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Introduction
The ensheathment of axons by myelin is essential for the effi -

cient propagation of nerve impulses both in the central nervous 

system and peripheral nervous system (PNS). In the PNS, 

 myelin is made by Schwann cells, each cell wrapping around 

a single axon, creating concentric layers. The compaction of 

these layers results in the formation of the dense and interperiod 

lines typical of mature myelin (Scherer and Arroyo, 2002). The 

wrappings created by each Schwann cell are distinct and separated 

by the Nodes of Ranvier, structures specialized for Na and K ion 

exchange (Girault and Peles, 2002; Sherman and Brophy, 2005). 

The major protein component of myelin in the PNS is myelin 

protein zero (P0), a single-pass transmembrane molecule con-

taining one Ig-like loop in the extracellular domain and a 

69–amino acid highly basic cytoplasmic domain (Lemke and 

Axel, 1985). P0 is found throughout peripheral myelin and is 

essential for normal myelination.

Mutations in the P0 gene cause peripheral neuropathy 

with either prominent demyelination, slowed nerve conduc-

tions and onset in childhood, or mainly axonal dysfunction, 

 essentially normal nerve conductions, and onset as an adult 

(Warner et al., 1996; Nelis et al., 1999; Shy et al., 2001, 2004). 

There are currently >95 different mutations in P0 correlating with 

human neuropathies (http://www.molgen.ua.ac.be/CMTMutations/

default.cfm). Mice null for the P0 gene have uncompacted myelin 

in the PNS and develop a severe, early onset demyelinating 

neuropathy, whereas heterozygotes have a later onset neuropathy 

with substantial amounts of infl ammation (Giese et al., 1992; 

Martini et al., 1995; Shy et al., 1997; Pareyson et al., 1999). Muta-

tions in P0 are dominant, suggesting that the mutant protein 

 interferes with the function of wild-type protein (Warner et al., 

1996; Shy et al., 2004). Tissue culture and knock-in experiments 

have borne this out; cotransfection with wild-type and mutant 

P0 results in the loss of adhesion function (Wong and Filbin, 

1996), and transgenic mice expressing a mutant P0 in a wild-

type background develop demyelinating peripheral neuropathy 

(Runker et al., 2004).

The role of P0 in maintaining compact myelin may, in 

part, be caused by its ability to mediate homotypic interactions 

(Filbin et al., 1990; Schneider-Schaulies et al., 1990; Filbin and 

Tennekoon, 1993; Doyle et al., 1995), and decreases in adhe-

sion have been correlated with the severity of disease (Ekici 

et al., 1998). Crystallographic studies of the extracellular domain 

of P0 suggest that it interacts in cis to form homotetramers, 

which, in turn, interact with similar tetramers in an apposing 
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fold of the myelin membrane, thus contributing to the forma-

tion of compact myelin (Shapiro et al., 1996). Supporting this 

model, mutations in several of the residues likely to participate 

in cis- and trans-interactions of the homotetramers can cause 

inherited neuropathy and reduced cell–cell adhesion in vitro 

(Shy et al., 2004).

The cytoplasmic domain of P0 is also important for my-

elin compaction and adhesion. Several different nonsense or 

point mutations in the intracellular domain have been found 

in patients presenting with different neuropathies (Shy et al., 

2004), and truncation of the cytoplasmic domain eliminates 

 adhesion function (Wong and Filbin, 1994; Xu et al., 2001). Our 

own results implicate PKCα-mediated phosphorylation of the 

cytoplasmic domain of P0 in the regulation of P0-mediated 

 adhesion and potentially formation/maintenance of compact 

myelin. First, we showed that deletion of a 14–amino acid se-

quence that eliminates a putative PKCα target site (198RSTK201) 

as well as point mutations within this domain eliminate P0-

 mediated adhesion. A patient presenting with late onset Charcot 

Marie Tooth disease (CMT) 1B was found to have a mutation in 

the PKCα target site R198S. In vitro analysis of the P0 function 

bearing the R198S mutation revealed a defi cit in P0-mediated 

adhesion. We further demonstrated that PKCα and the recep-

tor for activated C kinase 1 (RACK1) are associated with the 

 cytoplasmic domain of P0 and that the inhibition of PKCα ac-

tivity also inhibits P0-mediated adhesion. Point mutations that 

eliminate potential phosphorylation target sites (S199 or 204A) 

also result in the loss of adhesion, and deletions eliminating 

these serine residues also result in CMT (Shy et al., 2004).

We have now identifi ed a protein, p65, that interacts di-

rectly with P0 and RACK1, bringing PKCα in close proximity 

to its target sites in the cytoplasmic domain of P0. Deletion of 

the P0 domain responsible for p65 binding results in the loss of 

P0-associated RACK1 and PKCα and the loss of P0-mediated 

cell adhesion. Importantly, two CMT patients carrying a point 

mutation in this domain, G184R, have been identifi ed. Recom-

binant P0 with this mutation does not interact with p65, and 

cells transfected with this mutant P0 are unable to form adhesions. 

These data strongly suggest that the interaction of p65 with 

the cytoplasmic domain of P0 provides the foundation for 

the  attachment of RACK1 and PKCα, resulting in the phos-

phorylation of P0 at serines 199 and/or 204. This is substanti-

ated by functional rescue of the G184R mutant P0 by mutation 

of serines 199 and 204 to glutamic acid. Collectively, these data 

suggest that regulation of P0 phosphorylation and adhesion, 

which is mediated, in part, by the binding of p65, RACK1, and 

PKCα to a specifi c sequence in the cytoplasmic domain of P0, 

plays an important role in myelination.

Figure 1. Expression of p65 message in sciatic nerve and culture cells. 
(A) Northern blot analysis of sciatic nerve. mRNA extracted from sciatic nerve 
of adult rats (10 μg/lane) before or after transection of the nerve was hy-
bridized with a radiolabeled probe to p65 (top) or P0 (bottom). Glyceral-
dehyde-3-phosphate dehydrogenase (GAPDH) was included as a loading 
control. Notice that by 4 d after transection, both the p65 transcript and the 
P0 message are greatly reduced. (B) Western blot analysis. Extracts from rat 
sciatic nerve (SN), cultured Schwann cells (SC), or L cells expressing wild-
type P0 were fractionated by SDS-PAGE, transferred to polyvinylidene 
difl uoride, and immunoblotted with an antibody raised to a peptide in p65. 
(C) Extracts of L cells (LCo), L cells expressing wild-type P0 (LP0WT), or L cells 
expressing a P0 deletion mutant (LP0∆2) were immunoprecipitated with 
anti-P0 antibody. The resulting immunoprecipitates were assayed for the 
presence of associated p65 by Western blotting. (D) Amino acid sequence 
of the cytoplasmic domain of P0. Deletion mutant ∆2 lacks the C-terminal 
28 amino acids, including the HRSTK domain and serine residue 204, 
which was previously identifi ed as being crucial for P0 adhesion activity.

Figure 2. In vitro interaction between p65 and P0. (A) CBP-P0 immobi-
lized on CaM-coated wells was incubated with increasing concentrations 
of GST alone or GST-p65. After extensive washing, the wells were incu-
bated with anti-GST antibody, and binding was determined by ELISA. 
(B, top) The indicated fragments of p65 cDNA were prepared as GST fusion 
peptides. (bottom) GST-p65 pull-down assay. Lysates of L cells stably ex-
pressing HA-tagged P0 were incubated with the indicated GST-p65 con-
structs immobilized on glutathione beads. After extensive washing, material 
bound to beads was fractionated by SDS-PAGE and immunoblotted with 
anti-HA antibody. (C) Immobilized CBP-P0 was incubated with equimolar 
amounts of the different GST-p65 peptides as described in A. P0 preferen-
tially binds to the C-terminal domain of p65. Error bars represent SD.
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Results
P65 is a novel P0-interacting protein 
identifi ed by a yeast two-hybrid assay
To identify potential proteins that interact with the cytoplasmic 

tail of P0, we screened a cDNA library from P30 rat sciatic 

nerve, a time of peak myelin expression, using the P0 cytoplasmic 

domain as bait in a yeast two-hybrid assay (Finley and Brent, 

1994). 13 cDNA sequences encoding peptides that interact 

with the P0 bait were sequenced; 11 contained an identical 

1.1-kb cDNA fragment. The complete cDNA codes for a 65-kD 

protein (p65) previously identifi ed in the nucleus of cells under-

going meiosis (GenBank/EMBL/DDBJ accession no. Q64375; 

Chen et al., 1992) and as a 55-kD nucleolar protein (GenBank/

EMBL/DDBJ accession no. NM_006455; Ochs et al., 1996). 

The selectivity of the interaction of p65 and P0 in the yeast two-

hybrid system used was determined by testing other bait pro-

teins as well as a C-terminal 28–amino acid deletion of P0 that 

fails to mediate cell adhesion (Xu et al., 2001). Only the full-

length P0 or P0 lacking the 13 C-terminal amino acids (Fig. 

1 D, ∆1) that do not affect P0-mediated adhesion were able to 

interact (not depicted). The 1.1-kb p65 cDNA reacts with two 

distinct mRNA bands from rat sciatic nerve of �2.3 and 2 kb 

(Fig. 1 A). Transection of the sciatic nerve results in a progres-

sive loss of p65 message: 4 d after transection, the transcripts 

are greatly reduced and are barely detectable by day 12 (Fig. 1 A). 

This loss parallels the loss of P0 message (Fig. 1 A, bottom), 

suggesting that the levels of expression of P0 and p65 are co-

ordinately regulated. An antibody developed to a peptide cor-

responding to a sequence in p65 recognizes an �65-kD 

protein band in sciatic nerve, cultured mouse Schwann cells, 

and L cells expressing full-length P0 (Fig. 1 B). In addition, 

full-length P0 but not P0 lacking the 28 C-terminal amino acids 

(Fig. 1 D, ∆2) is associated with p65, as determined by co-

immunoprecipitation (Fig. 1 C), further validating the results of 

the two-hybrid screen.

P0 interacts with p65 in vitro
The results of the yeast two-hybrid assay suggest that the inter-

action between P0 and p65 is direct. To defi nitively demonstrate 

this, we engineered a fusion peptide containing the cytoplasmic 

domain of P0 linked to the CaM-binding peptide (CBP) and the 

fragment of p65 identifi ed in the yeast two-hybrid assay as a 

GST fusion. GST-p65 binds directly to CBP-P0 immobilized on 

CaM-coated wells in a dose-dependent manner, whereas GST 

alone does not (Fig. 2 A).

The 1.1-kb message identifi ed by the two-hybrid screen 

corresponds to a fragment of p65 lacking the N terminus 

(amino acids 184–431). An analysis of the primary structure 

of p65 shows that the fragment obtained by the yeast two-

hybrid screen contains three possible tetratricopeptide repeat 

(TPR) motifs; these are amino acid stretches likely involved in 

protein–protein interactions and, therefore, are good candi-

dates for the interaction between P0 and p65. Thus, we created 

three different p65 fragments, each containing one of the TPR 

motifs (Fig. 2 B). Using these constructs both in an in vitro 

binding assay (Fig. 2 C) or pull-down assay (Fig. 2 B, bottom), 

we were able to determine that the domain responsible for 

 interaction with P0 is located within the C-terminal 126 amino 

acids of p65.

Mapping of the p65-binding site on P0
To more specifi cally defi ne the p65-binding site on the cyto-

plasmic tail of P0, we created a series of P0 deletion mutants 

(Fig. 3 A) and generated cell lines stably expressing these 

mutants. Lysates of the cell lines expressing P0 were then used 

in pull-down experiments with GST-p65. Full-length wild-type 

P0 specifically interacts with GST-p65, and deletion of the 

fi rst 22 amino acids in the N terminus of the cytoplasmic tail 

(P0∆7 and P0∆6; see Fig. 3 A) does not prevent the interaction 

(Fig. 3 B). However, P0 carrying deletion ∆5, corresponding to 

amino acids 173–184, is not pulled down by GST-p65 beads 

(Fig. 3 B), and the association of p65 with P0∆4 (amino acids 

Figure 3. Mapping of the p65 interaction domain on 
P0. (A) Diagram of the cytoplasmic domain of P0 
showing the deletion mutations. Serine residues 199 
and 204 are shown in blue. Amino acids 184 G and 
198 R are shown in green. The domain responsible for 
p65 interaction is highlighted in red based on the re-
sults shown in B and C. (B) GST-p65 pull-down assay. 
Lysates of L cells stably transfected with the indicated 
P0 constructs were incubated with GST-p65 immobi-
lized on glutathione beads. After extensive washing, 
the material bound to beads was fractionated by SDS-
PAGE and immunoblotted with anti-HA. Aliquots of the 
lysates were also blotted with anti-HA to determine the 
expression of P0 by the different cell types. (C) Co-
immunoprecipitation of p65 and P0. Lysates of the indi-
cated cell types were immunoprecipitated with anti-HA 
antibody followed by immunoblotting with anti-p65 
antiserum. The amount of P0 immunoprecipitated was 
determined by immunoblotting with anti-HA antibody.
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185–194) is severely reduced (Fig. 3 B). These results suggest 

that p65 interacts with the region between amino acids 173 

and 194.

We also verifi ed the association between endogenous 

p65 and P0 by coimmunoprecipitation. Immunoprecipitates of 

P0 bearing an HA tag from cell lysates using anti-HA anti-

body followed by immunoblotting with anti-p65 show asso-

ciation between the two proteins in cells expressing wild- type 

P0 or P0 mutants ∆6 and ∆7 but not P0 mutants ∆4 and 

∆5 (Fig. 3 C).

p65 was originally identifi ed as a nuclear (SC65) or nu-

cleolar protein (No55); however, the predicted localization of 

SC65 using the pSort program (ExPASy Tools) is cytoplasmic. 

The 55-kD nucleolar protein No55 has an additional 34 amino 

acids at the N terminus, and the fi rst 18 amino acids have the 

property of a signal peptide. No55 lacks C-terminal amino acids 

present in SC65 and has no nuclear localization signal. The 

predicted localization for No55 is 97% cytoplasmic, suggesting 

that it may be transported to its fi nal destination via associ-

ation with another molecule. The association of p65 with P0 

suggests a nonnuclear localization. We used two different 

cell fractionation procedures to analyze the relative localization 

of p65 in control L (LCo) cells and L cells expressing P0 

(LP0; Fig. 4, A and B). p65 is found in the nuclear, cytoplasmic, 

and membrane fractions in both LCo and LP0 cells; however, 

more p65 is detected in the membrane and cytoplasmic fraction 

of LP0 than LCo cells (Fig. 4, A–C). In contrast, the amount 

of p65 detected in the nuclear fraction of LCo cells is about 

double that of LP0 cells (Fig. 4, A and C). These results clearly 

indicate that the presence of P0 affects a redistribution of p65, 

Figure 4. Subcellular distribution of p65. (A) L cells (LCo) or cells express-
ing wild-type P0 (LP0) were fractionated into a nuclear and cytoplasmic 
fraction (nuclei and cyto). Equal amounts of protein were immunoblotted 
with anti-p65 antiserum. An antibody against a nucleolar antigen was used 
as a nuclear marker. (B) Plasma membrane–enriched fractions of LCo and 
LP0 cells were immunoblotted with anti-p65. The same immunoblot was 
probed with antifl otillin as a plasma membrane marker. (C) The density 
ratio of the p65 band in LP0 and LCo cells was calculated for each cellular 
fraction. The values shown are representative of several experiments.

Figure 5. Effect of a G184R point mutation on p65–P0 inter-
action. (A) Lysates of cells expressing wild-type P0 or P0 
carrying a point mutation on residue G184 were immuno-
precipitated with anti-HA antibody, and the resulting precipitates 
were immunoblotted with anti-p65 antiserum. The amount 
of P0 precipitated was determined by immunoblotting with 
anti-HA antibody. (B) Lysates of cells expressing equivalent 
amounts of wild-type or G184R mutant P0 were incubated 
with increasing amounts of immobilized GST-p65. After ex-
tensive washing, the amount of bound P0 was determined by 
immunoblotting with anti-HA antibody. The density of the 
scanned P0 bands was compared with the amount present in 
the total lysate and expressed as a function of the GST-p65 
concentration. (C) Synthetic peptides mimicking sequences in 
the P0–p65-binding region were used as competitors in a 
GST-p65 pull-down assay. Equal aliquots of wild-type P0 were 
incubated with GST-p65 in the presence of increasing concen-
trations of the indicated peptides. The amounts of P0 pulled 
down at plateau peptide concentrations (20 μM) were 
compared with the amount of P0 pulled down by p65 in the 
absence of any peptide competitor. The results of multiple 
experiments were analyzed using Kaleidagraph. The statistics 
software GB-Stat (Dynamic Microsystems) was used to obtain 
p-values (Fisher’s lest signifi cant difference–protected t tests). 
(D) GST-p65 immobilized on glutathione-coated wells was in-
cubated with the cytoplasmic domain of P0 expressed as a 
CBP fusion in the presence of increasing concentrations of 
peptides 3 or 4. The amount of P0 bound was determined by 
ELISA using anti-Flag antibody. CBP–cytoplasmic cadherin 
was used as a negative control. The specifi c binding of CBP-
P0 to GST-p65 in the presence of peptides is presented as the 
percentage of control (binding in the absence of peptides). 
Results of multiple experiments were pooled and analyzed as 
described in C. Error bars represent SD.
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reducing its nuclear presence and increasing its cytoplasmic and 

membrane localization. This is consistent with a dual function 

for this molecule.

A point mutation found associated 
with CMT substantially reduces 
the interaction between P0 and p65
A missense mutation found in the p65-binding region of P0,  

G184R, correlates with a mild form of CMT with variable pene-

trance (unpublished data). G184 is at the interface of the two 

deletions that affect p65 binding to P0, prompting us to investi-

gate the possibility that the G184R point mutation may result in 

a reduced or weakened interaction between P0 and p65. Thus, 

we generated cell lines expressing P0 carrying this mutation; 

coimmunoprecipitation assays using anti-p65 antibody show 

that the interaction between P0 and p65 is much reduced in these 

mutants as compared with wild-type P0 (Fig. 5 A). The same 

results are seen in pull-down assays using GST-p65 (Fig. 5 B).

The results presented so far suggest that p65 interacts with 

an extended domain in the cytoplasmic tail of P0 and that residue 

G184 is necessary but not suffi cient for the interaction. However, 

the limits of this domain remain ill defi ned. In particular, the 

C-terminal extent of this region overlaps deletion ∆2, a region of 

the cytoplasmic domain we previously showed was critical for 

interaction with RACK1 and PKCα. Deletion of this domain also 

abrogates p65 binding (Fig. 1 C). Thus, to better defi ne the p65–P0 

interaction domain, we designed a series of peptides to use as 

competitors in the GST-p65 pull-down assay. The sequence and 

position of the peptides are shown in Fig. 5 C. Peptide 1 mimics the 

functionally important RSTKAAS motif. Peptide 2 contains the 

C-terminal fragment of ∆4, and peptides 3 and 4 include the impor-

tant G184 residue; however, peptide 4 contains the human G184R 

mutation. GST-p65 pull-down assays were performed in the pres-

ence of increasing concentrations of each peptide. The amount 

of P0 interacting with p65 was determined by immuno blotting 

with anti-HA antibody. The immunoblots were scanned, and the 

density of the immuno precipitated bands was compared with 

that of the total amount of P0 in the lysate.

The histogram in Fig. 5 C shows comparisons for each 

peptide at plateau values. Peptide 1 has no effect; thus, the func-

tionally important RSTKAAS motif is not critical for p65 binding. 

Peptide 2 reduces the interaction between p65 and P0 by 

�50%, which is consistent with the attenuation of p65 binding 

in the ∆4 deletion and in the previously analyzed deletion that 

included the RSTKAAS motif (Xu et al., 2001) but extended 

into the ∆4 region. Surprisingly, peptide 3 containing G184 re-

sults in an increased interaction between p65 and P0 (Fig. 5 C). 

The effect of this peptide is, in fact, dependent on G184, as pep-

tide 4, which is identical to peptide 3 except that it contains the 

mutation G184R, neither promotes nor inhibits the interaction 

between P0 and p65 in pull-down assays (Fig. 5, A and B). The 

same results are obtained when peptides 3 and 4 are used to 

 perturb the binding of GST-p65 fusion protein to the cytoplasmic 

domain of P0 in an in vitro binding assay: peptide 3 results 

in an �50% increase in binding over control, whereas peptide 4 

has no effect (Fig. 5 D). One possible interpretation of these 

 results is that the region represented in peptides 3 and 4 stabilizes 

the interaction of P0 and p65 and that G184 is essential for this 

stabilization effect. The region of P0 defi ned by peptide 2 is 

dominant, as a combination of peptides 2 and 3 used in optimal 

doses is an effective competitor (Fig. 5 C).

p65 mediates the binding of RACK1 to P0
Although the interaction of RACK1 and PKCα and the phos-

phorylation of the PKCα target motif are essential for P0 

 adhesion function (Xu et al., 2001), RACK1 and PKCα do not 

interact directly with P0 (unpublished data). Thus, we consid-

ered the possibility that p65 acts as an adaptor, linking P0 with 

RACK1 and, consequently, PKCα. GST-p65 is able to pull down 

RACK1 independently of P0 expression (Fig. 6 A, Co cells) 

Figure 6. p65 interaction with RACK1. (A) GST-p65 
pull-down assay. Lysates of L cells expressing wild-type 
P0 (LP0WT) or L cells (LCo) were incubated with the in-
dicated GST-p65 constructs (see Fig. 2 B, top) immobi-
lized on glutathione beads. After extensive washing, 
material bound to beads was eluted in SDS sample 
buffer, fractionated by SDS-PAGE, transferred to poly-
vinylidene difl uoride, and immunoblotted with anti-
RACK1 antibody. (B) In vitro interaction between 
p65 and RACK1. GST-p65 immobilized on glutathione-
coated wells was incubated with increasing concentra-
tions of MBP-RACK1 or MBP. After extensive washings, 
the amount of bound RACK1 was determined by ELISA 
using an anti-MBP antibody. (C) Interaction of RACK1 
with P0. Lysates of the indicated cell types were immuno-
precipitated with anti-HA antibody followed by immuno-
blotting with anti-RACK1 antibody. The amount of P0 
immunoprecipitated was determined by immunoblotting 
with anti-HA antibody. Notice that only P0 constructs 
that are able to bind p65 show an interaction with 
RACK1 (see Fig. 3 A). (D) P0 lacking the p65 inter-
action domain is hypophosphorylated on serine residues. 
Lysates of the indicated cell types were immuno-
precipitated with anti-HA antibody covalently attached 
to agarose. The eluted material was immunoblotted 
with antiphosphoserine antibody (top) and anti-HA anti-
body (bottom). Error bars represent SD.
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and interacts directly with RACK1 in in vitro binding assays 

(Fig. 6 B). We next determined whether p65 plays a role in 

the  interaction between RACK1 and P0 in intact cells. The ly-

sates of cells expressing P0 and P0 deletion mutants immuno-

precipitated with anti-HA antibody and immunoblotted with 

anti-p65 antibody shown in Fig. 3 C were also immunoblotted 

with anti-RACK1 antibodies (Fig. 6 C). RACK1 is detected in 

the P0 immunoprecipitates whenever p65 is present but not 

in the absence of p65 binding (compare Figs. 3 C with 6 C). 

Together, these results indicate that p65 interacts directly with 

RACK1 and, as p65 interacts directly with P0, further indicate 

that p65 acts as a bridge between RACK1 and P0, allowing 

 activated PKCα to phosphorylate P0.

To further correlate the loss of p65 binding with the loss 

of interaction between P0 and PKCα, we compared the phos-

phorylation of serine residues on P0 wild-type and P0 mutants 

∆5 and G184R. Confl uent cell layers were lysed and immuno-

precipitated with agarose-bound anti-HA followed by immuno-

blotting with a PKC-specifi c antiphosphoserine antibody. As 

shown in Fig. 6 D, the mutant P0 forms are hypophosphorylated 

when compared with the wild-type control.

Mutations in P0 that eliminate p65 binding 
also eliminate the ability of P0 to mediate 
cell–cell adhesion
The data thus far presented imply that p65 acts as a bridge 

bringing RACK1 and thus PKCα to the cytoplasmic domain of 

P0. Because the phosphorylation of serine residues 199 and 204 

by PKCα is essential for P0 adhesion function (Xu et al., 2001), 

loss of the P0–p65 interaction should also result in the loss of 

P0-mediated adhesion. This is indeed the case: L cells expressing 

P0 deletion mutants ∆4 and ∆5 as well as the G184R mutation, 

all of which compromise p65 binding to P0, show much reduced 

P0-mediated cell–cell adhesion when compared with cells ex-

pressing equal levels of wild-type P0 (Fig. 7 A). To ensure that 

the loss of adhesion is not caused by altered cell surface ex-

pression, intact cells were biotinylated using a cell-impermeable 

biotinylation reagent followed by lysis and immuno precipitation 

with anti-HA antibody. All three mutant P0s are found at the 

cell surface (Fig. 7 C). The importance of the G184 residue is 

further refl ected in the fact that cells expressing this mutant do 

not form an adhesive interface as do cells expressing wild-type 

P0 (Fig. 7 B).

A mutant that mimics the serine 
phosphorylation of residues 199 and 204 
abrogates the need for P0–p65 interaction
We have previously shown that serine residues 199 and 204 are 

essential for P0 adhesion function, presumably acting as sub-

strates for PKCα (Xu et al., 2001). If the function of p65 is in-

deed to position PKCα so it can phosphorylate P0, a mutation at 

serine residues 199 and 204 that mimics phosphorylation should 

abolish the need for p65. Thus, we introduced the S199, 204E 

double mutation into the P0 cDNA constructs containing the ∆4 

and ∆5 deletions as well as the G184R point mutation, which are 

all mutations that abolish p65 binding. As predicted, the ability 

of cells expressing the P0 deletion mutants and the G184R muta-

tion to form adhesions is rescued by the presence of the double 

mutation S199, 204E (Fig. 7 A; compare G184R with GR/SE).

Discussion
The importance of the cytoplasmic region of P0 in the for-

mation and/or stabilization of P0-mediated adhesion is well 

Figure 7. Effect of p65 interaction on P0 adhesion func-
tion and cell surface expression. (A) P0-mediated cell–cell 
aggregation. Cultures of L cells expressing similar levels of 
the indicated P0 constructs were dissociated into single 
cells and allowed to aggregate for 4 h at 70 rpm and 
37°C. The number of cells present in clusters was then 
compared with the total number of cells using Image Pro 
Plus (MediaCybernetics). Notice that the double mutation 
S199, 204E abolishes the effect of deletions ∆4 and ∆5 
and point mutation G184R. The fi gure represents results 
from fi ve different experiments normalized to 100% ag-
gregation for wild-type P0 cells (the observed number of 
wild-type cells in clusters was around 50–70%). (B) L cells 
expressing wild-type or G184R P0 were grown on cover-
slips and reacted with anti-HA followed by fl uorescein-
 conjugated secondary antibody. Cells were visualized using 
an inverted laser-scanning confocal microscope. Notice 
that wild-type P0 localizes at areas of cell–cell contact 
(arrow), whereas the mutant G184R shows a more diffuse 
distribution and is absent from regions where cells are 
in close proximity (arrow). (C) Confl uent cell layers were 
incubated with cell surface–impermeable biotinylation 
 reagent (B) or buffer alone (S). Cell lysates were reacted 
with avidin-conjugated magnetic beads, and the eluted 
material was fractionated by SDS-PAGE and immuno-
blotted with anti-HA antibody. The blots were reacted with 
antiactin antibody to control for labeling of intracellular 
peptides; actin is readily detected in the total lysate lane 
but is weak or not detectable in the avidin-bound material. 
The amount of cell lysate loaded in the lane marked T 
(total lysate) was �1/50th of that loaded in the avidin bead 
(B) and control bead (S) lanes. Error bars represent SD.
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established (Wong and Filbin, 1994; Xu et al., 2001). The studies 

presented here were targeted at understanding the mechanistic 

basis for the role of the cytoplasmic domain. We previously 

demonstrated that PKCα-mediated phosphorylation of serines 

199 and 204 is essential for function and that RACK1 played 

a role, possibly in mediating the binding of PKCα with P0 (Xu 

et al., 2001). We now demonstrate the requirement for an adaptor 

protein, p65, that links RACK1/PKCα to P0. Our functional 

analysis shows that p65 interacts directly with a well-defi ned 

region of P0; that, in the absence of binding, RACK1 and PKCα 

are absent from the cytoplasmic domain of P0; and that P0 is 

hypophosphorylated and is unable to mediate the formation of 

cell–cell adhesions in spite of the fact that it still expressed at 

the cell surface.

p65 has been previously reported, but in an entirely different 

context. It was originally cloned from an expression library us-

ing an antibody to the rat synaptonemal complex antibody (Chen 

et al., 1992) and was subsequently cloned from a human ex-

pression library and localized to the interphase nucleolus (Ochs 

et al., 1996). These previous results were quite surprising; how-

ever, it is not unusual to fi nd proteins or alternate transcripts 

fulfi lling very different functions in the cell. This dual functio n-

ality is consistent with the redistribution we fi nd when  parental 

L cells are compared with L cells expressing P0. The two pu-

tative functions (one nuclear and related to cell division and 

one cell surface and related to cell–cell interactions) are com-

pletely separate temporally and spatially, as Schwann cells in 

the process of ensheathment are in the fi nal stages of a terminal 

differentiation program.

Deletion analyses of the P0 cytoplasmic domain in con-

junction with competition assays using peptides mimicking 

specifi c regions of the cytoplasmic domain were used to map 

the p65-binding region. The P0 site to which p65 binds spans 

�18 amino acids (residues 179–197). The use of peptides mim-

icking regions of the cytoplasmic domain of P0 as competitors 

suggests that the p65-binding site has two component parts. 

This is based on the fact that peptides mimicking the N- terminal 

half of the binding region (amino acids 179–189) when used 

in pull-down or in vitro binding assays enhance binding, ap-

pearing to prime p65 for stable binding or to stabilize binding 

to P0. In contrast, peptides mimicking the C-terminal half of 

the binding region (amino acids 190–199) inhibit binding. Fur-

thermore, in the presence of both peptides, the binding of p65 

to P0 is inhibited, suggesting that the C-terminal half site is 

dominant. However, both regions are essential for binding, as 

the deletion of either region abrogates binding. Our interpreta-

tion of these data is that binding of p65 is stabilized by a change 

in confi guration that requires interaction with the N-terminal 

half site of P0.

Human mutations in the cytoplasmic domain of P0 give 

rise to CMT with variable severity (Shy et al., 2004). Trunca-

tions of the cytoplasmic domain and point mutations are among 

those associated with the disease. Therefore, it is not surprising 

to fi nd that the p65-binding region is the site of a point muta-

tion, G184R, giving rise to the disease. What is quite interesting 

is that this mutation is within the N-terminal half of the p65-

binding site, the site we suggest is essential for priming or 

stabilizing p65 binding. A peptide spanning the N-terminal half 

of the P0 p65-binding site but containing the G184R mutation 

no longer is able to inhibit or stabilize binding. The neuropathy 

resulting from the G184R mutation is late onset and extremely 

variable in penetrance (unpublished data). Because mutations 

in P0 are dominant, variable penetrance may well be the result 

of the relative ratios of the normal versus mutant P0 synthesized. 

Additionally, because P0 function is suggested to be based 

on cis-tetramers (Shapiro et al., 1996), this particular mutation 

may be compensated by wild-type cis-partners carrying the 

p65–RACK1–PKCα complex that phosphorylate mutant partners. 

This is consistent with the fact that mutation of serines 198 and 

204 to glutamic acid restores wild-type function to P0s carry-

ing deletions or point mutations that compromise the binding 

of p65.

The machinery we have identifi ed to be associated with 

the cytoplasmic domain of P0 suggests that like members of the 

cadherin (Lilien et al., 2002; Lilien and Balsamo, 2005; Potter 

et al., 2005) and integrin (Webb et al., 2004) families of adhesion 

molecules, P0 function is modulated through a set of associated 

cytoplasmic components designed to regulate phosphorylation 

(M. Xu et al., 2000). This further suggests that dephosphoryla-

tion also plays a critical role in regulating P0 function (Bolino 

et al., 2000; Houlden et al., 2001; Berger et al., 2002).

Regulated phosphorylation may play a role in the early 

stages of myelination, as phospho-P0 is most prevalent during 

the period of maximal myelination (Eichberg and Iyer, 1996). 

Possibly, P0 adhesion is turned off and on during this time to 

regulate the rate of compaction. Additionally, as suggested by 

Eichberg (2002), phosphorylation may be a component of the 

machinery that is critical for the regulation of trans-intracellular 

membrane interactions essential for normal myelin compaction. 

In this scenario, phosphorylation would serve to retard ma -

turation by inhibiting interactions of the cytoplasmic domain 

with phospholipids on the opposing membrane; thus, during 

maximal periods of myelin formation, intercellular adhesion 

predominates, whereas maturation is prevented. After comple-

tion and/or stabilization of wrapping, phosphorylation is de-

creased, and compaction ensues. Although the phosphorylation 

of P0 is clearly essential for adhesion function, it may also play 

a role in other aspects of myelination. We (Menichella et al., 

1999; W. Xu et al., 2000) and others (Giese et al., 1992) have 

reported that transcription of myelin-associated genes is de-

regulated in the absence of P0, and, thus, phosphorylation may 

play an important role in downstream signaling processes. 

These are among the questions that we will be pursuing in the 

near future.

Materials and methods
Antibodies
Antibodies used in this study are as follows: anti-GST (Ab-3; Calbiochem), 
anti-FLAG M2 (Stratagene), anti-HA (Roche Applied Science), anti–maltose-
binding protein (MBP; New England Biolabs, Inc.), anti-RACK1, anti-PKCα, 
and antifl otillin (BD Biosciences), antiphosphoserine antibody specifi c for PKC 
(Cell Signaling Technology), HRP-conjugated secondary antibodies (Invitro-
gen or Jackson ImmunoResearch Laboratories), and agarose-conjugated 
anti-HA (Bethyl Laboratories). The anti-p65 antibody was prepared in 
rabbits using amino acid sequence 104–118 as antigen. Antibody AH6 
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(nucleolar antigen; Developmental Studies Hybridoma Bank at the Univer-
sity of Iowa) was used as a nuclear marker.

Yeast two-hybrid screening
The assay used was based on the interaction mating method (Kolonin 
et al., 2000). cDNA encoding the cytoplasmic domain of P0 was introduced 
into yeast (strain RF231/pSH18-34) as a fusion with LexA. mRNA from the 
sciatic nerve of 20–30-d-old rats was use to create a cDNA library fused 
to a transcription activation domain. The library was then introduced in 
yeast to create the prey strains. Bait and prey strains grown on selective 
medium were mated and grown on indicator plates. The cytoplasmic 
domain of myelin-associated glycoprotein, β1-integrin, and TGFβ type I 
receptor were used as bait protein controls.

Northern blots
p65 and P0 probes were obtained by PCR using the p65 fragment identi-
fi ed in the yeast two-hybrid screen and cDNA for the P0 cytoplasmic do-
main as templates. The probes were labeled with [32P]dATP and [32P]dGTP 
(to normalize for GC content) using random priming and Klenow DNA 
polymerase. The blots were hybridized and washed using the methods de-
scribed in Church and Gilbert (1984). Sciatic nerve transection and regen-
eration were performed as described previously (Menichella et al., 2001).

P0 constructs and expression in L cells
Full-length P0 (P0WT) and P0 deletion mutant cDNA was cloned into the 
phCMV3 expression vector (Gene Therapy Systems) using a PCR-based 
technique. All constructs were created using the same forward primer con-
taining a Kpn1 restriction site, a Kozak consensus sequence, and the same 
reverse primer containing a BamH1 restriction site; for the deletion mu-
tants, two unique additional primers in a triple PCR strategy were used. 
PCR site-directed mutagenesis was used to introduce point mutations in the 
P0 cytoplasmic domain. All constructs were confi rmed by sequencing.

cDNA constructs were transfected with LipofectAMINE (Invitrogen) 
into mouse L cells, and stable clones were selected using G418. Clones ex-
pressing high levels of P0, as determined by Western blotting with anti-HA 
antibody, were chosen for assays.

P0 fusion peptides
Full-length wild-type P0 cDNA was used as a template for PCR to create P0 
cytoplasmic construct (C-terminal 69 residues). The PCR fragment was 
cloned into the BamHI–SalI cloning site of the pCAL-N-FLAG expression 
vector (Stratagene) to generate a fusion with CBP. The constructs were con-
fi rmed by sequencing. CBP–wild-type P0 was prepared and purifi ed ac-
cording to the manufacturer’s protocol. Purity of the peptide was assessed 
by Coomassie staining and Western blotting.

Generation of p65 fusion peptides
The 1.1-kb cDNA identifi ed in the yeast two-hybrid assay was used as a 
template to generate four truncated p65 constructs: p65-1 (residues 178–
431), p65-2 (residues 178–210), p65-3 (residues 266–298), and p65-4 
(residues 299–431). p65-1, -2, and -3 constructs were ligated into the 
XbaI–HindIII cloning site of the pGEX 2T expression vector (GE Healthcare), 
and p65-4 was ligated into the BamHI–SalI cloning site of pGEX 4T2. All 
constructs were verifi ed by restriction enzyme cleavage and sequencing. 
Peptides were purifi ed by glutathione affi nity chromatography and assayed 
by Coomassie staining and Western blotting.

Expression and purifi cation of MBP-RACK1
MBP–full-length human RACK1 was provided by D. Mochly-Rosen 
(Stanford University, Palo Alto, CA). The plasmid was transformed into 
Escherichia coli strain BL21, and MBP-RACK1 protein was purifi ed from the 
bacterial cleared lysate by maltose affi nity chromatography (New England 
Biolabs, Inc.). The purity of fusion peptide was confi rmed by Coomassie 
staining after SDS-PAGE.

GST pull-down assays
GST-p65 peptides bound to glutathione-Sepharose were equilibrated in 
binding buffer (20 mM Hepes-KOH, pH 7.9, 50 mM KCl, 2.5 mM MgCl2, 
10% glycerol, 0.02% NP-40, 1.5% goat serum, 2 mM sodium-ortho-
vanadate, and protease inhibitor cocktail) for 1 h at 4°C. L cells stably ex-
pressing P0 were lysed in mild lysis buffer (20 mM Hepes, pH 7.2, 150 mM 
NaCl, 3 mM KCl, 2.5% NP-40, 1 mM sodium-ortho-vanadate, 10 μg/ml 
DNase, and protease inhibitor cocktail [Sigma-Aldrich]) and cleared by 
centrifugation at 16,000 g for 20 min. The supernatants were incubated 
with the glutathione-Sepharose–bound GST-p65 peptides overnight at 4°C. 
Beads with bound protein complexes were collected by centrifugation at 

500 g and washed three times with 10 mM Tris-HCl, pH 7.5, 150 mM 
NaCl, 0.2% NP-40, 2 mM Na-o-vanadate, and protease inhibitor cocktail 
(Sigma-Aldrich). Beads were resuspended in SDS sample buffer and ana-
lyzed by SDS-PAGE and Western blotting.

Synthetic peptides mimicking P0 sequences were prepared by Alpha 
Diagnostic International. For peptide competition assays, GST-p65 immobi-
lized on glutathione-coated beads was incubated with increasing amounts 
of peptide for 30 min before the addition of cell lysate and overnight 
in cubation. The amounts of P0 pulled down at plateau peptide concentra-
tions (20 μM) were compared with the amount of P0 pulled down by p65 
in the absence of any peptide competitor.

In vitro binding assays
High protein binding wells (Pierce Chemical Co.) were incubated with 50 μl 
of 20 μg/ml CaM in 50 mM bicarbonate buffer overnight at 4°C. The 
wells were washed in PBA (PBS with 0.25% BSA and 0.02% NaN3), 
blocked for 1 h at 37°C in 5% nonfat milk in PBS, washed in PBA three 
times, and incubated with a previously determined saturating concentration 
of CBP-P0 cytoplasmic domain in PBA for 1 h at 37°C. After washing three 
times in PBA, the wells were incubated with increasing concentrations of 
GST alone or GST–p65-1 for 2 h at room temperature followed by several 
washes with PBA. The wells were then incubated for 1 h with 1:1,000 
anti-GST antibody in PBS followed by washing and incubation with HRP-
conjugated goat anti–mouse IgG (1:1,000) in PBS with 0.25% BSA. The wells 
were thoroughly rinsed with PBS and incubated with o-phenylene diamine 
substrate for 30 min. The reaction was stopped by adding 2 M H2SO4, and 
absorbance was determined at 450 nm in a spectrophotometer (Spectramax 
Plus; Molecular Devices). All samples were assayed in triplicate, and the 
experiment was repeated three times. Statistics and the dose-response graph 
were computed with Kaleidagraph software (Synergy).

To analyze the binding of RACK1 to p65, 96-well glutathione-coated 
microplates (Pierce Chemical Co.) were rinsed with PBS and incubated 
with GST–p65-1 peptide. The wells were blocked with 4% BSA in PBS for 
1 h, rinsed with PBS, and increasing concentrations of MBP-RACK1 or MBP 
peptide in PBS were added. After 1 h of incubation, the wells were washed 
three times with PBS and incubated with anti-MBP mouse monoclonal anti-
body in PBS with 0.5% BSA followed by HRP goat anti–mouse IgG in TBS 
with Tween 20 (0.1%) with 0.5% BSA. The wells were thoroughly washed 
with TBS with Tween 20 (0.1%), and color reagent was added and ana-
lyzed as described in the previous paragraph.

Coimmunoprecipitation assays
Confl uent cell layers were washed in PBS and lysed in buffer containing 
20 mM Hepes, pH 7.9, 50 mM KCl, 2.5 mM MgCl2, 10% glycerol, 1% Triton 
X-100, 5 mM NaF, and protease inhibitor cocktail (1 ml/10-cm plate; 
Sigma-Aldrich) for 10 min at 4°C. The lysates were cleared by centrifuga-
tion at 14,000 g, and the supernatant was incubated with anti-HA or con-
trol antibody for 2 h at 4°C, with rotation followed by 1 h with anti–rat IgG 
covalently attached to magnetic beads. The beads were then collected using 
a magnetic stand, washed extensively with PBS containing 0.5% Triton 
X-100, and eluted with SDS sample buffer. Eluted material was fractionated 
on SDS-PAGE, transferred to polyvinylidene difl uoride, and assayed by 
 immunoblotting with the appropriate antibody.

Aggregation assays
Single cells were prepared from semiconfl uent cell layers: layers were 
washed with PBS, incubated for �2 min with 0.002% trypsin in PBS, and 
collected in complete medium (DME with 5% FBS) with 5 μg/ml of added 
antipain and 10 μg/ml DNAase. Cells were collected by centrifugation 
at 1,000 g, resuspended in DME (wih 20 mM Hepes, pH 7.4, antipain, 
and DNAase), and counted in a hemocytometer (AO-Spencer Brightline; 
Reichert Scientifi c Instruments). The cell suspensions were diluted to a 
concentration of �104/ml, and 1 ml was added to 30-mm Petri plates 
containing 2 ml DME/Hepes. Dishes were rotated at 70 rpm in a humidifi ed 
chamber at 37°C. After �4 h, cells were observed and photographed 
 under a microscope (Axiovert 25CFL; Carl Zeiss MicroImaging, Inc.). Several 
fi elds of cells were used to quantify cell numbers using ImagePro Plus 
(Media Cybernetics). Results were tabulated as ratios of cells in aggregates 
versus total cell number for a minimum of fi ve fi elds.

Biotinylation of cell surface P0 and cell fractionation
For biotin labeling of cell surface P0, cell layers were washed in PBS and 
incubated with the membrane-impermeable biotinylation reagent sulfo-
N-hydroxysuccinimide-SS-biotin (Pierce Chemical Co.) at a concentration 
of 1 mg/ml in PBS for 30 min at room temperature. Cell layers were washed 
three times with ice-cold PBS, pH 8.0, and lysed as described in the 
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Coimmunoprecipitation assays section. Cleared cell lysates were incubated 
with streptavidin-conjugated magnetic beads (Roche Applied Sciences) for 
1 h, the beads were extensively washed, and bound material was eluted 
with SDS sample buffer and analyzed by immunoblotting with anti-HA 
 antibody. For cellular fractionation, confl uent layers of control L cells or 
cells expressing wild-type P0 (LP0) were washed in ice-cold PBS and 
scraped in 0.25 M sucrose in Hepes buffer, pH 7.9, containing protease 
inhibitor cocktail (Sigma-Aldrich). Cells were homogenized, and the 
 nuclear and membrane fractions were separated using Optiprep (Sigma-
Aldrich) according to the manufacturer’s directions. Alternatively, L control 
and LP0 cells were fractionated into nuclear and cytoplasmic fractions 
 using the Ne-PER kit (Pierce Chemical Co.).

P0 immunostaining
L cells expressing P0 or the P0 mutant G184R were grown on poly-L-lysine–
coated coverslips, washed free of serum, fi xed in 4% PFA for 20 min at 
room temperature, and permeabilized in 0.1% Triton X-100 for 5 min. After 
washing in PBS, the coverslips were incubated with rat anti-HA for 1 h at 
room temperature. The coverslips were washed extensively and incu-
bated for another hour in AlexaFluor488 anti–rat antibody diluted in PBS 
with 5% goat serum. After several washes, the coverslips were mounted on 
glass slides, and images were captured using an inverted laser-scanning 
confocal microscope (TCS SP2 AOBS; Leica).

The yeast two-hybrid assays were performed in the laboratory of Russell 
Finley (Center for Molecular Medicine and Genetics, Wayne State University 
School of Medicine, Detroit, MI). We are grateful to Srikantha Thyagarajan 
(The University of Iowa, Iowa City, IA) and to Huiyuan Jiang and Xingyao Wu 
(Wayne State University, Detroit, MI) for help with the Northern analyses. We 
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