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Lung adenocarcinoma (LUAD), a malignancy with high incidence and mortality rates
worldwide, containsmultiple genomic and epigenomic abnormalities. And the useful tumor
markers associated with these abnormalities need further investigation. Whereas
apoptosis is a form of programmed cell death, the expression of apoptosis-related
genes in LUAD and its relationship with prognosis is unclear. In the present study, we
identified 64 differentially expressed apoptosis-related genes (DEARGs) that were
differentially expressed between LUAD tissue and normal lung tissue. Based on these
DEARGs, all LUAD cases were classified into two subtypes using The Cancer Genome
Atlas (TCGA) cohort to assess the prognostic value of apoptosis-related genes for survival.
An 11-gene signature was established by applying the Least Absolute Shrinkage and
Selection Operator (LASSO) Cox regression method to construct a multigene prediction
model and classify all LUAD patients in the TCGA cohort into high or low AS-score groups.
Patients in the low AS-score group had significantly higher survival and prognosis than
those in the high AS-score group. Taking the median risk score of the AS-score, LUAD
patients in the GSE68465 cohort were divided into two risk groups, low and high. The
overall survival (OS) time was longer in the low AS-score group. Combined with clinical
characteristics, the AS-score was an independent predictor of LUAD patients. Gene
ontology (GO) and Kyoto Encylopedia of Genes and Genomes (KEGG) analyses showed
that the differential genes between the two groups were mainly enriched in cellular
immunity. Further analysis revealed higher immune checkpoint protein expression and
higher tumor mutational burden (TMB) in the high AS-score group, suggesting better
efficacy of immunotherapy in the high AS-score group than the low AS-score group. And
the high AS-score group was better in chemotherapy and targeted therapy efficiency. In
conclusion, the AS-score constructed based on apoptosis-related genes can predict the
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prognosis of LUAD patients and provide some guidance for the antitumor treatment of
LUAD patients.
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INTRODUCTION

The new Global Cancer Statistics 2020 showed that cancer
incidence in China is the highest globally and that lung cancer
(LC) remains the second most prevalent malignancy with high
mortality (Sung et al., 2021). According to the pathological type of
LC, it can be divided into small cell lung cancer (SCLC) and non-
small cell lung cancer (NSCLC), of which non-small cell lung
cancer includes LUAD and lung squamous carcinoma (LUSC).
Meanwhile, LUAD accounts for 85% of non-small cell lung
cancer and 40% of all types and is the most common type of
LC (Denisenko et al., 2018; Liu L.-P. et al., 2021). With no
symptoms in the early stages of LC, it is usually detected at an
advanced stage that is not amenable to surgical treatment and has
a poor prognosis. The current therapeutic modalities for LUAD
include chemotherapy, radiotherapy, targeted drug therapy,
immunotherapy, and surgery. However, the sensitivity and
specificity of treatment are low due to the heterogeneity of the
tumor and the complex immune microenvironment of cancer.
Although an increasing number of studies have focused on the
analysis of the characteristic death features of tumor cells to
predict their prognosis (Liu L.-P. et al., 2021). However, the
analysis of molecular features of tumor cell apoptosis to predict
lung adenocarcinoma prognosis has not been demonstrated. In
this study, we analyzed the molecular features related to tumor
apoptosis. The study was carried out to compare the survival
differences between the two groups and the efficacy of antitumor
drugs by constructing an apoptosis-related prediction model for
staging lung adenocarcinoma patients. These suggest that it is
crucial to improve treatment specificity and establish a specific
prognostic model (Hirsch et al., 2017; Greenawalt et al., 2019).

It is known that there are two main types of cell death, one is
programmed death that is finely regulated by the cell, and the
other is uncontrolled cell necrosis (Xu et al., 2019). In contrast,
apoptosis, as a programming mechanism of cell death, is
characterized by specific changes in cell structure and the
biochemical processes of all enzyme-catalyzed reactions,
mainly removing some damaged and potentially harmful cells
from the body (Yaacoub et al., 2016; Carneiro and El-Deiry,
2020). The expression of phosphatidylserine in the outer layer of
the cell membrane leads to early recognition and phagocytosis of
dead cells by macrophages during apoptosis, without releasing
pro-inflammatory cellular components (Hengartner, 2001).
Apoptosis is characterized by several morphological features,
including membrane vesicles, changes in organelle
ultrastructure, and loss of membrane integrity, followed by the
emergence of phagocytes that consume the apoptotic cells
(Kroemer et al., 2005). The BCL-2 family of proteins is the
main apoptosis regulator that directly controls the
permeability of membranes (Singh et al., 2019). Cytochrome C
is released from mitochondria to form apoptotic vesicles. At the

same time, the caspases (cysteine, aspartate-specific proteases)
family of proteases plays a crucial executive role in apoptosis (Li
and Yuan, 2008), activating the executioner caspase 3 to initiate
apoptosis (Ledgerwood and Morison, 2009; Xie et al., 2020).
Necrosis, on the other hand, is not regulated and is primarily due
to external factors that cause collapse and necrosis, releasing large
amounts of harmful substances and causing severe damage to the
cellular environment (Degterev et al., 2008).

There is increasing evidence that dysregulation of apoptosis
signals the development and progression of malignant tumors,
which can become resistant to therapeutic agents due to
resistance to apoptosis while evading the immune system
(Hassan et al., 2014). The majority of drugs currently used in
clinical practice achieve their antitumor effects by affecting the
apoptotic signaling pathway (Plati et al., 2008; Giménez-Bonafé
et al., 2009).

Current evidence suggests that apoptosis not only plays a role
in tumorigenesis, cancer metastasis, cancer immunity, and cancer
subtypes, but that senescent or lost apoptotic cells are recognized
and phagocytosed by macrophages, leading to the release of
cytokines that participate in the complex tumor immune
microenvironment, which also influences apoptosis (Carneiro
and El-Deiry, 2020).

Apoptosis plays an important role in tumor development and
antitumor therapy. However, less study of its specific functions
and studies in LUAD drug resistance and tumor immune
microenvironment are studied. Therefore, we conducted a
systematic analysis to explore the prognostic value of
apoptosis-related genes in LUAD and investigate the relevance
of apoptosis in LUAD to antitumor drugs and the immune
microenvironment.

MATERIALS AND METHODS

LUAD Data Sets and Preprocessing
Firstly, we draw a simple schematic diagram of the proposed
apoptotic process based on the apoptotic pathway (Created with
BioRender.com) (Figure 1A). The Cancer Genome Atlas
downloaded and opened the LUAD gene expression dataset
with complete clinical information, somatic mutation data,
and FPKM transcriptome data (TCGA https://portal.gdc.cance
r. gov/), excluding samples without survival information,
including 494 cases of LUAD and 59 normal tissues. Detailed
information on these LUAD patients is presented
(Supplementary Table S1). In the KEGG pathway database
(https://www.genome.jp/kegg/pathway.html), we found
136 apoptosis-related genes according to the apoptosis
pathway (map04210). As no complete set of apoptosis-related
genes has been reported before, we searched the literature related
to apoptosis, performed a comprehensive analysis, and found that
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all of them could be found in the set of apoptosis-related genes in
the kegg database (Supplementary Table S2). GSE68465 (N =
442) was downloaded from the gene expression omnibus (GEO,
https://www.ncbi.nlm.nih.gov/geo/) database and was used as the
validation set. All data are publicly available online. This study
did not require an author to perform experiments on humans or
animals. A working diagram showing the overall research process
(Figure 1B).

Data Processing of Differentially Expressed
Genes and Functional Enrichment Analyses
The “limma” package was used to identify apoptosis-related genes
that were differentially expressed between LUAD and normal tissues
in the TCGA database. The screening criteria were A false discovery
rate (FDR) < 0.05, |logFC| > 0.5 (Wu et al., 2021). GO and KEGG
analysis was performed using the “cluster profile” package based on
these differentially expressed genes. The Search Tool for the Retrieval
of Interacting Genes (STRING) database (https://st ring-db. org/)
was used to input differential genes for PPI information analysis, and
Cytoscape software was used to visualize the PPI network.

Consensus Clustering
Consistent clustering identifies apoptosis-related patterns
associated with the expression of apoptosis regulators by the
k-means method. The number of clusters and their stability is
determined by a consensus clustering algorithm using the
“ConsensuClusterPlus” package, repeated 1,000 times to
ensure classification stability. The prompt function was used
to perform principal component analysis. Heat maps and
Kaplan-Meyer (KM) curves were plotted using the R packages
“heatmap,” “survminer,” and “survival.”

Construction and Validation of
Apoptosis-Related Gene Signature
The consensus clustering algorithm classifies lung cancer
patients into two subtypes, and we next use the R package
“limma” to identify differentially expressed genes between
subtypes (| logFC | > 2 and FDR <0.001). Univariate Cox
regression analysis was used to screen for prognosis-related
DEGs, and LASSO—Cox analysis was used to narrow down
candidate genes further, resulting in a validated predictive
model (Liu et al., 2021b). AS-score = Σ (βi × expi) = 1 (where
βi is the coefficient index and gene expression, respectively).
The median cut-off value was determined using the
“survminer” package. The Kaplan-Meier survival curves
were used to identify the time to overall survival (OS)
that distinguishes different subtypes of patients. The time-
dependent subject operating characteristic curves (ROC)
were used to assess the validity and accuracy of the
model. The GSE68465 cohort was used as an external
validation set to assess the value of the predictive model
further.

TME Cell Infiltration and the Response to
Anti-Tumour Drugs
The ssGSEA was performed by the “gsva” software package to
calculate the infiltration score of 16 immune cells and the activity of
13 immune-related pathways. The data of the Genomics Of Drug
Sensitivity in Cancer (GDSC) platform were used to predict the
sensitivity of LUAD patients to common chemotherapeutic drugs
and targeted therapeutic drugs (such as cisplatin, paclitaxel, gefitinib,
and erlotinib). The “pRRophetic”R package was used to estimate the
half-maximal inhibitory concentration (IC50) (Liu et al., 2021c).

FIGURE 1 | Schematic diagram of the apoptosis pathway and a sketch of the research process. (A) Schematic diagram of the apoptosis pathway. (B) A sketch of
this research process.
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Cell Culture
The human LUAD cell lines (A549 and PC9) and the normal
human lung epithelial cell line (BEAS-2B) used in this study were
provided by the Institute of Cell Research, Chinese Academy of
Sciences (Shanghai, China). The medium for A549 cells was
DMEM medium with 10% fetal bovine serum and 1% double
antibodies; PC9 and BEAS-2B cells were 1,640 medium with 10%
fetal bovine serum and 1% dual antibodies. The cells were placed
in a constant temperature incubator with a CO2 concentration of
5% and a temperature of 37°C.

RNA Extraction and Real-Time PCR
Total RNA was extracted by Trizol reagent (Invitrogen, Carlsbad,
CA, United States) according to the instructions. The

concentration of the extracted RNA was controlled to be
500 ng/ml with a purity between 1.80 and 2.00. Subsequently,
extracted RNA was transcribed using the PrimeScript RT reagent
Kit with gDNA Eraser (Takara, Japan). SYBR Green-based real-
time PCR was used for analysis. PCR primers were designed and
synthesized by Shanghai Bioengineering Co. (Shanghai.China).
Primers used for real-time PCR assays are listed in
Supplementary Table S3.

Statistical Analysis
Differences between groups were analyzed using the Wilcoxon
test. Independent prognostic analysis was performed using
univariate and multivariable cox regression analysis.
Correlation tests were performed using Spearman analysis.

FIGURE 2 | Expressions of the 64 apoptosis-related genes and the interactions among them. (A)Heatmap (blue: low expression level; red: high expression level) of
the apoptosis-related genes between the normal (N, brilliant blue) and the tumor tissues (T, red). (B) The volcano plot shows differential expression of apoptosis genes in
LUAD and normal tissue in the TCGA cohort (green: low expression in LUAD; red: high expression in LUAD). (C) PPI network shows the apoptosis-related gene
interactions (interaction score = 0.7) (green: low expression in LUAD; red: high expression in LUAD). (D) The correlation network of the apoptosis-related genes (red
line: positive correlation; blue line: negative correlation. The depth of the colors reflects the strength of the relevance).
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FIGURE 3 | Based on functional analysis of DEARGs between the normal and LUAD groups in the TCGA cohort.(A) Bubble shows KEGG pathway analysis
predicted DEARGs. The circle size represents the number of genes enriched in the entry, and the color indicates the significance of the p-value. (B) Barplot shows GO
enrichment analysis predicted DEARGs. The color indicates the significance of the p-value.

FIGURE 4 | Tumor classification based on the DEARGs. (A) 494 LUAD patients were grouped into two clusters according to the consensus clustering matrix (k =
2). (B) The heat map shows the clinicopathological characteristics of the differentially expressed genes between the two clusters. (C)Kaplan–Meier OS curves for the two
clusters.
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Survival curves were plotted using log-rank and Kaplan-Meier
tests. Mutations between groups were analyzed using the
“maftools” R package. p < 0.05 was considered statistically
significant. Data were processed using R 4.0.5 software.

RESULTS

LUAD Dataset Sourcing and
Pre-Processing
The TCGA-LUAD database was downloaded from The Cancer
Genome Atlas TCGA public database for a total of 594 samples,
and patients with no survival information were excluded from
further analysis. Comparing 59 normal tissues with 494 LUAD
tissues for DEARGs, a total of 64 differentially expressed genes
associated with apoptosis were identified, and the heatmap
demonstrated the expression of each differential gene in each
sample (Figure 2A). Twenty-one of these 64 DEARGs were
genetically down-regulated and 38 differentially genetically up-
regulated (Figure 2B; Supplementary Table S4). To further
explore the interactions between these apoptosis-related genes,
we constructed a protein-protein interaction network (PPI) with

a minimum required score of 0.7 for PPI analysis, which was used
to explore the interconnections between the genes (Figure 2C).
Simultaneous drawing of a correlation network containing all
apoptosis-related genes (red represents positive correlations and
blue represents negative correlations) (Figure 2D).

Functional Analysis Based on DEARGs
To further explore the differences in the biological, behavioral
functions of these DEARGs.We performed GO and KEGG
enrichment analyses. The results showed that these 64 DEARGs
aremainly involved in apoptosis, salmonella infection, and apoptotic
pathways and are associated with cysteine-type endopeptidase
activity, membrane rafts, and peptide chain endonuclease activity
involved in the apoptotic process (Figures 3A,B).

Molecular Subtypes of LUAD Based on
DEGs
To explore the association between DEARGs and LUAD, we
performed a consensus clustering analysis on all 494 patients with
survival information for LUAD in the TCGA cohort. Increasing
the clustering variable k from 2 to 9 found that the highest intra-

FIGURE 5 | Construction of risk signature in the TCGA cohort. (A) Univariate cox regression analysis of LUAD for each apoptosis-related gene, p < 0.05. (B) In the
LASSO-Cox model of the TCGA cohort, the minimum standard was adopted to obtain the value of the super parameter λ by 10-fold cross-validation. (C) Cross-
validation for tuning the parameter selection in the LASSO regression. (D) Heat map showing the clinical characteristics of 11 model genes.
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group correlations and lower inter-group correlations when k = 2,
indicating that the 494 LUAD patients could be well classified
into two clusters based on 64 differentially expressed genes
(DEGs) (Figure 4A). The heatmap showed the differential
gene expression profile regarding clinical characteristics,
including tumor grade, age (≤60 or >60 years), gender, TMN
stage, and survival status (alive or dead). The results showed that
the C1 group had better clinical performance than the C2 group
(Figure 4B). We also compared the overall survival time (OS) of
the two groups. There was a significant difference between the
two groups (p = 0.002). The results suggested that the C1 group
has a higher survival rate than the C1 group (Figure 4C).

Prognostic Gene Modeling in the TCGA
Cohort
In order to develop a model that could quantify the ideal
prognosis for each patient, we took a sample of 494 LUAD

cases with complete survival information for the study. We
firstly identified 153 differentially expressed genes between the
two clusters and then used univariate Cox regression to
analyze these 153 differentially expressed genes for initial
screening (Figure 5A; Supplementary Table S5). The
LASSO-Cox regression model was applied to include 11 of
the differential genes with a minimum value of λ(Figures
5B,C). An apoptosis-related signature score was established
which we named “AS-score”; a genetic risk score was
constructed based on the optimal λ-value and calculated as:
AS-score = (−0.003*SERPIND1 exp.) + (−0.118*SFTPC exp.) +
(0.033*HMGA2 exp.) + (−0.081*ABCC2 exp.) + (0.178*FBN2
exp.) + (0.117*KRT6A exp.) + (0.022*IL1A exp.) +
(−0.030*CYP4B1 exp.) + (0.007*DLGAP5 exp.) +
(0.071*C1QL1 exp.) + (0.033*IGF2BP3exp.). The heatmap
showed the relationship between 11 model genes and
clinical characteristics (including stage TMN staging,
gender, survival status, etc.) (Figure 5D).

FIGURE 6 | Overall performance of the 11 gene signatures in all cohorts (A) Patient distribution based on risk scores. (B) Survival status of each patient (low-risk
group: left side of the dashed line; high-risk group: right side of dashed line). (C) PCA plots of LUAD patients based on risk scores. (D) The ROC curve shows the
predictive efficiency of the risk score. (E) Kaplan-Meier curves for LUAD patients in high and low-risk groups. (F) Nomogram for predicting 1, 2, and 3 years overall
survival for LUAD patients in TCGA cohort. (G–I) Calibration plots of predicted recurrence after 1, 2, and 3 years. The x-axis represents the predicted probability of
recurrence in the nomogram, and the y-axis represents the actual probability of recurrence.
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The 494 LUAD patients were equally divided into high AS-
score and low AS-score groups based on the median score
calculated by the risk score calculation formula (Figures
6A,B). Principal component analysis (PCA) showed that
patients with different risks could be divided into two groups
(Figure 6C). The sensitivity and specificity of the prognostic
model were assessed using time-dependent receiver operating
characteristic curve (ROC) analysis.We found that the area under
the ROC curve (AUC) was 0.727 at 1 year, 0.681 at 2 years, and
0.630 at 3 years (Figure 6D). Kaplan-Meier analysis suggested a
significant difference in OS between the high AS-score group and
the low AS-score group (p < 0.001), with the high AS-score group
having a lower survival time than the low AS-score group
(Figure 6E). To create a quantitative tool that can predict the
clinical application of OS in LUAD patients, we developed a
nomogram for predicting 1-, 2- and 3-years s overall survival for
LUAD patients in the TCGA cohort (Figure 6F). Calibration
plots showed that the nomogram agrees with the ideal model in
the TCGA cohort (Figures 6G–I).

External Validation of the Risk Signature
The GSE68465 cohort of 443 LUAD patients with survival
information was used as the validation set. According to the
AS-score median risk score, 225 patients in the GSE68465
cohort were divided into low AS-score group and 217 into
high AS-score group (Figures 7A,B). Principal component
analysis (PCA) showed that patients could be well classified
into high and low groups based on the AS-score (Figure 7C).
ROC curve analysis of the GEO cohort showed that the

constructed model was a good predictor (1-year AUC =
0.676, 2-years AUC = 0.670, 3-years survival 0.642)
(Figure 7D). Kaplan-Meier analysis also showed a
significant difference in survival between the low AS-score
and high AS-score groups (p < 0.001). The high AS-score
group had a significantly lower survival time than the low
AS-score group (Figure 7E).

Independent Prognostic Value and
Functional Analysis of Risk Signature
Univariate and multivariate Cox regression analyses were used to
assess whether the risk score from the genetic trait model could be
used as an independent prognostic factor. Univariate Cox
regression analysis showed that period, T-stage, lymph node
metastasis (N), and risk score were all factors associated with
prognosis in the TCGA cohort and in the GSE68465 cohort (HR
= 3.500, 95% CI: 2.536–4.829 and HR: 2.163, 95% CI:
1.600–2.926) (Figures 8A,B). Multivariate Cox regression
analysis suggested that risk score is an independent prognostic
factor after adjusting for other confounders (HR = 2.964, 95% CI:
2.120–4.145 and HR: 1.868, 95% CI: 1.372–2.544)
(Figures 8C,D).

Comparison of Immunoreactivity
To further explore differences in gene function and pathways
between risk model classifications, we identified differential genes
between low AS-scores and high AS-scores in the TCGA cohort.
GO enrichment analysis based on these DEGs showed that the

FIGURE 7 | Validation of risk prediction models in the GEO cohort (A) Distribution of patients based on risk score in the GEO cohort. (B) Survival status of each
patient in the GEO cohort based on the risk prediction model (low-risk group: left side of the dashed line; high-risk group: right side of the dashed line). (C) PCAmapping
of LUAD patients in the GEO cohort based on risk scores. (D) ROC curve showing the predictive efficiency of risk scores in the GEO cohort. (E) Kaplan-Meier curves for
LUAD patients in high and low-risk groups.

Frontiers in Genetics | www.frontiersin.org April 2022 | Volume 13 | Article 8184038

Zou et al. Apoptosis-Related Signature

https://www.frontiersin.org/journals/genetics
www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles


DEGs were mainly associated with signaling pathways for the
immune response, epidermal development (Figures 9A,B).

Increasing studies have shown that tumor metastasis and
invasion are inseparable from the tumor microenvironment.
Based on the functional analysis, we further explored the role
of the constructed AS-score in the immune microenvironment
and immunotherapy. Single sample gene set enrichment
analysis (ss GSEA) was used to compare the enrichment
scores of 16 immune cell types and the activity of
13 immune-related pathways in the TCGA and GSE6846
cohorts in low AS-score versus high AS-score populations.
In the TCGA cohort, the high AS-score group had lower levels
of immune cell infiltration relative to the low AS-score group,
except for p DCs Th1-cells, especially a DCs and I DCs cells. In
contrast, in the immune pathway, the high AS-score was
mainly enriched in HLA, MHC_class_1,
Type_II_IFN_response (Figures 10A,B). Similar
conclusions were reached in the study of immune
infiltration in the GSE6846 cohort (Figures 10C,D).

Large studies have revealed that immunotherapy is emerging
as a new hope for cancer treatment, and immune checkpoints
play an important role in the immune response (Marin-Acevedo
et al., 2018). To further explore the impact of high and low AS-
score groups on immunotherapy, we compared the differences

between immune checkpoints between the two groups. As we
found, the expression of PDCDLG2, CD274, TNFSF15, CD40LG,
HHLA2 was significantly upregulated, whereas CD276 and
TNFSF4 were downregulated considerably in the high AS-
score group, suggesting that apoptosis-related characteristics
scored higher in patients who may have a better chance to
immunotherapy (Figure 11A). Current studies suggested that
patients with high TMB show more significant benefits from PD-
1/PD-L1 inhibition than patients with low TMB (Hodges et al.,
2017; Rizvi et al., 2018).

To further compare the mutations profile between the two AS-
score groups, we examined mutation information for high and
low AS-scores separately. In the TCGA cohort, 218 (91.6%) of the
238 samples in the high AS-score group had mutations, with the
highest mutation frequency being in TTN (Figure 11B).In
contrast, 211 of 246 samples (85.77%) in the low AS-score
group showed mutations, with the most frequent mutation
being TP53 (Figure 11C). At the genetic level, the TMB was
higher in the high AS-score group compared to the low AS-score
group (p = 0.0097) (Figure 11D). Furthermore, the risk index was
positively correlated with the TMB, with an increased AS-score
(p = 1.9e-05) (Figure 11E). This study indirectly suggested that
AS- score plays a key role in mediating the clinical responses to
checkpoint immunotherapy.

FIGURE 8 | Univariate and multivariate Cox regression analysis of risk scores (A) Univariate cox regression analysis in the TCGA cohort. (B) Multivariate Cox
regression analysis in the TCGA cohort. (C) Univariate cox regression analysis in the GEO (GSE68465) cohort. (D) Multivariate Cox regression analysis in the GEO
(GSE68465) cohort.
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FIGURE 9 | Functional analysis of the DEGs between two risk groups in the TCGA cohort. (A)Bubble plot graph showing GO enrichment of DEGs between the two
groups in the TCGA cohort (longer bars indicate more gene enrichment, and darker red indicates more pronounced differences q-value: the adjusted p-value). (B)
Barplot showing the KEGG pathway of DEGs between the two groups in the TCGA cohort (longer bars indicate greater gene enrichment, and darker red indicates more
pronounced differences).

FIGURE 10 | Comparison of ssGSEA scores between the two risk groups (A) Immune cell infiltration between different risk groups in the TCGA cohort. (B)
Immune-related functions between the two risk groups in the TCGA cohort. (C) Immune cell infiltration between different risk groups in the GEO (GSE68465) cohort. (D)
Immune-related functions between the two risk groups in the GEO (GSE68465) cohort.
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The Role of the AS-Score in Antineoplastic
Drug Therapy
It has been shown that TMB predicts the efficacy of
immunotherapy and influences the response to chemotherapy
and targeted therapies. Therefore, we investigated the association
between this AS-score and the effectiveness of chemotherapy and
targeted therapies in LUAD patients (Choucair et al., 2020). To
compare the efficacy of the high and low AS-score groups to
commonly used chemotherapeutic and targeted drugs. The
results showed that the high AS-score group had a lower half-
maximal inhibitory concentration (IC50) of cisplatin (p = 2.2e-
09) and paclitaxel (p < 2.22e-16) compared to the low AS-score
group (Figures 12A,B), suggesting a higher sensitivity to
treatment. Similarly, the high AS-score group had lower IC50
for erlotinib (p = 9.2e-08) and gefitinib (p = 0.0013) (Figures
12C,D), suggesting a better sensitivity to treatment with targeted
drugs as well. These results suggested that the AS-score can
predict the effect of treatment with chemotherapeutic drugs
and targeted drugs.

Validation in LUAD Cell Lines
To better analyze the AS-score signatures of these 11 gene
constructs, we predicted their expression in the TCGA cohort.
The results showed that CYP4B1 and SFTPC were lowly

expressed in LUAD, SERPIND1, HMGA2, ABCC2, KRT6A,
IL1A, DLGAP5, C1QL1, IGF2BP3 were highly expressed,
while FBN2 was not differentially expressed between LUAD
and normal tissues (Figure 13A). Subsequently, we validated
the expression of the 11 genes incorporated into the model
constructs in the cell lines following the steps described above
and found general agreement with the predicted results by
comparing the differential expression of each gene in normal
bronchial epithelial cells (BEAS-2B) versus A549 and PC9
(Figures 13B,C).

DISCUSSION

As the most common type of LC, LUAD is currently treated by
surgery, radiotherapy, targeted therapy, and immunotherapy
(Siegel et al., 2021).

Apoptosis, as a form of programmed cell death (PCD), is
mediated through multiple signaling pathways (classified mainly
as intrinsic and extrinsic pathways) (Pistritto et al., 2016). The
intrinsic apoptotic pathway (mitochondrial-dependent) is
mediated by intracellular signals that converge at the
mitochondrial level in response to different stress conditions,
with internal stimuli such as irreparable genetic damage, hypoxia,
extremely high cytoplasmic Ca + concentrations, and severe

FIGURE 11 |Differences in immune checkpoint and TMB between the two risk groups in the TCGA cohort (A)Differences in immune checkpoints between the two
risk groups in the TCGA cohort. (B) TMB in the high AS-score group in the TCGA cohort. (C) TMB in the low AS-score group in the TCGA cohort. (D) Differences of TMB
between high and low AS-score groups in the TCGA cohort. (E) Association between AS-score and TMB in the TCGA cohort.
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oxidative stress being important factors in initiating the intrinsic
mitochondrial pathway (Green and Kroemer, 2004; Riley et al.,
2018). In contrast, the extrinsic apoptotic pathway (death receptor-
dependent) is initiated by the interaction of death receptors of the
tumor necrosis factor receptor (TNFR) superfamily exposed on the
cell surface with the respective protein TNF family ligands
(Guicciardi and Gores, 2009). The apoptotic process sequentially
and efficiently removes cells that cause damage (e.g., DNA damage
or cells generated during development), thereby maintaining cell
renewal, embryonic development, and immune system activity.
Interaction of apoptotic pathways with other signaling
mechanisms also affects cell death (Bauer and Helfand, 2006).
Dysregulation of apoptotic cell death mechanisms is a feature of
cancer, as shown by a growing body of literature (Lauber and
Herrmann, 2015). The altered apoptosis is not only associated
with tumor development and progression but also with resistance
to antitumor drugs, and therapeutic strategies targeting apoptosis-
resistant molecules are an effective way to restore the sensitivity of
cancer cells to apoptosis and enhance antitumor effect (Kim, 2005;
Mohammad et al., 2015).

However, it is unclear how apoptosis-associated genes interact
in LUAD and whether these genes are associated with clinical
characteristics of patients, prediction of antitumor drug efficacy,
and infiltration in the immunological microenvironment.
Classification of samples based on predefined gene expression
profiles is a proven method (Cristescu et al., 2015). In this study,
we used this method to analyze the data information of TCGA-
LUAD. The 136 genes associated with apoptosis were investigated
between LUAD and normal tissues, and the results revealed
differences in the expression of most of these genes. Protein-
protein interaction networks were mapped to demonstrate the
interrelationships. According to the DEARGs associated with
apoptosis, two distinct subtypes existed by consensus clustering
analysis. There were significant differences in survival and
prognosis between the two subtypes. To further assess the
prognostic value of these associated regulators, we initially
performed a preliminary screening of these differential genes
using univariate analysis and then constructed an 11 (SERPIND1,
SFTPC, HMGAA2, ABCC2, FBN2, KRT6A, IL-1A, CYP4B1,
DLGAP5 C1QL1, IGF2BP3) genetic risk score model, named

FIGURE 12 | Differences in antitumor drug therapeutic efficacy between high and low AS-scores in the TCGA cohort (A) Differences in paclitaxel therapeutic
efficacy between high and low AS-score in the TCGA cohort. (B) Differences in the efficacy of cisplatin therapeutics between high and low AS-score in the TCGA cohort.
(C) Differences in gefitinib therapeutic efficacy between high and low AS-score in the TCGA cohort. (D) Differences in the therapeutic efficacy of erlotinib between high
and low AS-score in the TCGA cohort.
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AS-score. LUAD patients in the TCGA cohort were then divided
into high and low AS-score groups based on the median AS-score
score. The performance from this risk model score was validated
in the GSE6846 cohort. Both the TCGA and GSE6846 cohorts
showed that the low AS-score group had better prognostic
survival and prognostic performance than the high AS-score
group. On the basis that this AS-score is a good predictor of
patient prognosis and an independent prognostic risk factor for
LUAD, we validated its expression in LUAD cell lines versus
normal bronchial epithelial cells. We found it to be consistent
with database predictions.

It has been shown that the tumor microenvironment is
significantly related to the clinical features, genomic expression,

and biological characteristics of tumor patients (Zhang et al., 2020).
A comprehensive analysis of the role of the tumor microenvironment
in LUAD will help clarify the tumor immunophenotype of LUAD,
explore independent prognostic indicators and new therapeutic
targets, thus improving patient prognosis and predicting the
effectiveness of immunotherapy (Liotta and Kohn, 2001; Fang and
Declerck, 2013). Previous studies have also shown that the tumor
microenvironment plays a key role in tumor carcinogenesis and
revealed significant epigenetic regulators, opening new avenues for
precision and personalized medicine (Gadiyar et al., 2020). According
to our findings, differentially expressed genes between the low AS-
score group and the high AS-score group were associated with
immune-related pathways. Comparison of immune cell infiltration

FIGURE 13 | Validation of the differential expression of the 11 model genes (A) Expression of 11 model genes from the TCGA cohort in LUAD tissue. (B,C)
Validation of differential expression of the 11 model genes in LUAD cell lines.
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and activation pathways between the low AS-score and high AS-score
groups showed differences inmultiple cellular and immune pathways.

Current immunotherapy for LUAD is mainly directed at
immune checkpoint inhibitors (Marin-Acevedo et al., 2018;
Wang et al., 2020). The most common and rapidly developing
of these are PD-L1 and PD-1 inhibitors, which exert antitumor
effects by blocking the binding of PD-L1 to PD-1, thereby
reducing the inhibition of T-cell activation, suggesting that
high PD-L1 expression is more effective for
immunosuppressive therapy (Zhu et al., 2018; Wang et al., 2021).

In order to further explore the differential impacts on immunity
between the high and low AS-score, we compared the TMB. We
found that the high AS-score group had more mutational load than
the low AS-score group and that AS-score was positively correlated
with TMB. Rizvi et al. (2018) suggested that TMB and PD-L1
expression, although not correlated, independently predicted the
efficacy of immunosuppressive therapy and combined TMB and
PD-L1 expression into a multivariate prediction model should yield
greater predictive capability. We also showed that the high AS-score
group had higher PD-L1expression but TMB than the low AS-score
group, and there may be a consistent synergistic predictive effect
between the two. The high AS-score group had better
immunotherapy efficacy than the low AS-score group (Samstein
et al., 2019).

The prediction model based on DEARGs showed that the high
AS-score group achieved better efficacy in immunotherapy.
Similarly, the high AS-score group achieved better efficacy
with chemotherapy and targeted drug therapy. At the same
time, Ludovic Fournel (Fournel et al., 2019) found that
cisplatin-based induction chemotherapy increased PD-L1
expression in tumor cells, suggesting that chemotherapy
combined with immunotherapy could improve the overall
prognosis of patients with LUAD. And the combination of
cisplatin and anti-PD - L1 therapy improved the response to
tumor treatment, which was consistent with the predictions of the
AS-score model. The results of this study showed that although
the low AS-score group had better survival than the high AS-
score group. But fortunately, the high AS-score group was more
sensitive to chemotherapy and targeted therapy. Meanwhile,
because cisplatin-based therapy could increase the expression
of PD-L1 in tumor cells, suggesting that the high AS-score group
is more sensitive to chemotherapy combined with targeted
therapy. Therefore, it is reasonable to assume that this model
may indicate antitumor therapy.

In conclusion, our study showed that this AS-score plays a role
in clinical prognosis and sensitivity to antitumor drug therapy.
Our study provides a new genetic marker for predicting the
prognosis of patients with LUAD and provides an important basis
for further research into the relationship and new apoptosis-
related antitumor drug treatments.
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