and should produce high mutual information
scores. Conversely, lower resolution structures may contain a number of unnatural phi-psi angles that are penalized by the In(c|s) function. This initial
exploration points to the possibility of using triplet PDFs in structure validation and model refinement.
doi:10.1371/journal.pone.0094334.g015
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These results are relevant to efforts that use knowledge-based

structural propensity distributions for structure validation and

model refinement. These procedures are in essence fold recogni-

tion exercises: a putative structure is scored by some energy or

probabilistic function, and its viability is judged by how ‘‘normal’’

or ‘‘expected’’ the structure is by an implicit or explicit comparison

with decoy or otherwise unnatural structures. Good PDFs (and

their associated KBP) ought to score native conformations well,

while also penalizing incorrect conformations by poor scores.

Compared to BETAN PDFs, BLCLUST PDFs are shown here to

assign higher mutual information (scores) to native conformations

and also to more effectively discriminate against incorrect

conformations. Structure validation and model refinement proce-

dures should, in principle, benefit from information-optimized

PDFs.

To begin to explore the viability of BLCLUST PDFs in

structure validation and similar applications, BLCLUST KBPs

were used to score the native conformations of 740 chains in BLC-

NEW, a diverse collection of newly solved protein structures that

are not homologous to any proteins in BLCLUST. In Figure 15,

the resolution for each chain was plotted against its In(c|s) score

(Eq.9), which can be taken as a measure of the ‘‘normalness’’ of the

phi-psi angle pairs of the experimental structure. The higher the

In(c|s) score, the more the phi-psi angle pairs conform, on average,

to expected and highly populated values. A general correlation can

be observed in Figure 15: specifically, low resolution crystal

structures tend to have relatively lower In(c|s) scores compared to

higher resolution structures. This is because structures of low

resolution will likely contain phi-psi angle pairs outside natural

regions of the Ramachandran space, which the In(c|s) function is

able to detect and penalize. This initial observation supports the

hypothesis that these phi-psi maps are potentially useful in

structure validation and model refinement. Confirmation of this

hypothesis by more extensive measurements, and formalizing the

use of In(c|s) as a structure validation parameter, are among the

future directions arising from this work.

F. Concluding Remarks
Deriving sequence-dependent structural propensities from

structure data is straightforward in principle—a database is

assembled from which frequencies are extracted and converted

into probability distribution functions (PDFs). The number of

adjustable variables, however, presents a challenge if the goal is to

derive the best PDFs from given data. Information theory provides

an elegant and powerful way to build PDFs that optimize all

aspects of the process—from determining the most sensible

descriptors for sequence and conformation to improving the way

probabilities are derived from frequency counts. The work

described here reveals a straightforward procedure that results in

superior PDFs that maximize the extraction of structural

information from empirical data.

The specific goal of this work is to build the most accurate phi-

psi dihedral angle probability distribution functions (PDFs) for all

20 single amino acids and all 8000 triplet sequences from high-

resolution crystal data. The fundamental question of how to

extract the most accurate functions given empirical data has

prompted the information-theoretic analysis explored here. The

outcome of this analysis convincingly points to the maximization

of mutual information estimates IE(C,S) as the correct objective

function in the optimization of PDFs. The advantages of using

mutual information are known [23,24], and once again confirmed

here—that the resulting knowledge-based potentials perform best

in fold recognition tests, and that parameter optimization can be

achieved by looking only at the ‘‘energies’’ of native sequence-

structure alignments, bypassing the costly need to explore the

‘‘energy gap’’ between the correct structural state and a large set of

decoys. Yet another advantage has been demonstrated in this

work: empirical PDFs that maximize IE(C,S) are the best

approximation for the underlying true probabilities given limited

data.

The triplet sequence PDFs have been derived from all high-

resolution crystal structures in the Protein Data Bank (PDB),

including redundant and near-identical sequences. A procedure

was devised to weight the contribution of each chain inversely with

the size of the cluster of similar sequences in which it belongs.

Frequency counts were made using the dynamic radius approach,

which extracts more information than standard static binning

common in the literature. The resolution, an important adjustable

parameter, was also optimized. The performance of these PDFs in

comprehensive threading tests is superior to a recent set derived by

Betancourt [16], and points to a greater ability to elucidate the

nuanced influence of the flanking residues on the backbone

conformation of the central amino acid. Such functions may prove

useful as tools for structure validation, as components of

knowledge-based potentials (KBPs), and as clues that may lead

to understanding complex molecular interactions and the very

nature of protein folding.

The Information Maximization Device (IMD) encapsulates the

simple computational approach to optimizing PDFs as well as

KBPs that rely on accurate PDFs. The ingredients are the

following: two distinct structural data sets and a procedure to turn

sparse frequencies into well-defined probabilities. One data set, the

training data set, is used to derive probability estimates; another

data set, the testing data set, is used to compute each term of the

summation of the IMD. The composition of the training data set

has virtually no restrictions; its effectiveness will be determined

ultimately by the IE(C,S) resulting from the PDFs. The compo-

sition of the testing data set, however, is crucial, because it ought to

reflect the range of structures that the PDF aims to describe as well

as the sequence-structure space to which the associated KBPs will

be applied. The two data sets can overlap, but a valid jackknife

procedure is necessary when computing each term in the IMD

summation. It should be noted that the training data set, along

with the other ingredient of the IMD, the probability estimation

procedure, can be integrated into the procedure as variables to be

optimized as well. Indeed, in the work described here, an

expanded data set, BLCLUST, was proven to be superior as the

training set—both in terms of IE(C,S) and performance in

threading—to a more limited, non-redundant data set, PDBSEL.

The probability estimation procedure may have a number of

parameters, all of which can be optimized in a similar fashion.

Beyond providing the most informative single amino acid and

triplet phi-psi maps to date, this work has wider implications. Close

analysis reveals that these plots can still benefit from the continued

increase in the size of the PDB. As expected, triplet sequence maps

will become increasingly accurate with more observations. But

even the 20 amino acid maps, with the abundance of occurrences

in the database, can benefit from periodic reevaluation. In

addition, the simple mechanism of IMD can be employed to

explore various other sequence-dependent conformations. Lastly,

the training data set can be expanded to include high-resolution

structures of redundant and near-identical sequences—in fact,

there is latent information in the minute conformational variability

that occurs among related sequences, so that including them in

statistical analysis and model building is ultimately beneficial.
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